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Abstract: In this paper, we propose the iterative numerical methods to calculate the conformal preim-
age domains for the specified logarithmic spiral slit regions and develop the applications of conformal
mappings in the simulations of the flow around bodies. Firstly, we postulate that the boundaries of
the preimage domains mapped onto logarithmic spiral slits are ellipses. The lengths of the long axes
of ellipses and the coordinates of the centers are calculated using our iterative methods. Secondly,
each type of the presented iterative method calculates numerical conformal mappings via solving the
boundary integral equation with the generalized Neumann kernel. Finally, numerical examples show
the convergence and availability of our iterative methods and display the simulations of the flow around
the bodies as an application.
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1. Introduction

It is difficult to deal with field theory problems defined in the region W bounded by the non-Jordan
curves. However, if a conformal mapping Υ exists that maps region D bounded by smooth Jordan
curves onto domain W, then we can transform the problems specified in region W into domain D to
simply the problems. Meanwhile, we can refer to region D as the preimage domain of the region
W. Because the preimage domains have better properties, the method for calculating the preimage
domain needs to be proposed and extended. Moreover, the preimage domain we discuss is given in the
sense of conformal equivalence, which should be emphasized. Conformal mappings are an important
theory of analytic function and potential theory, which find in the methods of solving problems in
field theory. Conformal mappings can map the complex regions onto the simple domains, which
simplifies the issues such as calculating the capacitance of irregular capacitors, harmonic measures [1],
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logarithmic capacity [2, 3] in potential theory, and so on [4–7]. Many more practical applications
of conformal mappings can be found in fluid mechanics [8, 9] and optics [10]. As is known to all,
the analytic expressions of conformal mappings are not available in many actual situations, only can
be found in some specific regions, and conformal mappings have the superiority in dealing with the
problems in field theory. Therefore, the numerical methods to compute conformal mappings have been
extensively investigated in the past several decades [11–14]. In comparison, the numerical method
presented by Nasser, based on the boundary integral equation with the generalized Neumann kernel,
has the characteristic of a unified form and can use for thirty-nine canonical slit regions proposed by
Koebe [15–18]. Using the method presented by Nasser to obtain the numerical solutions of conformal
mappings for highly connected regions with piecewise smooth boundaries is quick and accurate [19,
20].

Several fluid mechanics phenomena are included in external flows past objects. Computing the
preimage domains of specified slit regions is of great significance in explaining some fluid phenomena.
For example, Crowdy finds several explicit formulas drawn up according to the Schottky-Klein prime
function for the problems in fluid dynamics [21–24]. According to Ref. [24] Crowdy (2008), an explicit
solution of complex potential for the irrotational incompressible potential fluid driven by an assembly
of stirrers moving at specified velocities has been found. Examples presented in [24] show streamlines
of the irrotational flow generated by circular disk stirrers and paddles, where the paddles can regard as
rectilinear slits. The feasible methods to solve these problems are conformally mapping the specified
slit region W onto the preimage domain D with the same connectivity and solving these problems in D.
However, it is difficult to directly calculate conformal mapping that maps a specified slit region onto a
preimage domain, but we can find many methods which compute conformal mapping from a preimage
domain onto a slit region [11,16,17,25]. Nasser [26] reformulates the problems of stirring fluid as the
classical Riemann-Hilbert (R-H) problems and obtains the numerical complex potentials for the flows.
When the stirrers are finite rectilinear slits, Nasser [26] presents an iterative method, which calculates
a preimage domain D bounded by ellipses and conformal mapping Υ that maps D onto the rectilinear
slit region. In addition, conformal mappings are also a powerful tool for simulating the flow around
bodies, i.e., the phenomenon of boundary layer separation caused by the fluid passing through the
surface of objects [25, 26]. The flow around bodies has been widely studied as a classical problem in
fluid mechanics. According to Ref. [27] Chen et al. (2021), the analytical solution of the potential flow
is derived in the region bounded by a circle, an ellipse, and a thin airfoil. They find that the singular
equation or the hypersingular equation can be used to solve the symmetric or antisymmetric potential
flow problem alone. According to Ref. [28] Chen et al. (2022), the analytical solution of the potential
flow around two identical cylinders is derived by using the boundary integral equation with the bipolar
degenerate-kernel. When considering the motion of spiral point vortices in a two-dimensional multiply
connected domain with two parallel slits, Aoyama et al. [29] first propose an iterative method based
on the particle charge simulation method, which can calculate the preimage domain of the slit region.
According to Ref. [29] Aoyama et al. (2013), many equilibria are composed of two spiral point vortices
that enhance the downward vertical force and the counterclockwise rotational force.

As a result, computing the preimage domains of the specified slit regions and conformal mappings
that map the preimage domains onto the slit regions are problems worthy of attention. According
to Ref. [30] Nasser (2019), the iterative numeral method has successfully computed the preimage
domains D and conformal mappings Υ that map D onto W, where W is two instances of bounded slit
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regions called an annulus with radial slit region and the unit disk with radial slit region. However,
the thirty-nine canonical slit regions cataloged by Koebe have extensive application prospects. The
logarithmic spiral slit regions deserve special attention because when the oblique angle is π

2 or 0, the
logarithmic spiral will degenerate to a circle with a center at the origin or a ray issuing from the origin,
respectively [17, 25, 31, 32]. Meanwhile, the logarithmic spiral slit regions are closely related to the
spiral point vortices.

However, the methods proposed in [29, 30] can not directly calculate the preimage domains of the
logarithmic spiral slit regions. Therefore, we present the improved iterative methods based on the
method proposed in [30], which calculates the preimage domains D of the specified logarithmic spiral
slit regions W and conformal mappings Υ that map D onto W. We postulate that the boundaries of the
sequence {Dm} of the preimage domains are the ellipses. According to the distribution of logarithmic
spiral slits in W, the lengths of the long axes and the coordinates of the centers of ellipses, which
calculate during iteration, respectively converge to the lengths of the long axes and the coordinates of
the centers of the boundaries ∂D. In each iteration step, to calculate conformal mappings quickly and
accurately, we use the method based on the boundary integral equation with the generalized Neumann
kernel to calculate conformal mappings.

The rest of this paper is organized as follows. In Sect.2, we introduce the related knowledge about
the boundary integral equation with the generalized Neumann kernel. In Sect.3, we regard two in-
stances of spiral slit regions called the unbounded logarithmic spiral slit region and a unit disk with
logarithmic spiral slit region. We briefly review the process of formulating mapping functions as the
R-H problems, and then the iterative methods are presented for calculating the preimage domains and
conformal mappings that map the preimage domains onto the spiral slit regions. In Sect.4, numerical
examples are proposed showing the availability of our iterative methods and simulating the flow around
bodies. The results are summed up in the last section.

2. Preliminaries

In this Section, we introduce the related knowledge about the boundary integral equation with the
generalized Neumann kernel. Further details can be found in [14, 33].

We suppose that D is a n-connected region in the extended complex plane C ∪ {∞} containing the
point z = 0, where the boundary of D is Γ := ∂D =

n
∪
j=1
Γ j. Γ1, Γ2, . . . , Γn are n closed smooth Jordan

curves. Denote the orientation of Γ to ensure D where the left of Γ.
Suppose that the curves Γ1, Γ2, . . . , Γn can be parameterized by the 2π-periodic complex func-

tions η1(t), η2(t), . . . , ηn(t) with twice continuously derivative, respectively, in which the first derivative
dη j(t)/dt = η̇ j(t) , 0 for t ∈ J j = [0, 2π], j = 1, 2, . . . , n. The parametrization of the boundary Γ can
be defined by

η(t) :=



η1(t), t ∈ J1 = [0, 2π],
η2(t), t ∈ J2 = [0, 2π],

...

ηn(t), t ∈ Jn = [0, 2π].

(2.1)

Definition 2.1. A real function f is Hölder continuous, when there are nonnegative real constants C,
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α > 0, such that
| f (x) − f (y)| ≤ C‖x − y‖α

for all x and y in the domain of f .

We denote by H the space of real functions on Γ whose are Hölder continuous. Thus, φ ∈ H
indicates that φ(t) := φ(η(t)) is a real Hölder continuous function with 2π-period.

Definition 2.2. A piecewise constant function h(t) is defined on J j such that

h(t) :=



h1, t ∈ J1 = [0, 2π],
h2, t ∈ J2 = [0, 2π],

...

hn, t ∈ Jn = [0, 2π],

(2.2)

where h j ∈ R, j = 1, 2, . . . , n. For convenience, we denote h(t) = (h0, h1, . . . , hn).

Let

B(t) :=


ei( π2−θ(t)), t ∈ J, if D is unbounded,

ei( π2−θ(t))(η(t) − α), t ∈ J, if D is bounded
(2.3)

is a continuously differentiable complex function. α ∈ D is a fixed point, and θ(t) = (θ1, θ2, . . . , θn) with
constants θ j ∈ R for j = 1, 2, . . . , n representing the oblique angle of each slit is a specified piecewise
function.

The generalized Neumann kernel N(s, t) formed with B and η is defined as follows:

N(s, t) :=
1
π

Im
[
B(s)
B(t)

η̇(t)
η(t) − η(s)

]
, (s, t) ∈ J × J.

The singular kernel M(s, t) is defined as follows:

M(s, t) :=
1
π

Re
[
B(s)
B(t)

η̇(t)
η(t) − η(s)

]
, (s, t) ∈ J × J.

The Fredholm integral operator N and singular integral operator M on H can be defined as follows:

Nµ(s) :=
∫

J
N(s, t)µ(t)dt, s ∈ J, (2.4)

and

Mµ(s) :=
∫

J
M(s, t)µ(t)dt, s ∈ J. (2.5)

Theorem 2.1. ( [17])For a specified function γ ∈ H, there exists a unique real function µ and a unique
piecewise constant real function h = (h1, h2, . . . , hn) defined on Γ such that

g(η(t)) =
γ(t) + h(t) + iµ(t)

B(t)
, t ∈ J, (2.6)
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are boundary values of an analytic function g in D, which g is a unique solution of R-H problem
Re

[
Bg

]
= γ + h. Then the function µ is the solution of the integral equation

(I − N)µ = −Mγ (2.7)

and the function h is obtained by

h =
Mµ − (I − N)γ

2
. (2.8)

3. The iterative methods for computing the preimage domains

In this Section, we briefly review the process of formulating mapping functions as the R-H prob-
lems, and the iterative methods are presented for calculating the preimage domains D and conformal
mappings that map D onto W, which W is a specified unbounded or bounded logarithmic spiral slit
region (For short: spiral slit region).

In the w plane, the boundaries of the spiral slit regions are composed of the slits that have the origin
as the asymptotic point and satisfy

Im
[
e−iθ ln(w)

]
= r with θ, r ∈ R. (3.1)

If any ray issuing from the origin intersects a slit, θ named the oblique angle of the slit is the angle
between the ray with the tangent of the slit at the intersection. Especially, for the oblique angle θ = 0,
all points of the slit will fall on a ray, which the slit is a radial slit pointing to the origin; For the oblique
angle θ = π

2 , the ray being always perpendicular to the tangent of any point in the slit, and the slit will
be a circle slit centered at the origin [16, 17, 25, 32].

3.1. The preimage domain of the unbounded logarithmic spiral slit region

In this Subsection, we propose an iterative method based on the boundary integral equation, which
calculates a preimage domain of a specified unbounded logarithmic spiral slit region.

Theorem 3.1. ( [25])Let θ(t) = (θ1, θ2, . . . , θn) and a fixed point α in the unbounded multiply connected
region D if Υ that conformally maps D onto the unbounded logarithmic spiral slit region satisfies
normalization conditions Υ(α) = 0, Υ(∞) = ∞, lim

z→∞

Υ(z)
z = 1, and then the Laurent series

Υ(z) = z + a0 +
a1

z
+

a2

z2 + . . .

is uniquely determined.

Suppose D is an unbounded n-connected region in the z plane. The unbounded spiral slit region W is
the entire w plane with n spiral slits having the oblique angles of θ1, θ2, . . . , θn, respectively. According
to the normalization conditions, conformal mapping Υ(z) can be defined by (see [17, 25, 32])

Υ(z) = (z − α)eg(z), z ∈ D ∪ Γ, (3.2)
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which the analytic function g(z) defines on D ∪ Γ. Conformal mapping ω = Υ(z) maps Γ j onto the
spiral slit L j for j = 1, 2, . . . , n (see Figure 1). According to the boundary conditions (3.1), the boundary
values of conformal mapping Υ(z) should satisfy

Re
[
ei( π2−θ j) ln (Υ(z))

]
= R j, z ∈ Γ j, j = 1, 2, . . . , n. (3.3)

Plugging (3.2) into (3.3) leads to

Re
[
ei( π2−θ j)g(z)

]
= R j − Re

[
ei( π2−θ j) ln(z − α)

]
, z ∈ Γ j, j = 1, 2, . . . , n, (3.4)

where R j ∈ R for j = 1, 2, . . . , n are undetermined real constants obtained by solving the R-H problem
with

B(t) = ei( π2−θ(t)) , γ(t) = −Re
[
ei( π2−θ(t)) ln (η(t) − α)

]
, t ∈ J. (3.5)

According to Theorem 2.1, by solving the integral equation (2.7) and calculating (2.8), we can obtain
µ(t) and h(t) = (R1,R2, . . . ,Rn) such that

ei( π2−θ(t))g(η(t)) = γ(t) + h(t) + iµ(t), t ∈ J,

which satisfie the boundary conditions (3.4). For z ∈ D, we use the following Cauchy integral to
calculate the values of g(z)

g(z) =
1

2πi

∫
Γ

γ + h + iµ
ξ − z

dξ, z ∈ D. (3.6)

Together with (3.2), we can obtain conformal mapping Υ(z).

Figure 1. Υ maps the unbounded region D onto the spiral slit region W, and ζ maps the spiral
slits L j onto the line segments S j for j = 1, 2, . . . , n.

Note that the boundaries of a specified spiral slit region are fixed. However, R j calculated by the
above method are unable to specify in advance, which affect the location distributions of the bound-
aries L j for j = 1, 2, . . . , n, and conformal mapping cannot be computed directly if the preimage D
is unknown. Thus, the problems will become finding a preimage domain D of a specified spiral slit
region W and calculating conformal mapping Υ(z) that maps D onto W.

In the ζ plane,
S j = ei( π2−θ j) ln(w), w ∈ L j

are n line segments with lengths l∗j and upper endpoints c j for j = 1, 2, . . . , n (see Figure 1). Any point
on a line segment can be represented as

q j = c j − iλl∗j with 0 6 λ 6 1.
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Therefore, any point on a spiral slit can be written as

Q∗j = exp
{
ei( π2−θ j)q j

}
.

In the following, we will propose an iterative method based on the boundary integral equation,
which calculates a preimage domain D of a specified unbounded spiral slit region and derives con-
formal mapping Υ(z) from D onto W at the same time. Each step iteration of our iterative method
will generate a preimage domain denoted by Dm, and the sequence {Dm} will converge to our needed
preimage domain D.

Assume that the boundary of the domain Dm is composed of ellipses. In the iterating step m =

0, 1, 2, . . . , the ellipses Γm
j can are parametrized by

ηm
j (t) = Qm

j + am
j eiarg(Qm

j )(cos(t) + ibsin(t)), t ∈ J, j = 1, 2, . . . , n, (3.7)

where

• Qm
j denote the coordinates of the centers of ellipses Γm

j for j = 1, 2, . . . , n,
• am

j represent half the lengths of the long axes of elliptical boundaries Γm
j for j = 1, 2, . . . , n,

• b ∈ (0, 1) is specified uniformly, which denotes the ratio between the lengths of the short axes and
the long axes of ellipses Γm

j for j = 1, 2, . . . , n.

Qm
j and am

j can be derived by the following iterative method.

Algorithm 1 Iterative method for calculating the preimage domain of the unbounded logarithmic spiral
slit region
Input: λ, Max, ε1, β, θ(t) = (θ1, θ2, . . . , θn), a0

j = 0.5(1 − 0.5b)l∗j, Q0
j = Q∗j, for j = 1, 2, . . . , n.

Iterate: For m = 1, 2, . . . , Max

Step 1 According to (3.7) computing ηm−1
j and solving the R-H problem constructed by (3.5), we

obtain conformal mapping Υm−1 from the unbounded Dm−1 onto an unbounded domain Wm with
logarithmic spiral slits Lm

j for j = 1, 2, . . . , n.
Step 2 Compute the lengths lm∗

j and upper endpoints cm
j of S m

j to get the points Qm∗
j on Lm

j , for
j = 1, 2, . . . , n.
Step 3 If the following condition is satisfied, the iteration ends.

Em =
1
n

n∑
j=1

(∣∣∣lm∗
j − l∗j

∣∣∣ +
∣∣∣Qm∗

j − Q∗j
∣∣∣) < ε1. (3.8)

If (3.8)is not satisfied, proceed to the next step.
Step 4 Compute am

j = am−1
j − 1

2β (1 − 0.5b)(lm∗
j − l∗j), Qm

j = Qm−1
j − 1

β
(Qm∗

j − Q∗j)for j = 1, 2, . . . , n.
Go back to the step 1.

Output: The preimage domain D = Dm−1 and conformal mapping Υ = Υm−1.

Remark: The displacement of the ellipses centers and the incrementing of the half lengths of the long
axes are controlled by giving different values of β in iterations. When β = 1, the Algorithmic 1 is
the iteration method proposed in [30]. Max and ε1 are the specified maximum number of iterations
allowed and the tolerance, respectively.
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3.2. The preimage domain of the unit disk with logarithmic spiral slit region

In this Subsection, we propose an iterative method based on the boundary integral equation, which
calculates a preimage domain of a specified unit disk with logarithmic spiral slit region.

Theorem 3.2. ( [32])For the specified oblique angles θ(t) = (π2 , θ2, . . . , θn) of spiral slits, suppose D is
the bounded multiply connected region inside the unit disc. Γ1 = {|z| = 1} is a boundary component
of D and 0 ∈ D. Then there exists a unique analytical function Υ(z) in D ∪ Γ, which satisfies the
normalization conditions Υ(0) = 0, Υ

′

(0) > 0 and conformally maps D onto the spiral slit region W
bounded by L1 = {|w| = 1}. The spiral slits L2, L3 , . . . , Ln are inside of L1.

Conformal mapping conforming to Theorem 3.2 can be defined by(see [17, 32])

Υ(z) = czezg(z), z ∈ D ∪ Γ, (3.9)

where the analytic function g(z) defines on D ∪ Γ, and c is an undetermined real constant. w = Υ(z)
maps Γ j onto the spiral slit L j for j = 1, 2, . . . , n (see Figure 2). According to the boundary conditions
(3.1), the boundary values of Υ(z) should satisfy

Re [ln(Υ(z))] = 0, z ∈ Γ1,

Re
[
ei( π2−θ j) ln(Υ(z))

]
= R j, z ∈ Γ j, j = 2, 3, . . . , n.

(3.10)

Plugging (3.9) into (3.10) leads to
Re

[
zg(z)

]
= − ln(c) − Re [ln(z)] , z ∈ Γ1,

Re
[
ei( π2−θ j)zg(z)

]
= h j − Re

[
ei( π2−θ j) ln(z)

]
, z ∈ Γ j, j = 2, 3, . . . , n,

(3.11)

where c and h j = R j − Re
[
ei( π2−θ j) ln(c)

]
for j = 2, 3, . . . , n are undetermined real constants obtained by

solving the R-H problem with

B(t) = ei( π2−θ(t))η(t), γ(t) = −Re
[
ei( π2−θ(t)) ln(η(t))

]
, t ∈ J. (3.12)

According to Theorem 2.1, by solving the integral equation (2.7) and calculating (2.8), we can obtain
µ(t) and h(t) = (− ln(c), h2, . . . , hn) such that

ei( π2−θ(t))η(t)g(η(t)) = γ(t) + h(t) + iµ(t), t ∈ J,

which satisfie the boundary conditions (3.11). For z ∈ D, we also use the Cauchy integral (3.6) to
calculate the values of g(z), and conformal mapping Υ(z) is obtained according to (3.9).

The images of the spiral slits L j under the mapping

ζ = ei( π2−θ j) ln(w),w ∈ L j, j = 2, 3, . . . , n

are still the line segments S j for j = 2, 3, . . . , n in the ζ plane (see Figure 2). Thus we uniformly use l∗j
and c j for j = 2, 3, . . . , n to denote the lengths and upper endpoints of S j. Any point on a line segment
can be represented as

q j = c j − iλl∗j with 0 6 λ 6 1.
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Figure 2. Υ maps the bounded multiply connected region onto the unit disk with spiral slit
domian, and ζ maps the spiral slits L j onto the line segments S j for j = 2, . . . , n.

Therefore, any point on a spiral slit still can be written as

Q∗j = exp
{
ei( π2−θ j)q j

}
.

As mentioned in Sect.3.1, for D is unknown, we will present an iterative method for computing a
preimage domain D of a specified unit disk with spiral slit region W and conformal mapping ω = Υ(z)
that maps D onto W. Each step iteration of our iterative method will also generate a preimage domain
Dm, and the sequence {Dm} of the preimage domains will converge to our needed preimage domain D.
For m = 0, 1, 2, . . . , we suppose the region Dm is inside the unit circle Γm

1 that is parametrized by

ηm
1 = cos(t) + isin(t), t ∈ J, (3.13)

and is outside the ellipses Γm
j parametrized by

ηm
j (t) = Qm

j + am
j eiarg(Qm

j )(cos(t) + ibsin(t)), t ∈ J, j = 2, 3, . . . , n, (3.14)

where

• Qm
j denote the coordinates of the centers of ellipses Γm

j for j = 2, 3, . . . , n,
• am

j represent half the lengths of the long axes of elliptical boundaries Γm
j for j = 2, 3, . . . , n,

• b ∈ (0, 1) is specified uniformly, which denotes the ratio between the lengths of the short axes and
the long axes of ellipses Γm

j for j = 2, 3, . . . , n.

Qm
j and am

j can be derived by the following iterative method.
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Algorithm 2 Iterative method for calculating the preimage domain of the unit disk with logarithmic
spiral slit region
Input: λ, Max, ε2, β, θ(t) = (π2 , θ2, . . . , θn), a0

j = 0.1(1 − 0.5b)l∗j, Q0
j = Q∗j, for j = 2, 3, . . . , n.

Iterate: For m = 1, 2, . . . , Max

Step 1 According to (3.13) and (3.14) computing ηm−1
j and solving the R-H problem constructed

by (3.12), we obtain conformal mapping Υm−1 from Dm−1 onto an unit disk domain Wm with
logarithmic spiral slits Lm

j for j = 2, 3, . . . , n.
Step 2 Compute the lengths lm∗

j and upper endpoints cm
j of S m

j to get the points Qm∗
j on Lm

j , for
j = 2, 3, . . . , n.
Step 3 If the following condition is satisfied, the iteration ends.

Em =
1

n − 1

n∑
j=2

(∣∣∣lm∗
j − l∗j

∣∣∣ +
∣∣∣Qm∗

j − Q∗j
∣∣∣) < ε2. (3.15)

If (3.15)is not satisfied, proceed to the next step.
Step 4 Compute am

j = am−1
j − 1

10β (1− 0.5b)(lm∗
j − l∗j), Qm

j = Qm−1
j − 1

β
(Qm∗

j −Q∗j)for j = 2, 3, . . . , n.
Go back to the step 1.

Output: The preimage domain D = Dm−1 and conformal mapping Υ = Υm−1.

Remark: The displacement of the ellipses centers and the incrementing of the half lengths of the long
axes are controlled by giving different values of β in iterations. Max and ε2 are the specified maximum
number of iterations allowed and the tolerance, respectively.

4. Numerical examples

In this Section, we propose three numerical examples to test the availability of our iterative methods.
It is of great significance to reach the flow around bodies in energy and power engineering,

aerospace engineering, and ocean engineering. Conformal mappings have unique superiorities in sim-
ulating the flow around bodies. In three numerical examples, we will simulate the irrotational plane
flow around bodies in region D. Let c(z) = φ(x, y) + iψ(x, y) and C(w) are the complex potentials of
the flows in the fluid region D and W, respectively, where φ and ψ denote the velocity potential and the
stream function. w = Υ(z) conformally maps D onto the slit region W. At the same time, the family of
equipotential lines and streamlines in D will also be mapped by w = Υ(z) onto the equipotential lines
and streamlines in W. Thus, when C(w) is known, the complex potential in D is given by

C(w) = C(Υ(z)) = c(z), z ∈ D.

The boundary integral equation (2.7) and the function (2.8) can be calculated with precision by
means of the MATLAB function fbie. We set the parameters restart = [ ], iprec = 5, maxit =

100, and gmrestol = 0.5 × 10−14, in fbie. N = 2048 is the number of equidistant nodes in the
discretization of each boundary component. Using the MATLAB function fcau, we can rapidly derive
the values of g(z) for z ∈ D. For more details, see [19].
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Figure 3. The computed preimage domain in Figure 3(a), the specified unbounded logarith-
mic spiral slit region in Figure 3(b) and the spiral slits are mapped onto the line segments in
Figure 3(c) for Example 4.1 with b = 0.5, λ = 1

7 , β = 2.
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Figure 4. Streamlines of the flow around bodies generated by a spiral point vortex in Fig-
ure 4(a) and the number of iterations needed for the iterative methods to converge with the
different values of b and β in Figure 4(b) for Example 4.1.

In numerical examples, the figures illustrate the availability of our iterative methods and discuss the
influences of β on the number of iterations needed for the iterative methods to converge:

• Figure 3, Figure 6 and Figure 9 show that both the specified slit region and the calculated preimage
domain are composed of boundaries and orthogonal grids. Furthermore, using the mapping ζ(w),
the boundaries of the given spiral slit domains are mapped onto the line segments in Figure 3(c),
Figure 6(c) and Figure 9(c).
• Figure 4(b) and Figure 8 show the influences generated by the different values of b and β on the

number of iterations needed for the iterative methods to converge for Example 4.1 and Example
4.2.
• Figure 5 and Figure 10(b) show the influences of several values of the ratio b on the number

of iterations needed for the iterative methods to converge and display the error variation in the
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iterative process, in which the value of β is optimal for Example 4.1, Example 4.2, and Example
4.3.
• Figure 4(a), Figure 7 and Figure 10(a) show the results of simulating the irrotational plane flow

around bodies.

Example 4.1 Regard the unbounded domain that is the entire w-plane with three logarithmic spiral
slits for θ(t) = (π4 ,

π
4 ,

π
4 ) (see Figure 3(b)). When using the tolerance ε1 = 1×10−10, the iterative method

converges for 0.05 6 b 6 0.8 (see Figure 5(a)). Figure 4(a) shows streamlines of the flow around
bodies generated by a spiral point vortex C(w) = 5−5i

2πi ln(w).
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Figure 5. The number of iterations needed for the iterative method to converge as well as Ek

variation in the iterative process with β = 2 for the Example 4.1 in Figure 5(a) and Example
4.2 in Figure 5(b).
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Figure 6. The computed preimage domain in Figure 6(a), the specified unbounded logarith-
mic spiral slit region in Figure 6(b) and the spiral slits are mapped onto the line segments in
Figure 6(c) for Example 4.2 with b = 0.4, λ = 1

9 , β = 2.
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Figure 7. Streamlines of the flow around bodies generated by a uniform stream in Figure
7(a) and equipotential lines of the flow around bodies generated by a source point in Figure
7(b) for Example 4.2.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

b

0

20

40

60

80

100

120

140

160

T
h

e
 n

u
m

b
e

r 
o

f 
it
e

ra
ti
o

n
s

Figure 8. The number of iterations needed for the iterative methods to converge with the
different values of b and β for Example 4.2.

Example 4.2 Regard the unbounded domain that is the entire w-plane with five logarithmic spiral slits
for θ(t) = (π4 ,

π
4 ,

π
4 ,

π
4 ,

π
4 ) (see Figure 6). When using tolerance ε1 = 1 × 10−10 and 0.05 6 b 6 0.45, the

iterative method should be convergent (see Figure 8). Figure 7 shows streamlines and equipotential
lines of the flows around bodies generated by a uniform stream C(w) = w and a source point C(w) =

ln(w), respectively.

Example 4.3 Regard the unit disk with logarithmic spiral slit region that oblique angles are π
4 (see

Figure 9). When using tolerance ε2 = 1 × 10−4 and 0.05 6 b 6 0.25, the iterative method should be
convergent. At the same time, equipotential lines of the flow around bodies generated by ten source

points C(w) =
n∑

j=2
ln(w − Q∗j) are shown in Figure 10.
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Figure 9. The computed preimage domain in Figure 9(a), the unit disk with logarithmic
spiral slit region in fFigure 9(b) and the spiral slits inside of circle are mapped onto the line
segments in Figure 9(c) for Example 4.3 with b = 0.2, λ = 1

9 , β = 20.
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Figure 10. Equipotential lines of the flow around bodies generated by ten source points in
Figure 10(a) and the number of iterations needed for the iterative method to converge as well
as Ek variation in the iterative process with β = 20 in Figure 10(b) for Example 4.3.

Figure 4(b), Figure 5, Figure 8 and Figure 10(b) illustrate the availability and convergence of the
iterative methods proposed in Sect.3. Figure 4(b) and Figure 8 show that the values of β lead to
a significant impact on the number of iterations needed for the iterative methods to converge. In
Example 4.1 and Example 4.2, when β = 1, the iterative methods are non-convergence for some ratio
b. Therefore, it is necessary to choose an appropriate value of β, which can improve the convergence of
our iterative methods and reduce the number of iterations needed for the iterative methods to converge.

5. Concluding

In this paper, for a specified multiply connected logarithmic spiral slit region, we propose an it-
erative method that successfully calculates a conformally equivalent preimage domain and conformal
mapping that maps the preimage domain onto the specified spiral slit region. In the proposed iterative
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method, we introduce parameter β to control the changes to the boundaries in the preimage domain,
ensuring the convergence of that approach. Through several numerical examples, we also explore how
parameters β affects the proposed iterative method’s convergence and show how many iterations are
necessary when parameter β = 2 and β = 20 for unbounded and bounded logarithmic spiral slit re-
gions, respectively. Moreover, in physical planes, using the above conformal mappings, we simulate
the several flows around bodies, including the spiral point vortex, the uniform stream, and the source
point, which develop the applications of conformal mappings in the simulations of the flow around
bodies. Since our method can calculate the complex potentials of spiral point vortices and other po-
tential flows at any point in the logarithmic spiral slit regions, it provides a possibility to explore the
dynamic behavior of potential flows in that domain in the future.
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