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Abstract: The aim of the present study is to unravel the concealed attributes of the Love-type wave
propagating in a composite of CoFe2O4 laden with Newtonian viscous liquid (VL), resting over
Aluminium-Epoxy as a semi-infinite micropolar (MP) substrate bearing size dependent properties.
The admissible boundary conditions are used to obtain the dispersion relations for both magnetically
open and short cases. To support the findings and reverberations of affecting parameters, graphical
representations are provided. Probable particular cases are deduced and matched with the existing
result. It can be perceived from graphical representations that phase velocity of Love-type wave is
remarkably affected by these parameters. Findings may have meaningful practical applications towards
the optimization of magnetic sensors and transducers working in liquid environment.
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Nomenclature

S †kl : Strain tensor; σ†i j : Stress tensor; Ci jkl : Elastic coefficient; hki j : Piezomagnetic constants; mi j :
Magnetic permeability; H†i : Magnetic field; B†i : Magnetic induction; φ† : Magnetic potential; εi jk :
Permutation tensor; δi j : Kronecker delta

1. Introduction

In the present scenario, there are laudable applications of magnetic materials in piezo-composites
due to their potential for multi-functional device applications, including magnetic sensors, energy
harvesters, tunable microwave devices, magnetoelectric (ME) random access memory and logic
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devices, and ME antenna. These composites have undoubtedly made their presence felt in this cutting
edge technology and has many future perspectives and engineering applications [1, 2]. From physical
consideration, the magnetostriction phenomenon is associated with a strong coupling between the
magnetic and mechanical properties of materials. In a PM material, a spontaneous magnetic moment
is induced by applying a physical stress, or a physical deformation by applying a magnetic field. This
can be ascribed by the dependence of the stress tensor σ and the magnetic field H towards the
magnetic induction B and the strain tensor S . The PM effect depends on various parameters of the
material such as density, elastic constant, permeability, piezomagnetic coefficients etc. Some common
examples of piezomagnetic materials are uranium dioxide, terfenol-D, ferromagnetic materials etc.
Among magnetostrictive phases, CoFe2O4 stands out because of its very high magnetostriction which
is due to high magneto-crystalline anisotropy and coercive field. PM materials are smart materials
also called as responsive or intelligent materials. Smart materials are designed materials which have
one or more properties that can be changed accordingly with the change in external stimuli such as
magnetic field, electric field, stress, chemical composition etc. In the recent past, surface wave
propagation in smart structures has been explored by various researchers. Alshits et al. [3]
investigated the existence of surface waves in semi-infinite anisotropic elastic media with
piezoelectric and PM properties. Wei et al. [4] examined SH-waves in a piezoelectric-piezomagnetic
coupled layered half-space. SH-wave propagation in imperfect interface of
piezoelectric-piezomagnetic bilayer system was examined by Nie et al. [5]. Theoretical study of
SH-wave propagation in periodically-layered PM structure is done by Liu et al. [6]. Scattering
phenomena of shear waves by a two-phase multiferroic sensor embedded in a
piezoelectric/piezomagnetic medium is explored by Hashemi [7]. Sahu et al. [8, 9] analyzed surface
wave behavior in PM layer. Modelling of Love-type wave propagation in a PM layer of Terfenol-D
over a lossy viscoelastic substrate was consummated by Suman et al. [10]. Ray et al. [11] used
Green’s function technique to model Love type wave propagation due to an impulsive point source in
a PM layered structure. Pang et al. [12–15] discussed surface wave propagation in various layered
structures comprising of PM layer. Love wave in a corrugated isotropic layer over a homogeneous
isotropic half-space has been analyzed by Singh [16]. Li et al. [17] theoretically investigated the
propagation characteristics of SH wave in piezomagnetic-piezoeletric structures.

The Love-type wave based devices were designed by employing classical model of elasticity for
the substrate but the classical model is incompetent to expound the behavior of motion of inner
structure of contemporary engineering materials like crystalline materials and materials with fibrous
or coarse grain. The granular structure or microstructure is a very minute form of a material. These
can vigorously influence hardness, toughness, corrosion resistance, high/low temperature behavior,
ductility, or wear resistance. These properties consecutively govern the applications of these materials
in chemical engineering and industrial practices. Hence, it is very important to scrutinize the
microstructural behavior of materials that remarkably influences the wave propagation in the
considered structures. Voigt [18] was the first who introduced the idea of couple stresses in addition
to force stresses to overcome the shortcomings of the classical theory of elasticity. He interpreted that
each element or grain of microstructure rotates about its center of gravity in addition to translation
assumed in classical theory of elasticity. Cosserat and Cosserat brothers [19] gave the mathematical
model to analyze materials with couple stresses, by considering that the deformation of the medium is
described by displacement vector and an independent rotation vector. Further, Eringen [20]
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established the generalized interpretation of this theory which illuminates the deformation of elastic
media with oriented particles. In view of significant influence by microstructures on the material,
considerable attention must be given to the substrate exhibiting microstructural properties [21, 22].
Many researchers have employed micropolar theory of elasticity to capture the microstructural
characteristics of the material. This study will aid researchers to delve out the relationship between
the engineering properties of the materials and their microstructural characteristics [23, 24].
Gauthier [25] performed experimental investigations on micropolar media. Love waves in
homogeneous micropolar elastic media were analyzed by Midya [26]. Eremeyev [27] applied
micropolar theory to strength analysis of bioceramic materials for bone reconstruction. Kaur et
al. [28] analyzed the influence of imperfect bond of micropolar elastic half-space with
non-homogeneous viscoelastic layer on SH-wave propagation. Examination of Love wave
propagation in PM layered structures was conducted by Ezzin et al. [29, 30]. Rayleigh-type waves in
nonlocal micropolar solid half-space were examined by Khurana and Tomar [31]. Kundu et al. [32]
investigated Love wave propagation in heterogeneous micropolar media. Goyal et al. [33]
investigated Love wave propagation in micropolar-piezoelectric structure.

To explore more applications of the sensors, occasionally they are laden with viscous liquid
(Newtonian) layer [34]. Consequently, energy loss through the liquid and attenuation of SAW modes
requires attention for enhancement in designing of devices. In liquid media, Love-type wave sensors
are mostly preferred due to their high sensitivity. The acoustic energy is concentrated within a few
wavelengths near the surface. Such devices have immense applications like evaluation of mass
density, viscosity, and the acoustic-electric phenomenon of liquids [35–42]. These kind of sensors
comprises of layered structure in which a thin stratum is coated on a substrate and the wave
propagates slower in the layer than that in the substrate. The significance of viscous liquid loading on
the wave propagation phenomenon has been explored by numerous researchers. Zaitsev et al. [43]
studied acoustic waves in piezoelectric plates bordered with viscous and conductive liquid. Du et
al. [44, 45] investigated Love wave propagation in various layered structures loaded with viscous
liquid. Guo and Sun [46] examined the propagation of B-G wave in 6 mm piezoelectric materials
loaded with viscous liquid. Kielczynski et al. [47] studied the effect of viscous liquid loading on Love
wave propagation. Nie et al. [48] investigated SH-wave propagation in piezoelectric layered
structures under viscous loading.

The above illustrated details insist the present study to confer the viscous liquid loading and
microstructural effects on the Love-type wave propagation in PM layer overlying semi-infinite
micropolar elastic substrate. Dispersion relations for magnetically open and short conditions are
obtained. The obtained findings may significantly contribute to enhance the performance of
Love-type wave based SAW devices functioning in liquid environment.

2. Formulation of the problem

Consider a piezomagnetic (PM) layer of thickness h1 loaded with viscous liquid (VL) layer of
thickness h2. PM layer is overlying a micropolar (MP) half-space substrate as shown in Figure 1. Both
materials PM and MP are transversely isotropic in nature. The interface at x1 = 0 is bonded perfectly
with magnetic and elastic properties simultaneously. Considering Cartesian coordinate system in such
a way that x2-axis is along the direction of propagation of Love-type wave and x1-axis is positive in
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vertically downward direction.

Figure 1. Geometry of the problem.

The mechanical displacement components in the PM layer and MP half-space substrate obtained

due to the propagation of Love-type wave are given by
−→
u† = (u†1, u

†

2, u
†

3) and
−→
u� = (u�1, u

�
2, u

�
3),

respectively. By virtue of propagation of Love-type wave in x2− direction and inducing displacement
in x3− direction, it may be assumed that

u†1 = 0, u†2 = 0, u†3 = u†3(x1, x2, t), (2.1)

u�1 = 0, u�2 = 0, u�3 = u�3(x1, x2, t). (2.2)

2.1. Formulation and solution of viscous liquid (VL) layer

In a viscous liquid (VL) the velocity vl of liquid particle in x3− direction is administered by the
Navier-Stokes equation (Guo and Sun [46]):

∇2vl =
ρl

µl

∂vl

∂t
, (2.3)

where µl and ρl represents coefficient of viscosity and liquid mass density of VL, respectively.

Assuming the solution of equation (2.3) in the form

vl(x1, x2, t) = V(x1) exp[ik(x2 − ct)], (2.4)

where k is the wave number and c is the phase velocity of the wave.

On substituting (2.4) into (2.3) we get:
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V ′′(x1) − p2V(x1) = 0, (2.5)

where p =

√
k2 −

ikcρl
µl

and Re(p) > 0.

On solving equation (2.5) we get

V(x1) = ℘1 exp(px1) + ℘2 exp(−px1), (2.6)

where ℘1 and ℘2 are arbitrary constants.
The velocity component in VL is given by

vl(x1, x2, t) = [℘1 exp(px1) + ℘2 exp(−px1)] exp[ik(x2 − ct)]. (2.7)

The only non-vanishing shear stress component σl
31 in VL is given by

σl
31 = µl

∂vl

∂x1
= [℘1µl p exp(px1) − ℘2µl p exp(−px1)] exp[ik(x2 − ct)]. (2.8)

2.2. Formulation and solution of piezomagnetic (PM) layer

The governing equation for the PM layer in the absence of body forces (Goyal et al. [10]) is given
by:

σ†i j, j = ρ′ü†i , B†i,i = 0, (2.9)

where ρ′ denotes the mass density of the PM layer. The dot denotes time differentiation.

For a PM layer the constitutive relations are given as:

σ†i j = Ci jklS
†

kl − hki jH
†

k , B†i = hiklS
†

kl + mi jH
†

j , (2.10)

where i, j, k = 1, 2, 3. Here superscript ′†′ indicates the quantities in PM layer. σ†i j and S †kl,
respectively are the stress and strain tensors in PM layer. Ci jkl, hki j, mi j, H†i , and B†i are the stiffness,
PM constants, magnetic permeability, magnetic field, and magnetic inductions, respectively.

The constitutive relations can be written as

σ†1 = C11S †1 + C12S †2 + C13S †3 − h31H†3 ,

σ†2 = C12S †1 + C11S †2 + C13S †3 − h31H†3 ,

σ†3 = C13S †1 + C13S †2 + C33S †3 − h33H†3 ,

σ†31 = C44S †31 − h15H†1 ,

σ†32 = C44S †32 − h15H†2 ,

σ†12 = C66S †12,

B†1 = h15S †31 + m11H†1 ,

B†2 = h15S †32 + m11H†2 ,

B†3 = h31S †1 + h31S †2 + h33S †3 + m33H†3 ,

(2.11)
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where C66 = 1
2 (C11 −C12).

The strain components are defined as

S †1 = u†1,1, S †2 = u†2,2, S †3 = u†3,3,

S †32 = u†3,2 + u†2,3, S †31 = u†3,1 + u†1,3, S †12 = u†1,2 + u†2,1.
(2.12)

To determine the relation between magnetic field and the magnetic potential function following formula
is used:

H†1 = −φ†,1, H†2 = −φ†,2, H†3 = −φ†,3, (2.13)

where φ† represents the magnetic potential.
Inserting equation (2.1) in equations (2.12) and (2.13) we get

S †1 = S †2 = S †3 = 0, (2.14)

S †32 = u†3,2, S †31 = u†3,1, S †12 = 0, (2.15)

H†1 = −φ†,1, H†2 = −φ†,2, H†3 = 0. (2.16)

Inserting equations (2.14)-(2.16) in equations (2.11) and then substituting in equation (2.9), the
governing equation for the PM layer is obtained as

C44∇
2u†3 + h15∇

2φ† = ρ′
∂2u†3
∂t2 ,

(2.17)

h15∇
2u†3 − m11∇

2φ† = 0. (2.18)

On reducing equations (2.17) and (2.18) we get

∇2u†3 =
1
α2

1

∂2u†3
∂t2 , (2.19)

∇2φ† =
1
α2

1

(
h15

m11

)
∂2u†3
∂t2 , (2.20)

where α1 =

√
C0

44
ρ′

, C0
44 = C44 +

h2
15

m11
, ∇2 = ∂2

∂x2
1

+ ∂2

∂x2
2
. α1 is the shear wave velocity in the PM layer.

Assuming the following solutions of the mechanical displacement component and magnetic
potential function of the Love wave in the PM layer:

u†3(x1, x2, t) = U(x1) exp[ik(x2 − ct)], (2.21)

φ†(x1, x2, t) = Φ(x1) exp[ik(x2 − ct)]. (2.22)

Conjuring equation (2.21) in equation (2.19), we get

U′′(x1) + α2
2k2U(x1) = 0, (2.23)
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where α2
2 =

(
c2

α2
1
− 1

)
.

On solving differential equation (2.23) under the assumption that c > α1, we get the displacement
component as

u†3(x1, x2, t) = [cos(kα2x1)℘3 + sin(kα2x1)℘4] exp[ik(x2 − ct)]. (2.24)

Now, invoking equation (2.22) in equation (2.20), we get the differential equation as:

Φ′′(x1) − k2Φ(x1) =
h15

m11
(U′′(x1) − k2U(x1)). (2.25)

On solving differential equation (2.25), magnetic potential function can be expressed as

φ†(x1, x2, t) =

[
h15

m11
cos(kα2x1)℘3 +

h15

m11
sin(kα2x1)℘4 + exp(kx1)℘5 + exp(−kx1)℘6

]
exp[ik(x2 − ct)],

(2.26)
where ℘3, ℘4, ℘5, and ℘6 are arbitrary constants.

2.3. Semi-infinite micropolar (MP) elastic substrate

In a homogeneous MP isotropic elastic media (x1 > 0), the propagation of Love-type wave in
x2−direction induces displacement components and microrotation as

u�1 = 0, u�2 = 0, u�3 = u�3(x1, x2, t), (2.27)

ψ�1 = ψ�1(x1, x2, t), ψ�2 = ψ�2(x1, x2, t), ψ�3 = 0, (2.28)

respectively. Here, superscript as index ′�′ is used for quantities in semi-infinite MP elastic substrate.
Following are the equation of motion and constitutive relations as suggested by Eringen [20] for MP
elastic space in the absence of body forces in vector form

(λ + µ)∇(∇.
−→
u�) + (µ + κ)∇2−→u� + κ(∇ ×

−→
ψ �) = ρ

∂2−→u�

∂t2 ,
(2.29)

(α + β + γ)∇(∇.
−→
ψ �) − γ∇ × (∇ ×

−→
ψ �) + κ(∇ ×

−→
u�) − 2κ

−→
ψ� = ρ

∂2−→ψ�

∂t2 . (2.30)

σ�i j = λu�k,kδi j + µ(u�i, j + u�j,i) + κ(u�j,i − εi jkψ
�
k), (2.31)

m�i j = αψ�k,kδi j + βψ�i, j + γψ�j,i, (2.32)

where i, j, k =1, 2, 3; λ and µ are Lame’s constants. ρ is density of MP elastic material, σ�i j and m�i j
are the force stress tensors and the couple stress tensors, respectively of the semi-infinite MP elastic
substrate. α, β, γ, κ are the additional MP elastic constants.  is the micro inertia. δi j is kronecker delta.
εi jk is permutation tensor.
In the MP model, the parametric relations (Fatemi et al. [49]) are characterized as

γ = 4l2µ, κ =
2N2µ

1 − N2 ,
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where N (0 ≤ N < 1) is a coupling constant. It regulates the degree of micropolarity produced by the
materials. Here, N = 0 coincides to the classical theory of elasticity.
Moreover, the length scale parameter is estimated by the characteristic length l which is of the order of
the average cell size of the considered material.
Using the Helmholtz decomposition of vectors by assuming the potential functions = and ξ, we can
write

−→
ψ� = ∇= + ∇ × ~ξ, ∇.~ξ = 0, (2.33)

where ~ξ = (0, 0,−ξ). = is scalar potential and ξ is vector potential function.
The microrotation vector components can be written as

ψ�1 =
∂=

∂x1
−
∂ξ

∂x2
, ψ�2 =

∂=

∂x2
+
∂ξ

∂x1
, and ψ�3 = 0. (2.34)

With the help of equations (2.27) and (2.34), the system of equations (2.29) and (2.30) becomes,

∇2u�3 +<1∇
2ψ� =

1
<2

2

∂2u�3
∂t2 , (2.35)

∇2= −
2<2

5

<2
3 +<2

4

= =
1

<2
3 +<2

4

∂2=

∂t2 , (2.36)

∇2ξ −
2<2

5

<2
3

ξ −
<2

5

<2
3

u�3 =
1
<2

3

∂2ξ

∂t2 , (2.37)

where values of<1,<2,<3,<4, and<5 are provided in the appendix.
Let us assume the solutions of above equations (2.35)-(2.37) as

u�3(x1, x2, t) = W(x1) exp[ik(x2 − ct)], (2.38)

=(x1, x2, t) = Q(x1) exp[ik(x2 − ct)], (2.39)

ξ(x1, x2, t) = Ξ(x1) exp[ik(x2 − ct)], (2.40)

where k is the wave number and c is the phase velocity.
Solving equations (2.35)-(2.37) with the help of equations (2.38)-(2.40) and using the radiation
conditions W(x1), Q(x1) and Ξ(x1) → 0 as x1 → ∞ on the general solutions of differential equations
(2.35) to (2.37), we get the following solutions of potential functions and displacement component in
semi-infinite MP elastic substrate

=(x1, x2, t) = ℘7 exp(−α3x1) exp[ik(x2 − ct)], (2.41)

ξ(x1, x2, t) = [℘8 exp(−r1x1) + ℘9 exp(−r2x1)] exp[ik(x2 − ct)], (2.42)

u�3(x1, x2, t) = [A1 exp(−r1x1)℘8 + A2 exp(−r2x1)℘9] exp[ik(x2 − ct)], (2.43)

where ℘7, ℘8 and ℘9 are arbitrary constants. Values of A1, A2, r1, r2, and α3 are provided in the
appendix.
The microrotation components obtained from equations (2.34), (2.41), and (2.42) are as follows:

ψ�1 = [−α3 exp(−α3x1)℘7 − ik exp(−r1x1)℘8 − ik exp(−r2x1)℘9] exp[ik(x2 − ct)], (2.44)

ψ�2 = [ik exp(−α3x1)℘7 − r1 exp(−r1x1)℘8 − r2 exp(−r2x1)℘9] exp[ik(x2 − ct)]. (2.45)
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3. Boundary conditions

To derive the dispersion equation, the admissible boundary conditions at the upper free surface and
at the common interfaces of the viscous liquid layer and piezomagnetic layer (VL-PM interface) and
piezomagnetic layer and micropolar substrate (PM-MP interface) are stated below:

(i) The zero traction condition at x1 = −H is

σl
31 = 0. (3.1)

(ii) The magnetically open condition at x1 = −h1 is given as

B†1 = 0. (3.2)

(iii) The magnetically short condition at x1 = −h1 is given as

φ† = 0. (3.3)

(iv) At the interface x1 = −h1, the velocity and stress components are continuous

∂u†3
∂t

= vl, σ†31 = σl
31. (3.4)

(v) Magnetic potential function must vanish at the common interface x1 = 0

φ† = 0. (3.5)

(vi) At the interface x1 = 0, the displacement and stress components are continuous

u†3 = u�3, σ†31 = σ�31, m�12 = 0, m�11 = 0. (3.6)

4. Dispersion relations

Using specified boundary conditions (3.1) to (3.6), the following equations in terms of nine unknown
coefficients ℘1, ℘2, ℘3, ℘4, ℘5, ℘6, ℘7, ℘8, and ℘9 are procured.

exp(−pH)℘1 − exp(pH)℘2 = 0, (4.1)

− exp(−kh1)℘5 + exp(kh1)℘6 = 0, (4.2)

h15

m11
cos(α2kh1)℘3 −

h15

m11
sin(α2kh1)℘4 + exp(−kh1)℘5 + exp(kh1)℘6 = 0, (4.3)

exp(−ph1)℘1 + exp(ph1)℘2 + ikc cos(α2kh1)℘3 − ikc sin(α2kh1)℘4 = 0, (4.4)

− µl p exp(−ph1)℘1 + µl p exp(ph1)℘2 + C0
44kα2 sin(α2kh1)℘3 + C0

44kα2 cos(α2kh1)℘4

+ kh15 exp(−kh1)℘5 − kh15 exp(kh1)℘6 = 0,
(4.5)
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h15

m11
℘3 + ℘5 + ℘6 = 0, (4.6)

℘3 − A1℘8 − A2℘9 = 0, (4.7)

C0
44kα2℘4 + kh15℘5 − kh15℘6 + A4℘8 + A5℘9 + ikκ℘7 = 0, (4.8)

−ikA6℘7 + A10℘8 + A11℘9 = 0, (4.9)

A9℘7 + ikA7℘8 + ikA8℘9 = 0, (4.10)

Values of A4, A5, A6, A7, A8, A9, A10, and A11 are provided in the appendix.
For non-trivial solutions, the determinant of the coefficient matrix must vanish. This condition leads
to a complex dispersion equation. Real part is responsible for free propagation of the wave while
the imaginary part is responsible for attenuation/absorption. Here, for further investigation we have
considered free propagation of the wave.

4.1. For magnetically open case

After eliminating the unknown constants ℘1, ℘2, ℘3, ℘4, ℘5, ℘6, ℘7, ℘8 and ℘9 from equations
(4.1)-(4.2) and (4.4)-(4.10), we get the following dispersion equation for Love-type wave propagation
in PM layer loaded with VL, overlying semi-infinite MP substrate.

C0
44α2 [A12A17 + A13] + A14 [kA12A20 − tan(α2kh1)A13] = 0. (4.11)

4.2. For magnetically short case

After eliminating the unknown constants ℘1, ℘2, ℘3, ℘4, ℘5, ℘6, ℘7, ℘8 and ℘9 from equations
(4.1) and (4.3)-(4.10), we get the following dispersion equation for Love-type wave propagation in PM
layer loaded with VL, overlying semi-infinite MP substrate.

kA12 [A18 + A15A16] + A13A19 + kA14 [A12A19 + A13A16] = 0. (4.12)

Values of A12, A13, A14, A15, A16, A17, A18, A19 and A20 are provided in the appendix.
Equations (4.11) and (4.12) are dispersion equations for the Love-type wave propagation in PM layer
loaded with VL layer, overlying semi-infinite MP substrate for magnetically open and short cases,
respectively.

5. Particular cases and validation of results

Case-I
In the absence of VL layer i.e. µl = 0, h2 = 0 which will lead to A14 = 0. The dispersion equations
(4.11) and (4.12) will become,

A12A17 + A13 = 0, (5.1)

kA12[A18 + A15A16] + A13A19 = 0, (5.2)
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respectively. Equations (5.1) and (5.2) portrays the dispersion equations of Love-type wave in PM
layer overlying semi-infinite MP substrate, for magnetically open and short cases, respectively.

Case-II
Contemplating the previous case-I in the absence of MP constants α, β, γ, and κ → 0, we get the
changed values of <2 and A13

A12
as <2 =

√
µ+κ

ρ
→

√
µ

ρ
= β1 and A13

A12
→ −µk

√
1 − c2

β2
1
. Putting these

values in above equations we get

A17 = µk

√
1 −

c2

β2
1

, (5.3)

A18 + A15A16 = A19µ

√
1 −

c2

β2
1

, (5.4)

respectively. Equations (5.3) and (5.4) describes the dispersion equations of Love-type wave
propagating in PM layer overlying isotropic elastic half-space for magnetically open and short cases,
respectively.

Case-III
Without consideration of piezomagneticity in the PM layer, i.e. h15 = 0 will lead to C0

44 = C44 and
hence α2

1 will become C44
ρ′

= β2
2. Therefore, dispersion equation is reduced to

C44

√
c2

β2
2

− 1 tan

kh1

√
c2

β2
2

− 1

 = µ

√
1 −

c2

β2
1

, (5.5)

where c is the phase velocity of Love-type wave. Equation (5.5) matches with the well-known classical
Love wave equation (Love [50]) which validates the outcomes of the present problem.

6. Numerical results

This section intends to explore the dispersion curves, i.e. curves elucidating variation of c/α1 against
kh1, to examine the influence of magnetic boundary conditions, the viscosity, the liquid mass density,
the length scale parameter, the thickness of VL layer, and the PM parameters, viz. PM constant,
elastic constant, magnetic permeability as well as thickness on the velocity of the propagating wave.
Figures 2(a)-10(a) are plotted for the magnetically open case and Figures 2(b)-10(b) are plotted for
the magnetically short case. Cobalt Ferrite (CoFe2O4) is chosen as PM layer and aluminium-epoxy
admitting microstructural properties is chosen as MP substrate. The material constants of materials are
listed below (Tables 1 and 2).

Table 1. Material constants for PM layer (Pang et al. [12]).

Material Elastic constant Mass density PM constant Magnetic permeability
C44 (109N/m2) ρ′ (kg/m3) h15 (N/Am) m11 (10−6Ns2/C2)

CoFe2O4 45.3 5300 550 157
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Table 2. Material constants for MP elastic half-space substrate (Gauthier [25]).

ρ = 2.19 × 103 kg/m3 µ = 1.89 × 1010 N/m2 λ = 7.59 × 1010 N/m2  = 0.196 × 10−4 m2

α = 0.01 × 106 N β = 0.015 × 106 N

For viscous liquid layer: (Kielczynski et al. [47]): µl = 50 Pa.s, ρl = 103 kg/m3. The thickness
of the VL layer and PM layer is assumed to be 0.2 m and 0.3 m, respectively.
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Figure 2. Dispersion curves (c/α1 vs kh2) for variation of thickness of PM layer h1 on the
phase velocity.
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Figure 3. Dispersion curves (c/α1 vs kh1) for variation of PM constant h15 on the phase
velocity.
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Figure 4. Dispersion curves (c/α1 vs kh1) for variation of elastic constant C44 on the phase
velocity.
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Figure 5. Dispersion curves (c/α1 vs kh1) for variation of magnetic permeability m11 on the
phase velocity.
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Figure 6. Dispersion curves (c/α1 vs kh1) for variation of micropolarity constant N on the
phase velocity.
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Figure 7. Dispersion curves (c/α1 vs kh1) for variation of characteristic length l on the phase
velocity.
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Figure 8. Dispersion curves (c/α1 vs kh1) for variation of liquid mass density ρl on the phase
velocity.
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Figure 9. Dispersion curves (c/α1 vs kh1) for variation of coefficient of viscosity µl on the
phase velocity.
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Figure 10. Dispersion curves (c/α1 vs kh1) for variation of thickness of VL layer h2 on the
phase velocity.
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Figure 11. Dispersion curves (c/α1 vs kh1) of Love-type waves (a) under viscous liquid
loading, (b) without viscous liquid loading.
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6.1. Effect of PM parameters

In order to check the impact of the material properties of the PM layer CoFe2O4 on the dispersion
equations, Figures 2(a)-5(a) are plotted for magnetically open condition and Figures 2(b)-5(b) are
plotted for magnetically short condition. Figures 2(a) and 2(b) depict the effect of the thickness of PM
layer on the phase velocity of the wave for magnetically open and short conditions, respectively. The
thickness of the PM layer has an unfavorable effect on the phase velocity of the wave. As the thickness
of the PM layer increases, the phase velocity of the wave decreases. The effect of PM constant on
the phase velocity of the wave is depicted by Figures 3(a) and 3(b) for magnetically open and short
conditions, respectively. PM constant has a discouraging effect on the phase velocity of the wave. This
may be ascribed to the fact that with the increase in the magnitude of the said parameter, the force due
to magnetism gets remarkably strengthened, thus offering more resistance and causing loss of energy
of the wave particles, resulting in lowering of the velocity of the wave. On examining Figures 4(a) and
4(b), it is reported that the elastic constant has adverse effects on the phase velocity of the wave. An
increase in the values of elastic constant leads to a decrease in the phase velocity of the propagating
wave.

It can be observed from Figures 5(a) and 5(b) that magnetic permeability has an encouraging effect
on the phase velocity of the wave under magnetically open and short conditions, respectively. With
the increasing values of magnetic permeability, the phase velocity of the wave also increases. This
may be due to the fact that an increase in the said parameter leads to a decrease in the magnetic field.
Therefore, it may be possible that a weak magnetic field offers less resistance to the flow of wave
particles thereby, increasing the phase velocity of the transferring wave.

6.2. Effect of microstructures

To grab the influence of microstructural dependence on the dispersion equations, Figures 6(a) and
7(a) are presented for magnetically open condition and Figures 6(b) and 7(b) are presented for
magnetically short condition. Figures 6(a) and 6(b) adduces the effect of the micropolarity constant
on the phase velocity of the wave for magnetically open and short conditions, respectively. These
figures establish that the phase velocity of the wave increases with an increase in the values of the
micropolarity constant. This is ascribed due to the additional couple stress and rotation of the
particles at the microscale level. The curves in Figures 7(a) and 7(b) delve out the effect of
characteristic length on the phase velocity of the propagating wave for magnetically open and short
conditions, respectively. It has been remarked by many researchers that it is very difficult to identify
the exact value of the characteristic length. Its value is of the order of the internal cell size of the
material bearing microstructures. Hence, the value of the characteristic length is varied as 0.001 m,
0.002 m, 0.003 m. As the values of the characteristic length increases, the phase velocity of the wave
decreases. Thus, characteristic length has a suppressing effect on the phase velocity of the wave.

6.3. Effect of VL loading

Due to the fluctuations in the environmental conditions such as rising or dropping of the
temperature, scrutinizing the effects of the liquid mass density and the coefficient of viscosity on the
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wave propagation is essential. Figures 8(a) and 8(b) reveals the effect of the liquid mass density and
Figures 9(a) and 9(b) reveals the effect of the coefficient of viscosity, on the velocity of the
propagating wave in the considered structure for magnetically open and short conditions, respectively.
These figures advocate that the liquid mass density has a suppressing effect on the phase velocity of
the wave. The increment in the value of the liquid mass density leads to decrease in the phase velocity
of the wave while the coefficient of viscosity has a favoring effect on the phase velocity of the wave.
With the rising value of the coefficient of viscosity, the phase velocity of the wave increases. For
magnetically open and short conditions, Figures 10(a) and 10(b), respectively delineate that an
increase in the thickness of VL layer results in the decrease in the phase velocity of the wave. To
compare the effect of VL loading on the phase velocity of the wave for magnetically open and short
conditions Figure 11(a) is plotted under VL loading and Figure 11(b) is plotted without VL loading.
From Figures 11(a) and 11(b), it can be visualized that for a large value of kh1, the phase velocity of
the considered wave is always more in case of magnetically open condition as compared to
magnetically short condition.

7. Concluding remarks

In the present work, we have scrutinized the propagation of a Love-type wave in a PM layer
overlying a semi-infinite MP elastic substrate, loaded with VL layer. The dispersion equations are
obtained in closed form for magnetically open and short cases. The dispersion equations are plotted to
apprise the influence of various affecting parameters, viz. the coefficient of viscosity, the liquid mass
density, the length scale parameter, the thickness of VL layer, and PM parameters, viz. PM constant,
magnetic permeability, elastic constant and the thickness of PM layer on the phase velocity of
Love-type waves. Following conclusions can be deduced from the study.

• Phase velocity of the considered wave decreases with the increase in the values of wave number.

• Micropolarity constant has a prominent effect on the phase velocity. As the value of the parameter
increases the phase velocity also increases.

• Characteristic length scale parameter has a decaying effect on the phase velocity of the Love-type
wave.

• Larger the width of the PM layer, lower is the phase velocity of the Love-type wave in the
considered structure.

• As the magnitude of the thickness of the VL layer is increased, the phase velocity of the
propagating wave decreases.

• The coefficient of viscosity of the VL layer favors the phase velocity of the wave. As the value of
the coefficient of viscosity increases, the phase velocity of the wave also increases.

• With the decrease in values of the liquid mass density, the phase velocity of the considered wave
also decreases.

• The phase velocity of the wave increases with an increase in values of magnetic permeability.
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• With the increment in the values of elastic constant, the phase velocity of the transferring wave
decreases.

• With the increase in the magnitude of PM constant, the phase velocity of the wave decreases.

• Phase velocity curve of Love-type wave in the considered structure for the magnetically open
condition is always greater than that obtained for magnetically short condition.

Physical applications

• Love wave biosensors can be used to measure a huge number of biological substances (analytes)
with a significant sensitivity and accuracy. These sensors have numerous applications in biology,
chemistry, healthcare, defense, environmental monitoring and medicine (clinical practice). These
surface waves employing in biosensors have a huge potential.

• The basic principle of Surface Acoustic Wave devices depends on the phase delay. PM materials
are able to create an entanglement of the wave, which lowers the phase velocity of the propagating
wave and enhances the sensitivity of the Love wave sensors.

• For further optimization high-intensity PM material can be considered. These features aid in the
confinement of wave for a longer period which leads to high sensitivity of the device.

• Magnetostrictive vibrators are used as electroacoustic transducers to generate or to receive
ultrasonic waves.

• Extremely thin magnetic sensor (called thin films) have numerous applications found in medical
devices, weapon detection and data storage.

• The pertinent outcome of the present study depicting the propagation behavior of a Love-type
wave in a layered structure comprising of a PM layer followed by a semi-infinite MP elastic
substrate, loaded with a VL layer helps in enhancing the efficiency of Love-type wave sensors
comprising of PM material working in liquid media.
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Appendix

H = h1 + h2, α3 =

√
k2 +

2<2
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<2
3+<2

4
− k2c2

<2
3+<2
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√
γ

ρ
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κ
ρ

.
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(r2
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−

2<2
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<2
3
− k2), A2 =

<2
3
<2

5
(r2

2 + k2c2

<2
3
−

2<2
5

<2
3
− k2), A3 =

cρl
2µl

,

A4 = (µA1 − κ)r1, A5 = (µA2 − κ)r2, A6 = α3(β + γ), A7 = r1(β + γ), A8 = r2(β + γ),

A9 = (α + β + γ)α2
3 − αk2, A10 = βk2 + γr2

1, A11 = βk2 + γr2
2, A12 = −A1B1 + A2B2,
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A13 = A4B1 − A5B2 − k2κB3, A14 = µlc[k tan(A3h2) + A3 tanh(kh2)], A15 =
h4

15
m2

11
−C0

44
2
α2

2,

A16 = tanh(kh1) tan(kα2h1), A17 = C0
44α2k tan(kα2h1)+ kh2

15
m11

tanh(kh1), A18 = 2C0
44α2

h2
15

m11

[
sec(kα2h1)
cosh(kh1) − 1

]
,

A19 =
h2

15
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tan(kα2h1) −C0
44α2 tanh(kh1), A20 = C0

44α2 −
h2

15
m11

A16,

B1 = A9A11 − k2A6A8, B2 = A9A10 − k2A6A7, B3 = A8A10 − A7A11,

r1 =

√
S 1+
√

S 2
1−4S 2

2 , r2 =

√
S 1−
√

S 2
1−4S 2

2 , S 1 = −k2c2
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1
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2
+ 1
<2

3

)
−
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5
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3
(<1 − 2) + 2k2,
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