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1. Introduction

The integer sequence (un)n≥0 is said to be a Lucas sequence of first kind if there exist non zero
integers A and B such that un+2 = Aun+1 + Bun, n ≥ 0 with initials u0 = 0 and u1 = 1. Since the last
few decades, researchers keep a constant interest in this sequence and have been placed their results
to many modern sciences. Lucas sequence of the first kind comprises many sequences, like Fibonacci
numbers, Pell numbers, balancing numbers, Jacobsthal numbers etc. that always make a constant
attraction to the recent researchers. In one of the communicated papers of the authors, the Lucas first
kind p-numbers Lp( j) is defined by the recurrence relation

Lp( j) = aLp( j − 1) + bLp( j − p − 1), j ≥ (p + 1) (1.1)

with initials Lp( j) = a j−1, for j = 1, 2, . . . , p and Lp(0) = 0, where p is taken as non-negative integer
and the coefficients a and b are non zero integers. For p = 1, (1.1) reduces to the recurrence relation of
the Lucas first kind numbers.

A new generalization of the Fibonacci sequence based on its generating function is the convolved
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Fibonacci numbers F(r)
j that have been studied in several manner (for e.g. [3, 5, 7]) and are defined by

(1 − t − t2)−r =

∞∑
j=0

F(r)
j+1t j, r ∈ Z+.

Nowadays it is the most challenging task for the authors to investigate several properties of number and
polynomial sequences in a matrix way. Determinantal and permanental representations of numbers,
polynomials and functions play a crucial role in many areas of mathematics. Şahin and Ramı́rez [6]
introduced the convolved generalized Lucas polynomials F(r)

p,q, j(x) and are defined by

g(r)
p,q(t) =

(
1 − p(x)t − q(x)t2)−r

=

∞∑
j=0

F(r)
p,q, j+1(x)t j, r ∈ Z+,

where p(x) and q(x) are polynomials coefficient. They derived several identities using the matrix
representations of F(r)

p,q, j(x) with real and imaginary entries.
In this article, we generalize Şahin and Ramı́rez paper by introducing convolved (u, v)-Lucas first

kind p-polynomials. Based on determinantal and permanental representations, some similar type
identities of [6] are studied for these polynomials using different proof methods.

2. Convolved (u, v)-Lucas first kind p-polynomials

In this section the (u, v)-Lucas first kind p-polynomials and convolved (u, v)-Lucas first kind p-
polynomials are defined. Using some results of convolved (u, v)-Lucas first kind p-polynomials the
recurrence relation of these polynomials is also established.

Definition 2.1. Let p be any non negative integer and u(x) and v(x) are polynomials with real
coefficients. The (u, v)-Lucas first kind p-polynomials

{
Lp

u,v, j(x)
}

j∈N are defined by the recurrence
relation

Lp
u,v, j(x) = u(x)Lp

u,v, j−1(x) + v(x)Lp
u,v, j−p−1(x) (2.1)

with initials Lp
u,v,0(x) = 0 and Lp

u,v, j(x) = u j−1(x) for j = 1, . . . , p.

It is noticed that, when we consider u(x) = ax and v(x) = b, equation (2.1) reduced to Lucas first
kind p-polynomials {Lp, j(x)} with initial values Lp,0(x) = 0 and Lp, j(x) = (ax) j−1 for j = 1, 2, . . . , p.

If gp
u,v(t) is the generating function of Lp

u,v, j+1(x), then it can be easily seen that

gp
u,v(t) =

∞∑
j=0

Lp
u,v, j+1(x)t j =

1
1 − u(x)t − v(x)tp+1 .

By virtue of the gnerating function gp
u,v(t), the convolved (u, v)-Lucas first kind p-polynomials can be

defined as follows.

Definition 2.2. The convolved (u, v)-Lucas first kind p-polynomials {L(p,r)
u,v, j(x)} j∈N for p ≥ 1 are defined

by

g(p,r)
u,v (t) =

∞∑
j=0

L(p,r)
u,v, j+1(x)t j = (1 − u(x)t − v(x)tp+1)−r, r ∈ Z+ (2.2)

where u(x) and v(x) are polynomials with real coefficients.
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From equation (2.2), we have

∞∑
j=0

L(p,r)
u,v, j+1(x)t j =

∞∑
j=0

(
−r
j

)
(−t) j(u(x) + v(x)tp) j

=

∞∑
j=0

(r) j

j!
t j

j∑
k=0

(
j
k

)
u j−k(x)vk(x)tpk

=

∞∑
j=0

b
j

p+1 c∑
k=0

(r) j−pk

( j − (p + 1)k)!k!
u j−(p+1)k(x)vk(x)t j.

Here we conclude that

L(p,r)
u,v, j+1(x) =

b
j

p+1 c∑
k=0

(r) j−pk

( j − (p + 1)k)!k!
u j−(p+1)k(x)vk(x). (2.3)

Using (2.3), we yield convolved (u, v)-Lucas first kind p-polynomials L(p,r)
u,v, j(x) for j = 0, 1, 2, 3, 4, 5,

and 6 with different (p, r) values, which are listed in both Table 1 and Table 2.

Table 1. Convolved (u, v)-Lucas first kind p-polynomials.

j (p, r) = (1, 3) (p, r) = (2, 3) (p, r) = (3, 3) (p, r) = (4, 3)
0 1 1 1 1
1 3u(x) 3u(x) 3u(x) 3u(x)
2 6u2(x) + 3v(x) 6u2(x) 6u2(x) 6u2(x)
3 10u3(x) + 12u(x)v(x) 10u3(x) + 3v(x) 10u3(x) 10u3(x)
4 15u4(x) +

30u2(x)v(x) + 6v2(x)
15u4(x) + 12u(x)v(x) 15u4(x) + 3v(x) 15u4(x)

5 21u5(x) +

60u3(x)v(x) +

30u(x)v2(x)

21u5(x) + 30u2(x)v(x) 21u5(x) + 12u(x)v(x) 21u5(x) + 3v(x)

6 28u6(x) +

105u4(x)v(x) +

90u2(x)v2(x) + 10v3(x)

28u6(x) +

60u3(x)v(x) + 6v2(x)
28u6(x) + 30u2(x)v(x) 28u6(x) + 12u(x)v(x)
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Table 2. Convolved (u, v)-Lucas first kind p-polynomials.

j (p, r) = (1, 4) (p, r) = (2, 4) (p, r) = (3, 4) (p, r) = (4, 4)
0 1 1 1 1
1 4u(x) 4u(x) 4u(x) 4u(x)
2 10u2(x) + 4v(x) 10u2(x) 10u2(x) 10u2(x)
3 20u3(x) + 20u(x)v(x) 20u3(x) + 4v(x) 20u3(x) 20u3(x)
4 35u4(x) +

60u2(x)v(x) + 10v2(x)
35u4(x) + 20u(x)v(x) 35u4(x) + 4v(x) 35u4(x)

5 56u5(x) +

140u3(x)v(x) +

60u(x)v2(x)

56u5(x) + 60u2(x)v(x) 56u5(x) + 20u(x)v(x) 56u5(x) + 4v(x)

6 84u6(x) +

280u4(x)v(x) +

210u2(x)v2(x) +

20v3(x)

84u6(x) +

140u3(x)v(x)+10v2(x)
84u6(x) + 60u2(x)v(x) 84u6(x) + 20u(x)v(x)

Using the definition of convolved (u, v)-Lucas first kind p-polynomials the following results can be
easily verified.

Lemma 2.3. The following relations holds for convolved (u, v)-Lucas first kind p-polynomials

(i) L(p,r)
u,v,2(x) = ru(x);

(ii) L(p,r)
u,v, j+1(x) = u(x)L(p,r)

u,v, j(x) + v(x)L(p,r)
u,v, j−p(x) + L(p,r−1)

u,v, j+1(x), j ≥ 2;

(iii) jL(p,r)
u,v, j+1(x) = r

[
u(x)L(p,r+1)

u,v, j (x) + (p + 1)v(x)L(p,r+1)
u,v, j−p(x)

]
, j ≥ 1.

Now we are in a position to find the recurrence relation of the convolved (u, v)-Lucas first kind
p-polynomials.

Theorem 2.4. The recurrence relation of the convolved (u, v)-Lucas first kind p-polynomials{
L(p,r)

u,v, j(x)
}

j∈N obey the second order recurrence relation

L(p,r)
u,v, j+1(x) =

r + j − 1
j

u(x)L(p,r)
u,v, j(x) +

(p + 1)r + j − p − 1
j

v(x)L(p,r)
u,v, j−p(x), (2.4)

with initials L(p,r)
u,v,1(x) = 1 and L(p,r)

u,v,k+1(x) =
∏k

j=1
( r+ j−1

j u(x)
)

for k = 1, 2, . . . , p − 1.

Proof. From relation (iii) of Lemma 2.3, we have

jL(p,r)
u,v, j+1(x) =

(
ru(x)t + (p + 1)rv(x)tp+1)L(p,r+1)

u,v, j+1(x).

Multiplying
(
1 − u(x)t − v(x)tp+1) on both the sides yields

jL(p,r)
u,v, j+1(x) − u(x)( j − 1)L(p,r)

u,v, j(x) − v(x)( j − p − 1)L(p,r)
u,v, j−p(x)

= ru(x)L(p,r)
u,v, j(x) + (p + 1)rv(x)L(p,r)

u,v, j−p(x).

Further simplification gives

jL(p,r)
u,v, j+1(x) = (r + j − 1)u(x)L(p,r)

u,v, j(x) +
(
(p + 1)r + j − p − 1

)
v(x)L(p,r)

u,v, j−p(x),

and the result follows. �
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3. Determinantal representations of convolved (u, v)-Lucas first kind p-polynomials

In this section we consider various Hessenberg matrices with some adjustable real or imaginary
entries. Based upon these matrices we establish some results involving determinantal representations
of convolved (u, v)-Lucas first kind p-polynomials.

The following result is useful while proving the subsequent theorems.

Lemma 3.1. [1] Let A j =
(
ail

)
j× j with 1 ≤ i, l ≤ j be the lower Hessenberg matrix for all j ≥ 1 and

define det(A0) = 1. Then, det(A1) = a11 and for j ≥ 2

det(A j) = a j jdet(A j−1) +

j−1∑
l=1

[
(−1) j−ra j,l

( j−1∏
i=l

ai,i+1
)
det(Al−1)

]
.

Theorem 3.2. Let F(p,r)
u,v, j =

(
fst

)
be j × j Hessenberg matrix defined as

fst =


r+s−1

s u(x), if t = s;
(p+1)r+s−p−1

s v(x)(i)p, if s − t = p;
i, if t − s = 1;
0, otherwise,

that is, F(p,r)
u,v, j =

ru(x) i . . . 0 0 . . . 0
0 r+1

2 u(x) . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . r+p−1
p u(x) i . . . 0

rv(x)(i)p 0 . . . 0 r+p
p+1u(x) . . . 0

...
...

...
...

...

0 0 . . . (p+1)r−p+ j−1
j v(x)(i)p . . . 0 0 . . . r+ j−1

j u(x)


,

where i =
√
−1. Then

det
(
F(p,r)

u,v, j
)

= L(p,r)
u,v, j+1(x). (3.1)

Proof. Using induction on j, the result is clearly holds for j = 1 by (2.4). Assume that the result is true
for all positive integers less than or equal to j − 1, i.e. det

(
F(p,r)

u,v, j
)

= L(p,r)
u,v, j+1(x). By virtue of Lemma 3.1

and the relation (2.4), we have

det
(
F(p,r)

u,v, j+1
)

= f j+1, j+1det
(
F(p,r)

u,v, j
)

+

j∑
t=1

[
(−1) j+1−t f j+1,t

( j∏
s=t

fs,s+1
)
det

(
F(p,r)

u,v,t−1
)]

=
r + j
j + 1

u(x)det
(
F(p,r)

u,v, j
)

+

j−p∑
t=1

[
(−1) j+1−t f j+1,t

( j∏
s=t

fs,s+1
)
det

(
F(p,r)

u,v,t−1
)]
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+(−1)p f j+1, j−p+1
( j∏

s= j−p+1

fs,s+1
)
det

(
F(p,r)

u,v, j−p
)

+

j∑
t= j−p+2

[
(−1) j+1−t f j+1,t

( j∏
s=t

fs,s+1
)
det

(
F(p,r)

u,v,t−1
)]

=
r + j
j + 1

u(x)det
(
F(p,r)

u,v, j
)

+ (−1)p (p + 1)r − p + j
j + 1

v(x)(i)p( j∏
s= j−p+1

i
)
det

(
F(p,r)

u,v, j−p
)

=
r + j
j + 1

u(x)det
(
F(p,r)

u,v, j
)

+ (−1)p (p + 1)r − p + j
j + 1

v(x)(i)p(i)pdet
(
F(p,r)

u,v, j−p
)

=
r + j
j + 1

u(x)L(p,r)
u,v, j+1(x) +

(p + 1)r − p + j
j + 1

v(x)L(p,r)
u,v, j−p+1(x)

= L(p,r)
u,v, j+2(x).

This completes the proof. �

Theorem 3.3. Let D(p,r)
u,v, j =

(
dst

)
be j × j Hessenberg matrix defined as

dst =


r+s−1

s u(x), if t = s;
(p+1)r+s−p−1

s v(x), if s − t = p;
−1, if t − s = 1;
0, otherwise,

that is,

D(p,r)
u,v, j =



ru(x) −1 . . . 0 0 . . . 0
0 r+1

2 u(x) . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . r+p−1
p u(x) −1 . . . 0

rv(x) 0 . . . 0 r+p
p+1u(x) . . . 0

...
...

...
...

...

0 0 . . . (p+1)r−p+ j−1
j v(x) . . . 0 0 . . . r+ j−1

j u(x)


.

Then
det

(
D(p,r)

u,v, j
)

= L(p,r)
u,v, j+1(x). (3.2)

Proof. The proof is analogous to the proof of Theorem 3.2.
�

To better understand the above theorems, let us consider the following examples.

Example 3.4. We calculate the polynomial L(p,r)
u,v, j+1(x) with (p, r) = (2, 4) and j = 6 by using

Theorem 3.2.
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L(2,4)
u,v,7(x) = det



4u(x) i 0 0 0 0
0 5

2u(x) i 0 0 0
−4v(x) 0 2u(x) i 0 0

0 −13
4 v(x) 0 7

4u(x) i 0
0 0 −14

5 v(x) 0 8
5u(x) i

0 0 0 −5
2 v(x) 0 3

2u(x)


6×6

= 84u6(x) + 140u3(x)v(x) + 10v2(x).

Example 3.5. We calculate the polynomial L(p,r)
u,v, j+1(x) with (p, r) = (3, 4) and j = 5 by using

Theorem 3.3.

L(3,4)
u,v,6(x) = det


4u(x) −1 0 0 0

0 5
2u(x) −1 0 0

0 0 2u(x) −1 0
4v(x) 0 0 7

4u(x) −1
0 17

5 v(x) 0 0 8
5u(x)


5×5

= 56u5(x) + 20u(x)v(x).

4. Permanental representations of convolved (u, v)-Lucas first kind p-polynomials

In this section we consider various Hessenberg matrices and upon these matrices we establish
some results involving permanental representations of convolved (u, v)-Lucas first kind
p-polynomials. Moreover, we consider some non-singular matrices and establish the first column of
inverse of these matrices is written in convolved (u, v)-Lucas first kind p-polynomials.

The following result is useful while proving the subsequent theorems.

Lemma 4.1. [4] Let A j =
(
ail

)
j× j with 1 ≤ i, l ≤ j be the lower Hessenberg matrix for all j ≥ 1, and

define per
(
A0

)
= 1. Then per

(
A1

)
= a11, and for j ≥ 2,

per
(
A j

)
= a j, j per

(
A j−1

)
+

j−1∑
l=1

(
a j,l

j−1∏
i=l

ai,i+1 per(Al−1)
)
.

Theorem 4.2. Let G(p,r)
u,v, j =

(
gst

)
be j × j Hessenberg matrix, given by

gst =


r+s−1

s u(x), if t = s;
(p+1)r+s−p−1

s v(x)(i)p, if s − t = p;
−i, if t − s = 1;
0, otherwise,
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that is, G(p,r)
u,v, j =



ru(x) −i . . . 0 0 . . . 0
0 r+1

2 u(x) . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . r+p−1
p u(x) −i . . . 0

rv(x)(i)p 0 . . . 0 r+p
p+1u(x) . . . 0

...
...

...
...

...

0 0 . . . (p+1)r−p+ j−1
j v(x)(i)p . . . 0 0 . . . r+ j−1

j u(x)


,

where i =
√
−1. Then

per
(
G(p,r)

u,v, j
)

= L(p,r)
u,v, j+1(x). (4.1)

Proof. By the induction on j the result is true for j = 1. Let us consider the result is true for all positive
integers less than or equal to j − 1, i.e. per

(
G(p,r)

u,v, j
)

= L(p,r)
u,v, j+1(x). Then by using Lemma 4.1, we have

per
(
G(p,r)

u,v, j+1
)

= g j+1, j+1 per
(
G(p,r)

u,v, j
)

+

j∑
t=1

(
a j+1,t

j∏
s=t

as,s+1 per(Gt−1)
)

=
r + j
j + 1

u(x)per
(
G(p,r)

u,v, j
)

+

j−p∑
t=1

(
a j+1,t

j∏
s=t

as,s+1 per(Gt−1)
)

+a j+1, j−p+1

j∏
s= j−p+1

(−i)per(G j−p) +

j∑
t= j−p+2

(
a j+1,t

j∏
s=t

as,s+1 per(Gt−1)
)

=
r + j
j + 1

u(x)per
(
G(p,r)

u,v, j
)

+
(p + 1)r − p + j

j + 1
v(x)(i)p(−i)p per(G j−p)

=
r + j
j + 1

u(x)L(p,r)
u,v, j+1(x) +

(p + 1)r − p + j
j + 1

v(x)L(p,r)
u,v, j−p+1(x),

which is true by (2.4). This hence the proof. �

Theorem 4.3. Let H(p,r)
u,v, j =

(
hst

)
be j × j Hessenberg matrix, given by

hst =


r+s−1

s u(x), if t = s;
(p+1)r+s−p−1

s v(x), if s − t = p;
1, if t − s = 1;
0, otherwise,
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that is,

H(p,r)
u,v, j =



ru(x) 1 . . . 0 0 . . . 0
0 r+1

2 u(x) . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . r+p−1
p u(x) 1 . . . 0

rv(x) 0 . . . 0 r+p
p+1u(x) . . . 0

...
...

...
...

...

0 0 . . . (p+1)r−p+ j−1
j v(x) . . . 0 0 . . . r+ j−1

j u(x)


.

Then
per

(
H(p,r)

u,v, j
)

= L(p,r)
u,v, j+1(x). (4.2)

Proof. The proof is analogous to the proof of Theorem 4.2.
�

To better understand the above theorems, let us consider the following examples.

Example 4.4. We calculate the polynomial L(p,r)
u,v, j+1(x) for (p, r) = (4, 3) and j = 5 by using Theorem 4.2.

L(4,3)
u,v,6(x) = per


3u(x) −i 0 0 0

0 2u(x) −i 0 0
0 0 5

3u(x) −i 0
0 0 0 3

2u(x) −i
3v(x) 0 0 0 7

5u(x)


5×5

=
∑
σ∈s5

5∏
i=1

ai,σ(i) = a11a22a33a44a55 + a12a23a34a45a51

= 21u5(x) + 3v(x).

Example 4.5. We calculate the polynomial L(p,r)
u,v, j+1(x) with (p, r) = (3, 3) and j = 4 by using

Theorem 4.3.

L(3,3)
u,v,5(x) = per


3u(x) 1 0 0

0 2u(x) 1 0
0 0 5

3u(x) 1
3v(x) 0 0 3

2u(x)


4×4

=
∑
σ∈s4

4∏
i=1

ai,σ(i) = a11a22a33a44 + a12a23a34a41

= 15u4(x) + 3v(x).

At the end of this section, we present two important results concerning convolved (u, v)-Lucas first
kind p-polynomials. We omit the proofs of these results because they are similar to the methods which
are adopted in Theorem 9 of [6].
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Theorem 4.6. Let F̃(p,r)
u,v, j+1 be the ( j + 1) − by − ( j + 1) non singular matrix given by

F̃(p,r)
u,v, j+1 =



1 0 0 . . . 0 0
...

F(p,r)
u,v, j 0

0
1


,

where F(p,r)
u,v, j is the Hessenberg matrix of order j defined in Theorem 3.2. Then the first column of(

F̃(p,r)
u,v, j+1

)−1 is 

L(p,r)
u,v,1(x)

iL(p,r)
u,v,2(x)
...

i j−1L(p,r)
u,v, j(x)

i j+1L(p,r)
u,v, j+1(x)


,

where i =
√
−1 and L(p,r)

u,v, j(x) is the convolved (u, v)-Lucas first kind p-polynomials.

Theorem 4.7. Let D̃(p,r)
u,v, j+1 be the ( j + 1) − by − ( j + 1) non singular matrix given by

D̃(p,r)
u,v, j+1 =



1 0 0 . . . 0 0
...

D(p,r)
u,v, j 0

0
1


,

where D(p,r)
u,v, j is the Hessenberg matrix of order j defined in Theorem 3.3. Then the first column of(

D̃(p,r)
u,v, j+1

)−1 is 

L(p,r)
u,v,1(x)

L(p,r)
u,v,2(x)
...

L(p,r)
u,v, j(x)

−L(p,r)
u,v, j+1(x)


,

where L(p,r)
u,v, j(x) is the convolved (u, v)-Lucas first kind p-polynomials.

In order to verify these theorems, we need the following results of [2]. The first result is

Fα + f e j = 0, (4.3)

which is obtained from F̃ · F̃−1 = I j+1 and the second result is

det(F) = (−1) j f · det(F̃), (4.4)
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where

F =



f11 f12 0 . . . 0
f21 f22 f23 . . . 0
...

...
...

...

f( j−1)1 f( j−1)2 f( j−1)3 . . . f( j−1) j

f j1 f j2 f j3 . . . f j j


,

F̃ =



1 0 0 . . . 0 0
f11 f12 0 . . . 0 0
f21 f22 f23 . . . 0 0
...

...
...

...
...

f( j−1)1 f( j−1)2 f( j−1)3 . . . f( j−1) j 0
f j1 f j2 f j3 . . . f j j 1


=

[
eT

1 0
F e j

]
and

F̃−1 =

[
α L
f βT

]
with α, L, f and βT are of order j × j, j × j, 1 × 1 and 1 × j respectively.

Example 4.8. We verify the Theorem 4.6 by taking (p, r) = (2, 3) and j = 5

F̃(2,3)
u,v,6 =



1 0 0 0 0 0
3u(x) i 0 0 0 0

0 2u(x) i 0 0 0
−3v(x) 0 5

3u(x) i 0 0
0 −5

2 v(x) 0 3
2u(x) i 0

0 0 −11
5 v(x) 0 7

5u(x) 1


.

Let us consider (
F̃(2,3)

u,v,6

)−1
=

[
[α] j×1 [L] j× j

[ f ]1×1 [βT ]1× j

]
.

Using (4.4), we have

det
(
F(2,3)

u,v,5

)
= (−1)5 f · det

(
F̃(2,3)

u,v,6

)
,

and further applying (3.1), we get

f = −L(2,3)
u,v,6(x).

Using (4.3), we get

α =
(
F(2,3)

u,v,5

)−1L(2,3)
u,v,6(x)


0
0
0
0
1


= ad j

(
F(2,3)

u,v,5

)

0
0
0
0
1


=


1

i3u(x)
i26u2(x)

i3[10u3(x) + 3v(x)
]

i4[15u4(x) + 12u(x)v(x)
]


.
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Hence by Table 1, it is verified that the first column of
(
F̃(2,3)

u,v,6

)−1 is

[
α

f

]
=



L(2,3)
u,v,1(x)

iL(2,3)
u,v,2(x)

i2L(2,3)
u,v,3(x)

i3L(2,3)
u,v,4(x)

i4L(2,3)
u,v,5(x)

i6L(2,3)
u,v,6(x)


.

Example 4.9. We verify the Theorem 4.7 by taking (p, r) = (4, 3) and j = 5

D̃(4,3)
u,v,6 =



1 0 0 0 0 0
3u(x) −1 0 0 0 0

0 2u(x) −1 0 0 0
0 0 5

3u(x) −1 0 0
0 0 0 3

2u(x) −1 0
3v(x) 0 0 0 7

5u(x) 1


.

Let us consider (
D̃(4,3)

u,v,6

)−1
=

[
[α] j×1 [L] j× j

[d]1×1 [βT ]1× j

]
.

Using (4.4), we have
det

(
D(4,3)

u,v,5

)
= (−1)5d · det

(
D̃(4,3)

u,v,6

)
,

and further applying (3.2), we get
d = −L(4,3)

u,v,6(x).

Using (4.3), we get

α =
(
D(4,3)

u,v,5

)−1L(4,3)
u,v,6(x)


0
0
0
0
1


= ad j

(
D(4,3)

u,v,5

)

0
0
0
0
1


=


1

3u(x)
6u2(x)

10u3(x)
15u4(x)


.

Hence by Table 1, it is verified that the first column of
(
D̃(4,3)

u,v,6

)−1 is

[
α

d

]
=



L(4,3)
u,v,1(x)

L(4,3)
u,v,2(x)

L(4,3)
u,v,3(x)

L(4,3)
u,v,4(x)

L(4,3)
u,v,5(x)
−L(4,3)

u,v,6(x)


.
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