Research article

Modeling the effect of time delay in the increment of number of hospital beds to control an infectious disease


  • Received: 29 June 2022 Revised: 30 July 2022 Accepted: 07 August 2022 Published: 15 August 2022
  • One of the key factors to control the spread of any infectious disease is the health care facilities, especially the number of hospital beds. To assess the impact of number of hospital beds and control of an emerged infectious disease, we have formulated a mathematical model by considering population (susceptible, infected, hospitalized) and newly created hospital beds as dynamic variables. In formulating the model, we have assumed that the number of hospital beds increases proportionally to the number of infected individuals. It is shown that on a slight change in parameter values, the model enters to different kinds of bifurcations, e.g., saddle-node, transcritical (backward and forward), and Hopf bifurcation. Also, the explicit conditions for these bifurcations are obtained. We have also shown the occurrence of Bogdanov-Takens (BT) bifurcation using the Normal form. To set up a new hospital bed takes time, and so we have also analyzed our proposed model by incorporating time delay in the increment of newly created hospital beds. It is observed that the incorporation of time delay destabilizes the system, and multiple stability switches arise through Hopf-bifurcation. To validate the results of the analytical analysis, we have carried out some numerical simulations.

    Citation: A. K. Misra, Jyoti Maurya, Mohammad Sajid. Modeling the effect of time delay in the increment of number of hospital beds to control an infectious disease[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11628-11656. doi: 10.3934/mbe.2022541

    Related Papers:

  • One of the key factors to control the spread of any infectious disease is the health care facilities, especially the number of hospital beds. To assess the impact of number of hospital beds and control of an emerged infectious disease, we have formulated a mathematical model by considering population (susceptible, infected, hospitalized) and newly created hospital beds as dynamic variables. In formulating the model, we have assumed that the number of hospital beds increases proportionally to the number of infected individuals. It is shown that on a slight change in parameter values, the model enters to different kinds of bifurcations, e.g., saddle-node, transcritical (backward and forward), and Hopf bifurcation. Also, the explicit conditions for these bifurcations are obtained. We have also shown the occurrence of Bogdanov-Takens (BT) bifurcation using the Normal form. To set up a new hospital bed takes time, and so we have also analyzed our proposed model by incorporating time delay in the increment of newly created hospital beds. It is observed that the incorporation of time delay destabilizes the system, and multiple stability switches arise through Hopf-bifurcation. To validate the results of the analytical analysis, we have carried out some numerical simulations.



    加载中


    [1] Hospital Bed Population Ratio (HBPR), OECD Data, Available from: https://data.oecd.org/healtheqt/hospital-beds.htm.
    [2] Hospital Bed Population Ratio (HBPR) in Saudi Arabia, The World Bank Data, Available from: https://data.worldbank.org/indicator/SH.MED.BEDS.ZS?locations=SA.
    [3] World Health Organization, World Health Statistics, 2005–2015.
    [4] P. Das, R. K. Upadhyay, A. K. Misra, F. A. Rihan, P. Das, D. Ghosh, Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination, Nonlinear Dyn., 106 (2021), 1213–1227. https://doi.org/10.1007/s11071-021-06517-w doi: 10.1007/s11071-021-06517-w
    [5] A. K. Misra, R. K. Rai, P. K. Tiwari, M. Martcheva, Delay in budget allocation for vaccination and awareness induces chaos in an infectious disease model, J. Biol. Dyn., 15 (2021), 395–429. https://doi.org/10.1080/17513758.2021.1952322 doi: 10.1080/17513758.2021.1952322
    [6] J. A. T. Machado, J. Ma, Nonlinear dynamics of COVID-19 pandemic: modeling, control, and future perspectives, Nonlinear Dyn., 101 (2020), 1525–1526. https://doi.org/10.1007/s11071-020-05919-6 doi: 10.1007/s11071-020-05919-6
    [7] R. Naresh, S. Pandey, A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Anal. Modell. Control, 13 (2008), 331–350. https://doi.org/10.15388/NA.2008.13.3.14561 doi: 10.15388/NA.2008.13.3.14561
    [8] P. K. Tiwari, R. K. Rai, S. Khajanchi, R. K. Gupta, A. K. Misra, Dynamics of coronavirus pandemic: effects of community awareness and global information campaigns, Eur. Phys. J. Plus, 136 (2021), 994. https://doi.org/10.1140/epjp/s13360-021-01997-6 doi: 10.1140/epjp/s13360-021-01997-6
    [9] J. Pang, J. A. Cui, J. Hui, Rich dynamics of epidemic model with sub-optimal immunity and nonlinear recovery rate, Math. Comput. Modell., 54 (2011), 440–448. https://doi.org/10.1016/j.mcm.2011.02.033 doi: 10.1016/j.mcm.2011.02.033
    [10] C. T. Codeco, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1–14. https://doi.org/10.1186/1471-2334-1-1 doi: 10.1186/1471-2334-1-1
    [11] M. E. Alexander, S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75–96. https://doi.org/10.1016/j.mbs.2004.01.003 doi: 10.1016/j.mbs.2004.01.003
    [12] J. K. Ghosh, S. K. Biswas, S. Sarkar, U. Ghosh, Mathematical modelling of COVID-19: A case study of Italy, Math. Comput. Simul., 194 (2022), 1–18. https://doi.org/10.1016/j.matcom.2021.11.008 doi: 10.1016/j.matcom.2021.11.008
    [13] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [14] X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227–242. https://doi.org/10.1016/j.jmaa.2015.07.056 doi: 10.1016/j.jmaa.2015.07.056
    [15] A. Rajput, M. Sajid, Tanvi, C. Shekhar, R. Aggarwal, Optimal control strategies on COVID-19 infection to bolster the efficacy of vaccination in India, Sci. Rep., 11 (2021), 1–18. https://doi.org/10.1038/s41598-021-99088-0 doi: 10.1038/s41598-021-99088-0
    [16] B. Dhar, P. K. Gupta, M. Sajid, Solution of a dynamical memory effect COVID-19 infection system with leaky vaccination efficacy by non-singular kernel fractional derivatives, Math. Biosci. Eng, 19 (2022), 4341–4367. https://doi.org/10.3934/mbe.2022201 doi: 10.3934/mbe.2022201
    [17] F. Bozkurt, A. Yousef, T. Abdeljawad, A. Kalinli, Q. Al Mdallal, A fractional-order model of COVID-19 considering the fear effect of the media and social networks on the community, Chaos, Solitons Fractals, 152 (2021), 111403. https://doi.org/10.1016/j.chaos.2021.111403 doi: 10.1016/j.chaos.2021.111403
    [18] M. Asif, Z. A. Khan, N. Haider, Q. Al-Mdallal, Numerical simulation for solution of SEIR models by meshless and finite difference methods, Chaos, Solitons Fractals, 141 (2020), 110340. https://doi.org/10.1016/j.chaos.2020.110340 doi: 10.1016/j.chaos.2020.110340
    [19] M. Umar, Kusen, M. A. Z. Raja, Z. Sabir, Q. Al-Mdallal, A computational framework to solve the nonlinear dengue fever SIR system, Comput. Methods Biomech. Biomed. Eng., 2022 (2022), 1–14. https://doi.org/10.1080/10255842.2022.2039640 doi: 10.1080/10255842.2022.2039640
    [20] A. Abdelrazec, J. Bélair, C. Shan, H. Zhu, Modeling the spread and control of dengue with limited public health resources, Math. Biosci., 271 (2016), 136–145. https://doi.org/10.1016/j.mbs.2015.11.004 doi: 10.1016/j.mbs.2015.11.004
    [21] R. Boaden, N. Proudlove, M. Wilson, An exploratory study of bed management, J. Manage. Med., 13 (1999), 234–250. https://doi.org/10.1108/02689239910292945 doi: 10.1108/02689239910292945
    [22] R. D. Booton, L. MacGregor, L. Vass, K. J. Looker, C. Hyams, P. D. Bright, et al., Estimating the COVID-19 epidemic trajectory and hospital capacity requirements in South West England: a mathematical modelling framework, BMJ Open, 11 (2021), e041536. https://doi.org/10.1136/bmjopen-2020-041536 doi: 10.1136/bmjopen-2020-041536
    [23] I. Area, X. H. Vidal, J. J. Nieto, M. J. P. Hermida, Determination in Galicia of the required beds at Intensive Care Units, Alex. Eng. J., 60 (2021), 559–564. https://doi.org/10.1016/j.aej.2020.09.034 doi: 10.1016/j.aej.2020.09.034
    [24] S. D. D. Njankou, F. Nyabadza, Modelling the potential impact of limited hospital beds on Ebola virus disease dynamics, Math. Methods Appl. Sci., 41 (2018), 8528–8544. https://doi.org/10.1002/mma.4789 doi: 10.1002/mma.4789
    [25] B. Dubey, A. Patra, P. K. Srivastava, U. S. Dubey, Modeling and analysis of an SEIR model with different types of nonlinear treatment rates, J. Biol. Syst., 21 (2013), 1350023. https://doi.org/10.1142/S021833901350023X doi: 10.1142/S021833901350023X
    [26] L. V. Green, How many hospital beds, INQUIRY: J. Health Care Organ. Provis. Financing, 39 (2002), 400–412. https://doi.org/10.5034/inquiryjrnl_39.4.400 doi: 10.5034/inquiryjrnl_39.4.400
    [27] J. Karnon, M. Mackay, T. M. Mills, Mathematical modelling in health care, in 18th World IMACS/MODSIM Congress, (2009), 44–56. https://doi.org/10.1.1.552.4422
    [28] A. Kumar, P. K. Srivastava, R. P. Gupta, Nonlinear dynamics of infectious diseases via information-induced vaccination and saturated treatment, Math. Comput. Simul., 157 (2019), 77–99. https://doi.org/10.1016/j.matcom.2018.09.024 doi: 10.1016/j.matcom.2018.09.024
    [29] A. K. Misra, J. Maurya, Modeling the importance of temporary hospital beds on the dynamics of emerged infectious disease, Chaos Interdiscip. J. Nonlinear Sci., 31 (2021), 103125. https://doi.org/10.1063/5.0064732 doi: 10.1063/5.0064732
    [30] W. Qin, S. Tang, C. Xiang, Y. Yang, Effects of limited medical resource on a Filippov infectious disease model induced by selection pressure, Appl. Math. Comput., 283 (2016), 339–354. https://doi.org/10.1016/j.amc.2016.02.042 doi: 10.1016/j.amc.2016.02.042
    [31] P. Saha, U. Ghosh, Global dynamics and control strategies of an epidemic model having logistic growth, non-monotone incidence with the impact of limited hospital beds, Nonlinear Dyn., 105 (2021), 971–996. https://doi.org/10.1007/s11071-021-06607-9 doi: 10.1007/s11071-021-06607-9
    [32] C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differ. Equations, 257 (2014), 1662–1688. https://doi.org/10.1016/j.jde.2014.05.030 doi: 10.1016/j.jde.2014.05.030
    [33] C. Shan, Y. Yi, H. Zhu, Nilpotent singularities and dynamics in an SIR type of compartmental model with hospital resources, J. Differ. Equations, 260 (2016), 4339–4365. https://doi.org/10.1016/j.jde.2015.11.009 doi: 10.1016/j.jde.2015.11.009
    [34] A. Wang, Y. Xiao, H. Zhu, Dynamics of a Filippov epidemic model with limited hospital beds, Math. Biosci. Eng., 15 (2018), 739. https://doi.org/10.3934/mbe.2018033 doi: 10.3934/mbe.2018033
    [35] M. Zhang, J. Ge, Z. Lin, The impact of the number of hospital beds and spatial heterogeneity on an SIS epidemic model, Acta Appl. Math., 167 (2020), 59–73. https://doi.org/10.1007/s10440-019-00268-y doi: 10.1007/s10440-019-00268-y
    [36] X. Zhang, X. Liu, Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment, Nonlinear Anal. Real World Appl., 10 (2009), 565–575. https://doi.org/10.1016/j.nonrwa.2007.10.011 doi: 10.1016/j.nonrwa.2007.10.011
    [37] H. Zhao, L. Wang, S. M. Oliva, H. Zhu, Modeling and dynamics analysis of Zika transmission with limited medical resources, Bull. Math. Biol., 82 (2020), 1–50. https://doi.org/10.1007/s11538-020-00776-1 doi: 10.1007/s11538-020-00776-1
    [38] M. Zhu, Z. Lin, Modeling the transmission of dengue fever with limited medical resources and self-protection, Discrete Contin. Dyn. Syst. B, 23 (2018), 957. https://doi.org/10.3934/dcdsb.2018050 doi: 10.3934/dcdsb.2018050
    [39] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361. https://10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
    [40] B. Dubey, A. Kumar, Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior, Math. Comput. Simul., 188 (2021), 164–192. https://doi.org/10.1016/j.matcom.2021.03.037 doi: 10.1016/j.matcom.2021.03.037
    [41] H. L. Freedman, V. S. H. Rao, The trade-off between mutual interference and time lags in predator-prey systems, Bull. Math. Biol., 45 (1983), 991–1004. https://doi.org/10.1016/S0092-8240(83)80073-1 doi: 10.1016/S0092-8240(83)80073-1
    [42] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer Science & Business Media, 2013.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1880) PDF downloads(85) Cited by(8)

Article outline

Figures and Tables

Figures(13)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog