In this research, a new heat transfer model for ternary nanofluid (Al2O3-CuO-Fe3O4)/C2H6O2 inside slippery converging/diverging channel is reported with innovative effects of dissipation function. This flow situation described by a coupled set of PDEs which reduced to ODEs via similarity and effective ternary nanofluid properties. Then, LSM is successfully coded for the model and achieved the desired results influenced by $ \alpha ,Re,{\gamma }_{1} $ and $ Ec $. It is examined that the fluid movement increases for $ Re $ in the physical range of 30–180 and it drops for diverging channel ($ \alpha > 0 $) when the slippery wall approaches to $ \alpha = {60}^{o} $. The fluid movement is very slow for increasing concentration factor $ {\varphi }_{i} $ for $ i = \mathrm{1,2},3 $ up to 10%. Further, ternary nanofluid temperature boosts rapidly due to inclusion of trinanoparticles thermal conductivity and dissipation factor ($ Ec = \mathrm{0.1,0.2,0.3,0.4,0.6} $) also contributes significantly. Moreover, the temperature is maximum about the center of the channel ($ \eta = 0 $) and slip effects ($ {\gamma }_{1} = \mathrm{0.1,0.2,0.3,0.4,0.5,0.6} $) on the channel walls lead to decrement in the temperature $ \beta \left(\eta \right) $.
Citation: Adnan, Khalid Abdulkhaliq M. Alharbi, Waqas Ashraf, Sayed M. Eldin, Mansour F. Yassen, Wasim Jamshed. Applied heat transfer modeling in conventional hybrid (Al2O3-CuO)/C2H6O2 and modified-hybrid nanofluids (Al2O3-CuO-Fe3O4)/C2H6O2 between slippery channel by using least square method (LSM)[J]. AIMS Mathematics, 2023, 8(2): 4321-4341. doi: 10.3934/math.2023215
In this research, a new heat transfer model for ternary nanofluid (Al2O3-CuO-Fe3O4)/C2H6O2 inside slippery converging/diverging channel is reported with innovative effects of dissipation function. This flow situation described by a coupled set of PDEs which reduced to ODEs via similarity and effective ternary nanofluid properties. Then, LSM is successfully coded for the model and achieved the desired results influenced by $ \alpha ,Re,{\gamma }_{1} $ and $ Ec $. It is examined that the fluid movement increases for $ Re $ in the physical range of 30–180 and it drops for diverging channel ($ \alpha > 0 $) when the slippery wall approaches to $ \alpha = {60}^{o} $. The fluid movement is very slow for increasing concentration factor $ {\varphi }_{i} $ for $ i = \mathrm{1,2},3 $ up to 10%. Further, ternary nanofluid temperature boosts rapidly due to inclusion of trinanoparticles thermal conductivity and dissipation factor ($ Ec = \mathrm{0.1,0.2,0.3,0.4,0.6} $) also contributes significantly. Moreover, the temperature is maximum about the center of the channel ($ \eta = 0 $) and slip effects ($ {\gamma }_{1} = \mathrm{0.1,0.2,0.3,0.4,0.5,0.6} $) on the channel walls lead to decrement in the temperature $ \beta \left(\eta \right) $.
[1] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME, 1995. |
[2] | R. R. Sahoo, Experimental study on the viscosity of hybrid nanofluid and development of a new correlation, Heat Mass Transfer, 56 (2020), 3023–3033. https://doi.org/10.1007/s00231-020-02915-9 doi: 10.1007/s00231-020-02915-9 |
[3] | M. Zayan, A. K. Rasheed, A. John, M. Khalid, A. F. Ismail, Experimental investigation on rheological properties of water based novel ternary hybrid nanofluids, 2021. https://doi.org/10.26434/chemrxiv.13710241 |
[4] | E. A. Algehyne, H. F. Alrihieli, M. Bilal, A. Saeed, W. Weera, Numerical approach toward ternary hybrid nanofluid flow using variable diffusion and non-Fourier's concept, ACS Omega, 7 (2022), 29380–29390. https://doi.org/10.1021/acsomega.2c03634 doi: 10.1021/acsomega.2c03634 |
[5] | A. Dezfulizadeh, A. Aghaei, A. H. Joshaghani, M. M. Najafizadeh, An experimental study on dynamic viscosity and thermal conductivity of water-Cu-SiO2-MWCNT ternary hybrid nanofluid and the development of practical correlations, Powder Technol., 389 (2021), 215–234. https://doi.org/10.1016/j.powtec.2021.05.029 doi: 10.1016/j.powtec.2021.05.029 |
[6] | S. Alshahrani, N. A. Ahammad, M. Bilal, M. E. Ghoneim, A. Ali, M. F. Yassen, et al., Numerical simulation of ternary nanofluid flow with multiple slip and thermal jump conditions, Front. Energy Res., 2022, 1–9. https://doi.org/10.3389/fenrg.2022.967307 doi: 10.3389/fenrg.2022.967307 |
[7] | J. S. Goud, P. Srilatha, R. S. V. Kumar, K. T. Kumar, U. Khan, Z. Raizah, et al., Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat, Case Stud. Therm. Eng., 35 (2022), 102113. https://doi.org/10.1016/j.csite.2022.102113 doi: 10.1016/j.csite.2022.102113 |
[8] | I. Zahan, R. Nasrin, S. Khatun, Thermal performance of ternary-hybrid nanofluids through a convergent-divergent nozzle using distilled water-ethylene glycol mixtures, Int. Commun. Heat Mass Transfer, 137 (2022), 106254. https://doi.org/10.1016/j.icheatmasstransfer.2022.106254 doi: 10.1016/j.icheatmasstransfer.2022.106254 |
[9] | M. Sheikhpour, M. Arabi, A. Kasaeian, A. R. Rabei, Z. Taherian, Role of nanofluids in drug delivery and biomedical technology: methods and applications, Nanotechnol. Sci. Appl., 13 (2020), 47–59. https://doi.org/10.2147/NSA.S260374 doi: 10.2147/NSA.S260374 |
[10] | A. Ahmadian, M. Bilal, M. A. Khan, M. I. Asjad, Numerical analysis of thermal conductive hybrid nanofluid flow over the surface of a wavy spinning disk, Sci. Rep., 10 (2020), 18776. https://doi.org/10.1038/s41598-020-75905-w doi: 10.1038/s41598-020-75905-w |
[11] | C. Jin, K. Wang, A. Oppong-Gyebi, J. Hu, Application of nanotechnology in cancer diagnosis and therapy-a mini-review, Int. J. Med. Sci., 17 (2020), 2964–2973. https://doi.org/10.7150/ijms.49801 doi: 10.7150/ijms.49801 |
[12] | Y. Zhang, M. Li, X. Gao, Y. Chen, T. Liu, Nanotechnology in cancer diagnosis: progress, challenges and opportunities, J. Hematol. Oncol., 12 (2019), 137. https://doi.org/10.1186/s13045-019-0833-3 doi: 10.1186/s13045-019-0833-3 |
[13] | A. A. Minea, M. G. Moldoveanu, Overview of hybrid nanofluids development and benefits, J. Eng. Thermophys., 27 (2018), 507–514. https://doi.org/10.1134/S1810232818040124 doi: 10.1134/S1810232818040124 |
[14] | N. A. C. Sidik, I. M. Adamu, M. M. Jamil, G. H. R. Kefayati, R. Mamat, G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review, Int. Commun. Heat Mass Transfer, 78 (2016), 68–79. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019 doi: 10.1016/j.icheatmasstransfer.2016.08.019 |
[15] | H. Adun, D. Kavaz, M. Dagbasi, Review of ternary hybrid nanofluid: synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects, J. Clean. Prod., 328 (2021), 129525. https://doi.org/10.1016/j.jclepro.2021.129525 doi: 10.1016/j.jclepro.2021.129525 |
[16] | H. Adun, M. Mukhtar, M. Adedeji, T. Agwa, K. H. Ibrahim, O. Bamisile, et al., Synthesis and application of ternary nanofluid for photovoltaic-thermal system: comparative analysis of energy and exergy performance with single and hybrid nanofluids, Energies, 14 (2021), 4434. https://doi.org/10.3390/en14154434 doi: 10.3390/en14154434 |
[17] | N. A. S. Muzaidi, M. A. Fikri, K. N. S. W. S. Wong, A. Z. M. Sofi, R. Mamat, N. M. Adenam, et al., Heat absorption properties of CuO/TiO2/SiO2 trihybrid nanofluids and its potential future direction towards solar thermal applications, Arab. J. Chem., 14 (2021), 103059. https://doi.org/10.1016/j.arabjc.2021.103059 doi: 10.1016/j.arabjc.2021.103059 |
[18] | A. I. Ramadhan, W. H. Azmi, R. Mamat, Experimental investigation of thermo-physical properties of tri-hybrid nanoparticles in water-ethylene glycol mixture, Walailak Journal of Science and Technology, 18 (2021), 9335. https://doi.org/10.48048/wjst.2021.9335 doi: 10.48048/wjst.2021.9335 |
[19] | G. Li, J. Wang, H. Zheng, G. Xie, B. Sundén, Improvement of cooling performance of hybrid nanofluids in a heated pipe applying annular magnets, J. Therm. Anal. Calorim., 147 (2021), 4731–4749. https://doi.org/10.1007/s10973-021-10848-6 doi: 10.1007/s10973-021-10848-6 |
[20] | N. A. Zainal, R. Nazar, K. Naganthran, I. Pop, MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation, Int. J. Numer. Method. Heat Fluid Flow, 31 (2020), 858–879. https://doi.org/10.1108/HFF-03-2020-0126 doi: 10.1108/HFF-03-2020-0126 |
[21] | S. Masood, M. Farooq, A. Anjum, Influence of heat generation/absorption and stagnation point on polystyrene–TiO2/H2O hybrid nanofluid flow, Sci. Rep., 11 (2021), 22381. https://doi.org/10.1038/s41598-021-01747-9 doi: 10.1038/s41598-021-01747-9 |
[22] | S. Murthy, P. Effiong, C. C. Fei, Metal oxide nanoparticles in biomedical applications, In: Metal oxide powder technologies, Elsevier, 2020,233–251. https://doi.org/10.1016/B978-0-12-817505-7.00011-7 |
[23] | N. Ahmed, Adnan, U. Khan, S. T. Mohyud-Din, R. Manzoor, Influence of viscous dissipation on a copper oxide nanofluid in an oblique channel: Implementation of the KKL model, Eur. Phys. J. Plus, 132 (2017), 237. https://doi.org/10.1140/epjp/i2017-11504-y doi: 10.1140/epjp/i2017-11504-y |
[24] | A. Shahzad, F. Liaqat, Z. Ellahi, M. Sohail, M. Ayub, M. R. Ali, Thin film flow and heat transfer of Cu‑nanofluids with slip and convective boundary condition over a stretching sheet, Sci. Rep., 12 (2022), 14254. https://doi.org/10.1038/s41598-022-18049-3 doi: 10.1038/s41598-022-18049-3 |
[25] | N. S. Khashi'ie, N. M. Arifin, M. Sheremet, I. Pop, Shape factor effect of radiative Cu-Al2O3/H2O hybrid nanofluid flow towards an EMHD plate, Case Stud. Therm. Eng., 26 (2021), 101199. https://doi.org/10.1016/j.csite.2021.101199 doi: 10.1016/j.csite.2021.101199 |
[26] | M. Arif, P. Kimam, W. Kumam, Z. Mostafa, Heat transfer analysis of radiator using different shaped nanoparticles water-based ternary hybrid nanofluid with applications: a fractional model, Case Stud. Therm. Eng., 31 (2022), 101837. https://doi.org/10.1016/j.csite.2022.101837 doi: 10.1016/j.csite.2022.101837 |
[27] | Adnan, U. Khan, N. Ahmed, S. T. Mohyud-Din, D. Baleanu, K. S. Nisar, et al., Second law analysis of magneto radiative GO-MoS2/H2O–(CH2OH)2 hybrid nanofluid, Comput. Mater. Con., 68 (2021), 213–228. https://doi.org/10.32604/cmc.2021.014383 doi: 10.32604/cmc.2021.014383 |
[28] | P. Gumber, M. Yaseen, S. K. Rawat, M. Kumar, Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects, Partial Differential Equations in Applied Mathematics, 5 (2022), 100240. https://doi.org/10.1016/j.padiff.2021.100240 doi: 10.1016/j.padiff.2021.100240 |
[29] | M. Turkyilmazoglu, Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels, Computers & Fluids, 100 (2014), 196–203. https://doi.org/10.1016/j.compfluid.2014.05.016 |
[30] | S. S. Motsa, P. Sibanda, G. Marewo, On a new analytical method for flow between two inclined walls, Numer. Algor., 61 (2012), 499–514. https://doi.org/10.1007/s11075-012-9545-2 doi: 10.1007/s11075-012-9545-2 |