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Abstract: Let a, b, c, and n be positive integers such that a + b = c2, 2 ∤ c and n > 1. In this paper, we
prove that if gcd(c, n) = 1 and n ≥ 117.14c, then the equation (an2 + 1)x + (bn2 − 1)y = (cn)z has only
the positive integer solution (x, y, z) = (1, 1, 2) under the assumption gcd(an2 + 1, bn2 − 1) = 1. Thus, we
affirm that the conjecture proposed by Fujita and Le is true in this case. Moreover, combining the above
result with some existing results and a computer search, we show that, for any positive integer n, if
(a, b, c) = (12, 13, 5), (18, 7, 5), or (44, 5, 7), then this equation has only the solution (x, y, z) = (1, 1, 2).
This result extends the theorem of Terai and Hibino gotten in 2015, that of Alan obtained in 2018, and
Hasanalizade’s theorem attained recently.
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1. Introduction

Let N, Z, and Q be the set of positive integers, the set of integers, and the set of rational numbers,
respectively. Let a, b, c, and n be positive integers such that

a + b = c2, 2 ∤ c, n > 1. (1.1)

Under the assumption (1.1), Fujita and Le proposed the following conjecture:

Conjecture 1.1. [1, Conjecture 1.1] The exponential Diophantine equation

(an2 + 1)x + (bn2 − 1)y = (cn)z, x, y, z ∈ N, (1.2)

has only the solution (x, y, z) = (1, 1, 2).
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There is a more general conjecture that readers can refer to [2, Conjecture 1]. In 2012, Terai [3]
verified that if (a, b, c) = (4, 5, 3), then Conjecture 1.1 is true except for n > 20 and n ≡ 3 (mod 6).
The proof of this result is based on elementary methods and Baker’s method. In 2014, using some
properties of exponential diophantine equations (see [4,5]) and some results on the existence of primitive
divisors of Lucas numbers (see [6]), Su and Li [7] proved that if n > 90 and n ≡ 3 (mod 6), then
Conjecture 1.1 is true for (a, b, c) = (4, 5, 3). Two years later, Bertók [8] showed Conjecture 1.1 is true
when (a, b, c) = (4, 5, 3) by completely solving Eq (1.2) for the remaining cases 20 < n < 90 and n ≡ 3
(mod 6) with the help of exponential congruences. This is a nice application of Bertók and Hajdu [9].
On the other hand, Miyazaki and Terai [10] showed that if a = 1 and c ≡ 3, 5 (mod 8), under the
condition n ≡ ±1 (mod c), then Conjecture 1.1 is true except for the case (n, b, c) = (1, 8, 3). Pan [11]
proved that if a ≡ 4, 5 (mod 8),

( a+1
c

)
= −1 and n > 6c2 log c, under the condition n ≡ ±1 (mod c),

then Conjecture 1.1 is true, where
(a+1

c

)
is the Jacobi symbol. Fu and Yang [12] showed that if a ≡ 0

(mod 2) and n > 36c3 log c, under the condition c | n, then Conjecture 1.1 is true. Kizildere et al. [13]
proved that if a = b + 1, c ≡ 11, 13 (mod 24) and n > c2, under the condition n ≡ ±1 (mod c), then
Conjecture 1.1 is true. From these works, one can know that studying c | n and n ≡ ±1 (mod c) for
Eq (1.2) plays an important role in solving Conjecture 1.1.

In this paper, using an elementary approach and a deep result on linear forms in two m-adic logarithms
due to Bugeaud [14], we investigate Conjecture 1.1 by handling the case gcd(c, n) = 1 (which contains
the case n ≡ ±1 (mod c)) for Eq (1.2), and prove the following result:

Theorem 1.2. Let a, b, c, and n be positive integers with a + b = c2, 2 ∤ c and gcd(an2 + 1, bn2 − 1) = 1.
If gcd(c, n) = 1 and n ≥ 117.14c, then Conjecture 1.1 is true.

Evidently, Theorem 1.2 improves the result (see [1, Theorem 1.2]) of Fujita and Le when gcd(c, n) = 1.
Notice that 6c log c > 117.14 for any positive integer c ≥ 9, and the condition gcd(c, n) = 1 contains
n ≡ ±1 (mod c). One can easily check that Theorem 1.2 extends the result of Pan [11] when c ≥ 9. We
point out that the condition gcd(an2 + 1, bn2 − 1) = 1 in Theorem 1.2 is equivalent to the existence of a
positive integer n such that gcd(an2 + 1, bn2 − 1) = 1. Therefore, the condition gcd(an2 + 1, bn2 − 1) = 1
is weaker than [1, Lemma 2.3].

When (a, b, c) = (12, 13, 5), Terai and Hibino [15] proved that (1.2) has only the solution (x, y, z) =
(1, 1, 2) except for n ≡ 17, 33 (mod 40). When (a, b, c) = (18, 7, 5), Alan [16] showed that (1.2) has only
the solution (x, y, z) = (1, 1, 2) except for n ≡ 23, 47, 63, 87 (mod 120). Recently, Hasanalizade [17]
proved that if (a, b, c) = (44, 5, 7) and n ≡ 2 (mod 5) or n ≡ 0,±1,±3 (mod 7), then (1.2) has only
the solution (x, y, z) = (1, 1, 2). The proofs of these results are based on elementary methods and
Baker’s method. On the other hand, Miyazaki and Terai [10], Bertók [8], and Terai and Hibino [18]
completely solve Eq (1.2) when (a, b, c) = (1, 8, 3), (4, 5, 3), and (10, 15, 5), respectively. With the help
of Theorem 1.2, we can completely solve the Eq (1.2) for (a, b, c) = (12, 13, 5), (18, 7, 5), and (44, 5, 7)
without any assumption on n. Namely, we show the following result:

Theorem 1.3. For any positive integer n, if (a, b, c) = (44, 5, 7), (12, 13, 5), or (18, 7, 5), then (1.2) has
only the solution (x, y, z) = (1, 1, 2).

As an immediate result of Theorem 1.3, we can obtain the following corollary:

Corollary 1.4. If (a, b, c) = (44, 5, 7), (12, 13, 5), or (18, 7, 5), then Conjecture 1.1 is true.
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This paper is organized as follows: In Section 2, we present several lemmas that will be useful
for the proofs of the main results. In Sections 3 and 4, we provide the proofs of Theorems 1.2
and 1.3, respectively.

2. Preliminary results

For a prime number p and a nonzero integer x, we write vp(x) for the largest power of p dividing x,
and, for nonzero rational r

t , set vp( r
t ) = vp(r) − vp(t). First of all, we need the following known result:

Lemma 2.1. [19, Lemma 2.8] Let a and b be distinct coprime rational integers, and let q be an
odd prime.

(i). gcd(a + b, aq+bq

a+b ) = 1 or q.
(ii). If q | (a + b), then vq( aq+bq

a+b ) = 1.

Definition 2.2. Two nonzero complex numbers α and β are called multiplicatively independent if the
only solution of the equation αXβY = 1 in Z is X = Y = 0.

Next, we quote a result on linear forms in two m-adic logarithms due to Bugeaud [14], which is
crucial to the proof of Theorem 1.2. In order to describe this result, we introduce a related notation. If r
is a nonzero rational number with r = s

t , and s and t being coprime integers, we define the logarithmic
height of r as h(r) := max{log |s|, log |t|, 1}. Note that if m = p j1

1 · · · p
jk
k , where the pi’s are distinct primes

and ji ∈ N, for any nonzero integer x, we define the arithmetic function vm by

vm(x) = min
1≤i≤k

[vpi(x)
ji

]
,

where [·] denotes the integer part.

Proposition 2.3. [14, Theorem 2] Let α1 and α2 be two nonzero rational numbers with α1 , ±1, b1,
and b2 being positive integers, and set

Λ := αb1
1 − α

b2
2 .

For any set of distinct primes p1, · · · , pk and positive integers j1, · · · , jk, we set m = p j1
1 · · · p

jk
k and

suppose that there exists a positive integer g such that for each i, we have

vpi(α
g
1 − 1) ≥ ji, vpi(α

g
2 − 1) ≥ 1, f or any pi,

and also
vpi(α

g
1 − 1) ≥ 2, vpi(α

g
2 − 1) ≥ 2, f or pi = 2.

Then, if m, b1, and b2 are relatively prime, we have

vm(Λ) ≤
66.8g

(log m)4 (max{logΓ + log(log m) + 0.64, 4 log m})2 log A1 log A2,

where
Γ :=

b1

log A2
+

b2

log A1
,

and
log Ai ≥ max{h(αi), log m}.

Electronic Research Archive Volume 32, Issue 6, 4096–4107.



4099

The assumptions of Proposition 2.3 (which is a consequence of [14, Theorem 2] with (y1, y2) = (1, 1)
and µ = 4) are very restrictive, but are satisfied (and easy to check) in our context. Proposition 2.3 has
many applications in studying the Diophantine equation and related Diophantine problems; readers can
refer to [14,20–24]. We stress that α1 and α2 need not be multiplicatively independent in Proposition 2.3.
Indeed, under the additional assumption that α1 and α2 are multiplicatively independent, we have the
following result:

Remark 2.4. [14] The constant 66.8 in the upper bound for vm(Λ) may be improved to 53.6.

If z ≤ 2, then it is clear that Conjecture 1.1 is true. Thus, we will assume that z ≥ 3 in what follows.

Lemma 2.5. If (x, y, z) is a solution of Eq (1.2), then y is odd.

Proof. Taking (1.2) modulo n2 implies that

1 + (−1)y ≡ 0 (mod n2).

Hence, y is odd since n ≥ 2.

Lemma 2.6. If 2 | a and 2 | n, then (1.2) has only the solution (x, y, z) = (1, 1, 2).

Proof. Taking (1.2) modulo n3 implies that

1 + an2x − 1 + bn2y ≡ 0 (mod n3).

Therefore, ax + by ≡ 0 (mod n), which is impossible since 2 | a, 2 | n, y is odd and c is odd.

Lemma 2.7. Let a, b, c, and n be positive integers such that 2 ∤ c and a + b = c2. If n ≥ 3c, then each
of the following is true.

(i)

δ1(n) := log
( log n
log(an2 + 1)

+
log n

log(bn2 − 1)

)
≤ 0. (2.1)

(ii)

δ2(n) :=
log(cn) ·max{log(an2 + 1), log(bn2 − 1)}

(log n)4 < 0.933. (2.2)

(iii)

δ3(n) :=
log(an2 + 1) log(bn2 − 1)

(log n)2 < 16. (2.3)

Proof. (i) We divide the proof into the following two cases:
Case 1: b ≥ 2. Since log(an2+1) ≥ log(n2+1) > 2 log n and log(bn2−1) ≥ 2 log n, we get δ1(n) ≤ 0.
Case 2: b = 1. Since c is odd, we have a ≥ 2 and log(an2 + 1) ≥ log(2n2 + 1). Then for any integer

n ≥ 9, we can deduce that

δ1(n) ≤ log
( log n
log(2n2 + 1)

+
log n

log(n2 − 1)

)
≤ 0.

Part (i) is proven.
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(ii) Since a + b = c2, we have

max{log(an2 + 1), log(bn2 − 1)} < log(an2 + bn2) = 2 log(cn). (2.4)

From c ≤ n/3 and n ≥ 3c ≥ 9, we get that

δ2(n) < 2 ·
(log(n2/3))2

(log n)4 ≤ 2 ·
(3 log 3)2

(2 log 3)4 =
9

8(log 3)2 < 0.933, (2.5)

as desired. Part (ii) is proven.
(iii) By (2.4), we have

δ3(n) < 4 · (
log cn
log n

)2 ≤ 4 ·
( log(n2/3)

log n
)2
= 16 ·

( log(n2/3)
log n2

)2
< 16,

as desired. Part (iii) is proven.
This completes the proof of Lemma 2.7.

Lemma 2.8. Let a, b, c, and n be positive integers such that 2 ∤ c and a + b = c2, and let (x, y, z) be a
solution of (1.2). If n > c, then

z >
log β(n)
log(cn)

· N > N,

where N = max{x, y} and β(n) := min{an2 + 1, bn2 − 1}.

Proof. From (1.2), we have

(cn)z = (an2 + 1)x + (bn2 − 1)y ≥ β(n)x + β(n)y > β(n)N .

A direct computation gives us that

z >
log β(n)
log(cn)

· N. (2.6)

Notice that

β(n) = min{an2 + 1, bn2 − 1} ≥ min{n2 + 1, n2 − 1} > cn + 1. (2.7)

From (2.6) and (2.7), one can deduce that

z >
log β(n)
log(cn)

· N >
log(cn + 1)

log(cn)
· N > N,

as required.
This completes the proof of Lemma 2.8.

To establish an upper bound on z, we need to prove the following result:

Lemma 2.9. Let gcd(c, n) = 1, and let (x, y, z) be a solution of (1.2). If n ≥ λc, then gcd(x, y, n) = 1,
where λ is any constant with λ > 2

5
8 .
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Proof. If z ≤ 2, by (1.2), one can easily check that x = y = 1. Hence,

gcd(x, y, n) = 1,

as required.
If z ≥ 3 and x is a power of 2, then by Lemma 2.5, one can derive that

gcd(x, y, n) = 1.

Next, we may consider only the case where z ≥ 3 and x has an odd prime factor. Let us assume that
gcd(x, y, n) > 1. Then there exists an odd prime p such that x = px1, y = py1, and n = pn1, since y is
odd by Lemma 2.5. By (1.2), we can deduce that

(cn)z =(an2 + 1)px1 + (bn2 − 1)py1

=
(
(an2 + 1)x1 + (bn2 − 1)y1

)
·

(an2 + 1)px1 + (bn2 − 1)py1

(an2 + 1)x1 + (bn2 − 1)y1

=C · D, (2.8)

where C = (an2+1)x1+(bn2−1)y1 and D = (an2+1)px1+(bn2−1)py1

(an2+1)x1+(bn2−1)y1 . Therefore, we have (an2+1)x1−(bn2−1)y1 ≡ 2

(mod n2). Since n2 ≥ p2 ≥ 9, we can get that
(
(an2 + 1)x1 − (bn2 − 1)y1

)2
≥ 4 and

D ≥
(an2 + 1)3x1 + (bn2 − 1)3y1

(an2 + 1)x1 + (bn2 − 1)y1

= (an2 + 1)2x1 − (an2 + 1)x1 · (bn2 − 1)y1 + (bn2 − 1)2y1

≥ (an2 + 1)x1 · (bn2 − 1)y1 + 4
≥ 2((an2 + 1)x1 + (bn2 − 1)y1) = 2C.

Now, using Lemma 2.1(i), we divide the proof into the following two cases:
Case 1: gcd(C,D) = 1. Since C ≡ 0 (mod n) and gcd(c, n) = 1, one can easily get that C = nzcz

1
and D = cz

2, where c = c1c2 and gcd(c1, c2) = 1. By condition n ≥ λc and cz
2 = D ≥ 2C = 2(c1n)z, one

has 4 ≤ 2(λc2
1)z ≤ 1, which is impossible. Thus, gcd(x, y, n) = 1 in this case.

Case 2: gcd(C,D) = p. Since C ≡ 0 (mod n) and n = pn1, by Lemma 2.1(ii), one can easily
get that C = p−1 · nz · cz

1 and D = p · cz
2, where c = c1c2 and gcd(c1, c2) = 1. Notice that p · cz ≥

D ≥ 2C ≥ 2p−1nz ≥ 2p−1(λc)z. Therefore p ≥ 2
1
2λ

z
2 . Putting z > max{x, y} of Lemma 2.8 into p ≥ 2

1
2λ

z
2

and using our assumption yields that

z ≥ max{x, y} + 1 ≥ p + 1 ≥ 1 + 2
1
2λ

z
2 ,

which is impossible for z ≥ 3. So one arrives at gcd(x, y, n) = 1 in this case.
This concludes the proof of Lemma 2.9.

Lemma 2.10. Let gcd(c, n) = 1, and let (x, y, z) be a solution of (1.2). If n ≥ c + 1
n and z ≤ 3, then (1.2)

has only the solution (x, y, z) = (1, 1, 2).
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Proof. If x ≥ 3 or y ≥ 3, then

(cn)3 = (an2 + 1)x + (bn2 − 1)y ≥ ((c +
1
n

)n + 1)x + ((c +
1
n

)n − 1)y > (cn)3,

which is impossible. Therefore, Lemma 2.5 tells us that y = 1 and x = 2 or x = 1.
If x = y = 1, then (1.2) gives us that (an2 + 1) + (bn2 − 1) = (cn)2, which is impossible since z = 3.
If x = 2 and y = 1, then by (1.2), one can deduce that

(cn)3 = a2n4 + an2 + c2n2.

A simple transformation gives us that

c2(cn − 1) = a(an2 + 1). (2.9)

By the condition gcd(an2 + 1, bn2 − 1) = 1 of Theorem 1.2, we have gcd(an2 + 1, cn) = 1. Further,
gcd(an2 + 1, c) = 1. On the other hand, c2 | a(an2 + 1), thus we have c2 | a, which contradicts the
assumption a < a + b = c2.

This concludes the proof of Lemma 2.10.

3. Proof of Theorem 1.2

In this section, we present the proof of Theorem 1.2.
Proof of Theorem 1.2. First of all, suppose that (x, y, z) is a solution of (1.2). We apply Proposition 2.3
and Remark 2.4 to get an upper bound for z. For this, we set

α1 := an2 + 1, α2 := 1 − bn2, b1 := x, b2 := y,

and
Λ := (an2 + 1)x − (1 − bn2)y.

Evidently, one has α1 = an2 + 1 , ±1. Let n = p j1
1 · · · p

jk
k , and let g = 1. One can easily check that

vpi(α1 − 1) = 2 ji ≥ ji, vpi(α2 − 1) = 2 ji ≥ 1, f or all pi,

vpi(α1 − 1) ≥ 2 ji ≥ 2, vpi(α2 − 1) ≥ 2 ji ≥ 2, f or pi = 2,

and A1 = α1, A2 = −α2 satisfy the assumption of Proposition 2.3. Lemma 2.9 gives us that n, x, and
y are relatively prime, and we know from Definition 2.2 that an2 + 1 and bn2 − 1 are multiplicatively
independent. Thus, by Proposition 2.3 and Remark 2.4, we have

z = vn(Λ) ≤
53.6

(log n)4 (max{logΓ + log log n + 0.64, 4 log n})2 log(an2 + 1) log(bn2 − 1), (3.1)

where
Γ :=

x
log(bn2 − 1)

+
y

log(an2 + 1)
.

Let N = max{x, y}. Assume that

log N + 0.64 > 4 log n. (3.2)
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By (3.1), Lemma 2.8, and the definition of δ2(n), we have

log β(n)
log(cn)

N < z ≤
53.6

(log n)4 (max{logΓ + log log n + 0.64, 4 log n})2 log(an2 + 1) log(bn2 − 1),

implies that
N ≤ 53.6 · δ2(n) · (log N + δ1(n) + 0.64)2. (3.3)

From the proof of Lemma 2.7(ii) and (i), one can get δ2(n) ≤ 9
8(log 3)2 and

logΓ + log log n ≤ log N + δ1(n) ≤ log N. (3.4)

Applying Lemma 2.7(i), (3.3), and (3.4) gives us that

N < 53.6 ·
9

8(log 3)2 · (log N + 0.64)2, (3.5)

which implies N < 3985. Therefore

n < e0.16N0.25 = 9.32382 · · · < 4c,

a contradiction. The claim is proven. Hence, one must have

log N + 0.64 ≤ 4 log n. (3.6)

Putting (3.6) into (3.1), we can deduce that

z < 53.6 · 16 ·
log(an2 + 1) log(bn2 − 1)

(log n)2 = 53.6 · 16 · δ3(n).

Now, applying (iii) of Lemma 2.7, one has

z < 53.6 · 162. (3.7)

Suppose that z ≥ 4. Taking Eq (1.2) modulo n4, one can arrive at

an2x + 1 + bn2y − 1 ≡ 0 (mod n4),

so
ax + by ≡ 0 (mod n2).

This implies that
n2 ≤ ax + by. (3.8)

Further, applying Lemma 2.8 and (3.8), we have

n2 ≤ ax + by < (a + b) · N < (a + b) · z = c2 · z. (3.9)

Therefore, using (3.7) and (3.9), one can deduce that

n2 < 53.6 · 162 · c2,

which contradicts the assumption n ≥ 117.14c.
Finally, we conclude that z ≤ 3. By Lemma 2.10, one can easily know that (1.2) has only the solution

(x, y, z) = (1, 1, 2).
This concludes the proof of Theorem 1.2.
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4. Proof of Theorem 1.3

In this section, we present the proof of Theorem 1.3.
Proof of Theorem 1.3 (i) (a, b, c) = (44, 5, 7). Suppose that (x, y, z) is a solution of the equation

(44n2 + 1)x + (5n2 − 1)y = (7n)z.

First of all, we show that gcd(44n2 + 1, 5n2 − 1) = 1. In fact, from 5 · (44n2 + 1)− 44 · (5n2 − 1) = 49,
it follows that gcd(44n2 + 1, 5n2 − 1) | 49. Since 44n2 + 1 . 0 (mod 7) for any positive integer n, we
get gcd(44n2 + 1, 5n2 − 1) = 1. By Theorem 1.2, [17, Example 1 and Lemma 12], and Lemma 2.6,
we only solve the remaining cases of 19 ≤ n ≤ 820 and n . 0 (mod 2) and n . 0 (mod 7). Since
n ≥ 18 ≥ λc, Lemma 2.9 tells us that n, x, and y are relatively prime. Using (3.1) of Theorem 1.2, one
can immediately deduce that

z ≤
53.6

(log n)4 (max{logΓ1 + log log n + 0.64, 4 log n})2 log(44n2 + 1) log(5n2 − 1), (4.1)

where
Γ1 =

x
log(5n2 − 1)

+
y

log(44n2 + 1)
.

For brevity, we let N = max{x, y} and

Ω(n) =
1

log(5n2 − 1)
+

1
log(44n2 + 1)

.

Then we have
Γ1 ≤

N
log(5n2 − 1)

+
N

log(44n2 + 1)
= N ·Ω(n). (4.2)

Subsequently, suppose that

logΓ1 + log log n + 0.64 > 4 log n. (4.3)

Because n ≥ 19, from (4.2), we derive

N ≥
Γ1

Ω(n)
>

n4

Ω(n) · e0.64 · log n
> 98575. (4.4)

On the other hand, because n ≥ 19, according to Lemma 2.8, one must have

1.533 · N < N ·
log(5n2 − 1)

log(7n)
< z. (4.5)

Putting (4.5) into (4.1) gives us that

N ≤ 53.6 · (log N + ϑ1(n) + 0.64)2 · ϑ2(n), (4.6)

where ϑ1(n) and ϑ2(n) are given by

ϑ1(n) = log
( log n
log(5n2 − 1)

+
log n

log(44n2 + 1)

)
,
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and

ϑ2(n) =
log(7n) log(44n2 + 1)

(log n)4 .

Notice that ϑ1(n) and ϑ2(n) decrease as n increases in the interval [19,∞). Then

ϑ1(n) ≤ ϑ1(19) < 0 and ϑ2(n) ≤ ϑ2(19) < 0.6294.

By (4.6), one can immediately deduce that

N < 53.6 · (log N + 0.64)2 · 0.6294, (4.7)

which implies that N < 2392. This contradicts N > 98575.
Therefore, one must have

logΓ1 + log log n + 0.64 ≤ 4 log n. (4.8)

Because n ≥ 19, one arrives at

ϑ(n) =
log(44n2 + 1) log(5n2 − 1)

(log n)2 < 8.3656. (4.9)

Thus, from (4.1), (4.8), and (4.9), one can immediately deduce that

z < 53.6 · 16 · ϑ(n) < 7175. (4.10)

Further, by (4.5) and (4.10), we see that

N ≤ 4680. (4.11)

Hence, all of x, y, and z are bounded. Using program search, we now show that z ≤ 3 by following
two steps:

Step 1: Under the hypotheses 19 ≤ n ≤ 820, n . 0 (mod 2), n . 0 (mod 7), N ≤ 4680, and 2 ∤ y,
one can check that z ≤ 5.

Step 2: Under the hypotheses 19 ≤ n ≤ 820, n . 0 (mod 2), n . 0 (mod 7), max{x, y} < z,
and 4 ≤ z ≤ 5, one can deduce Eq (1.2) has no positive integer solution (x, y, z).

Finally, we conclude that z ≤ 3. By Lemma 2.10, one can easily know that (1.2) has only the solution
(x, y, z) = (1, 1, 2).

When (a, b, c) = (12, 13, 5) and (18, 7, 5), using a similar way as in the proof of Theorem 1.3(i), the
desired result follows immediately.

The proof of Theorem 1.3 is complete.
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