This article investigates a penalty-based distributed optimization algorithm of bipartite containment control for high-order nonlinear uncertain multi-agent systems with state constraints. The proposed method addresses the distributed optimization problem by designing a penalty function in the form of a quadratic function, which is the sum of the global objective function and the consensus constraint. Moreover, the observer is presented to address the unmeasurable state of each agent. Radial basis function neural networks (RBFNN) are employed to approximate the unknown nonlinear functions. Then, by integrating RBFNN and dynamic surface control (DSC) techniques, an adaptive backstepping controller based on the barrier Lyapunov function (BLF) is proposed. Finally, the effectiveness of the suggested control strategy is verified under the condition that the state constraints are not broken. Simulation results indicate that the output trajectories of all agents remain within the upper and lower boundaries, converging asymptotically to the global optimal signal.
Citation: Yuhang Yao, Jiaxin Yuan, Tao Chen, Xiaole Yang, Hui Yang. Distributed convex optimization of bipartite containment control for high-order nonlinear uncertain multi-agent systems with state constraints[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17296-17323. doi: 10.3934/mbe.2023770
This article investigates a penalty-based distributed optimization algorithm of bipartite containment control for high-order nonlinear uncertain multi-agent systems with state constraints. The proposed method addresses the distributed optimization problem by designing a penalty function in the form of a quadratic function, which is the sum of the global objective function and the consensus constraint. Moreover, the observer is presented to address the unmeasurable state of each agent. Radial basis function neural networks (RBFNN) are employed to approximate the unknown nonlinear functions. Then, by integrating RBFNN and dynamic surface control (DSC) techniques, an adaptive backstepping controller based on the barrier Lyapunov function (BLF) is proposed. Finally, the effectiveness of the suggested control strategy is verified under the condition that the state constraints are not broken. Simulation results indicate that the output trajectories of all agents remain within the upper and lower boundaries, converging asymptotically to the global optimal signal.
[1] | T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, et al., A survey of distributed optimization, Annu. Rev. Control, 47 (2019), 278–305. https://doi.org/10.1016/j.arcontrol.2019.05.006 doi: 10.1016/j.arcontrol.2019.05.006 |
[2] | X. Li, L. Xie, Y. Hong, Distributed aggregative optimization over multi-agent networks, IEEE Trans. Autom. Control, 67 (2021), 3165–3171. https://doi.org/10.1109/TAC.2021.3095456 doi: 10.1109/TAC.2021.3095456 |
[3] | R. Yang, L. Liu, G. Feng, An overview of recent advances in distributed coordination of multi-agent systems, Unmanned Syst., 10 (2022), 307–325. https://doi.org/10.1142/S2301385021500199 doi: 10.1142/S2301385021500199 |
[4] | Y. Li, C. Tan, A survey of the consensus for multi-agent systems, Syst. Sci. Control. Eng., 7 (2019), 468–482. https://doi.org/10.1080/21642583.2019.1695689 doi: 10.1080/21642583.2019.1695689 |
[5] | C. Zhao, X. Duan, Y. Shi, Analysis of consensus-based economic dispatch algorithm under time delays, IEEE Trans. Syst. Man Cybern., 50 (2018), 2978–2988. https://doi.org/10.1109/TSMC.2018.2840821 doi: 10.1109/TSMC.2018.2840821 |
[6] | Y. Wan, J. Qin, Q. Ma, W. Fu, S. Wang, Multi-agent drl-based data-driven approach for pevs charging/discharging scheduling in smart grid, J. Franklin Inst., 359 (2022), 1747–1767. https://doi.org/10.1016/j.jfranklin.2022.01.016 doi: 10.1016/j.jfranklin.2022.01.016 |
[7] | X. Zeng, P. Yi, Y. Hong, Distributed continuous-time algorithm for robust resource allocation problems using output feedback, in 2017 American Control Conference (ACC), (2017), 4643–4648. https://doi.org/10.23919/ACC.2017.7963672 |
[8] | K. I. Tsianos, S. Lawlor, M. G. Rabbat, Consensus-based distributed optimization: Practical issues and applications in large-scale machine learning, in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), (2012), 1543–1550. https://doi.org/10.1109/Allerton.2012.6483403 |
[9] | T. M. D. Tran, A. Y. Kibangou, Distributed estimation of laplacian eigenvalues via constrained consensus optimization problems, Syst. Control. Lett., 80 (2015), 56–62. https://doi.org/10.1016/j.sysconle.2015.04.001 doi: 10.1016/j.sysconle.2015.04.001 |
[10] | Q. Lü, H. Li, Event-triggered discrete-time distributed consensus optimization over time-varying graphs, Complexity, 2017 (2017), 1–12. https://doi.org/10.1155/2017/5385708 doi: 10.1155/2017/5385708 |
[11] | X. Shi, J. Cao, W. Huang, Distributed parametric consensus optimization with an application to model predictive consensus problem, IEEE Trans. Cybern., 48 (2017), 2024–2035. https://doi.org/10.1109/TCYB.2017.2726102 doi: 10.1109/TCYB.2017.2726102 |
[12] | G. Wang, Distributed control of higher-order nonlinear multi-agent systems with unknown non-identical control directions under general directed graphs, Automatica, 110 (2019), 108559. https://doi.org/10.1016/j.automatica.2019.108559 doi: 10.1016/j.automatica.2019.108559 |
[13] | T. Guo, J. Han, C. Zhou, J. Zhou, Multi-leader-follower group consensus of stochastic time-delay multi-agent systems subject to markov switching topology, Math. Biosci. Eng., 19 (2022), 7504–7520. https://doi.org/10.3934/mbe.2022353 doi: 10.3934/mbe.2022353 |
[14] | C. Sun, M. Ye, G. Hu, Distributed time-varying quadratic optimization for multiple agents under undirected graphs, IEEE Trans. Autom. Control, 62 (2017), 3687–3694. https://doi.org/10.1109/TAC.2017.2673240 doi: 10.1109/TAC.2017.2673240 |
[15] | Z. Li, Z. Ding, J. Sun, Z. Li, Distributed adaptive convex optimization on directed graphs via continuous-time algorithms, IEEE Trans. Autom. Control, 63 (2017), 1434–1441. https://doi.org/10.1109/TAC.2017.2750103 doi: 10.1109/TAC.2017.2750103 |
[16] | S. Yang, Q. Liu, J. Wang, A multi-agent system with a proportional-integral protocol for distributed constrained optimization, IEEE Trans. Autom. Control, 62 (2016), 3461–3467. https://doi.org/10.1109/TAC.2016.2610945 doi: 10.1109/TAC.2016.2610945 |
[17] | M. Hong, M. Razaviyayn, J. Lee, Gradient primal-dual algorithm converges to second-order stationary solution for nonconvex distributed optimization over networks, in Proceedings of the 35th International Conference on Machine Learning, (2018), 2009–2018. |
[18] | D. Jakovetić, N. Krejić, N. K. Jerinkić, A hessian inversion-free exact second order method for distributed consensus optimization, IEEE Trans. Signal Inf. Process., 8 (2022), 755–770. https://doi.org/10.1109/TSIPN.2022.3203860 doi: 10.1109/TSIPN.2022.3203860 |
[19] | Q. Liu, J. Wang, A second-order multi-agent network for bound-constrained distributed optimization, IEEE Trans. Autom. Control, 60 (2015), 3310–3315. https://doi.org/10.1109/TAC.2015.2416927 doi: 10.1109/TAC.2015.2416927 |
[20] | P. Lin, W. Ren, J. A. Farrell, Distributed continuous-time optimization: nonuniform gradient gains, finite-time convergence, and convex constraint set, IEEE Trans. Autom. Control, 62 (2016), 2239–2253. https://doi.org/10.1109/TAC.2016.2604324 doi: 10.1109/TAC.2016.2604324 |
[21] | J. Lu, C. Y. Tang, Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case, IEEE Trans. Autom. Control, 57 (2012), 2348–2354. https://doi.org/10.1109/TAC.2012.2184199 doi: 10.1109/TAC.2012.2184199 |
[22] | S. Rahili, W. Ren, Distributed continuous-time convex optimization with time-varying cost functions, IEEE Trans. Autom. Control, 62 (2016), 1590–1605. https://doi.org/10.1109/TAC.2016.2593899 doi: 10.1109/TAC.2016.2593899 |
[23] | Z. Feng, G. Hu, C. G. Cassandras, Finite-time distributed convex optimization for continuous-time multiagent systems with disturbance rejection, IEEE Trans. Control. Netw. Syst., 7 (2019), 686–698. https://doi.org/10.1109/TCNS.2019.2939642 doi: 10.1109/TCNS.2019.2939642 |
[24] | Y. Tang, K. Zhu, Optimal consensus for uncertain high-order multi-agent systems by output feedback, Int. J. Robust Nonlin. Control, 32 (2022), 2084–2099. https://doi.org/10.1002/rnc.5928 doi: 10.1002/rnc.5928 |
[25] | X. Wang, G. Wang, S. Li, Distributed finite-time optimization for integrator chain multiagent systems with disturbances, IEEE Trans. Autom. Control, 65 (2020), 5296–5311. https://doi.org/10.1109/TAC.2020.2979274 doi: 10.1109/TAC.2020.2979274 |
[26] | G. Li, X. Wang, S. Li, Finite-time distributed approximate optimization algorithms of higher order multiagent systems via penalty-function-based method, IEEE Trans. Syst. Man Cybern., 52 (2022), 6174–6182. https://doi.org/10.1109/TSMC.2021.3138109 doi: 10.1109/TSMC.2021.3138109 |
[27] | L. Wang, J. Dong, C. Xi, Event-triggered adaptive consensus for fuzzy output-constrained multi-agent systems with observers, J. Franklin Inst., 357 (2020), 82–105. https://doi.org/10.1016/j.jfranklin.2019.09.033 doi: 10.1016/j.jfranklin.2019.09.033 |
[28] | M. Shahvali, M. B. Naghibi-Sistani, J. Askari, Distributed adaptive dynamic event-based consensus control for nonlinear uncertain multi-agent systems, Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng., 236 (2022), 1630–1648. https://doi.org/10.1177/09596518221105669 doi: 10.1177/09596518221105669 |
[29] | Y. Wu, T. Xu, H. Fang, Command filtered adaptive neural tracking control of uncertain nonlinear time-delay systems with asymmetric time-varying full state constraints and actuator saturation, Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng., 235 (2021), 1139–1153. https://doi.org/10.1177/0959651820975265 doi: 10.1177/0959651820975265 |
[30] | B. Beigzadehnoe, Z. Rahmani, A. Khosravi, B. Rezaie, Control of interconnected systems with sensor delay based on decentralized adaptive neural dynamic surface method, Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng., 235 (2021), 751–768. https://doi.org/10.1177/0959651820966529 doi: 10.1177/0959651820966529 |
[31] | N. Zhang, J. Xia, T. Liu, C. Yan, X. Wang, Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults, Math. Biosci. Eng., 20 (2023), 7761–7783. https://doi.org/10.3934/mbe.2023335 doi: 10.3934/mbe.2023335 |
[32] | K. P. Tee, S. S. Ge, E. H. Tay, Barrier lyapunov functions for the control of output-constrained nonlinear systems, Automatica, 45 (2009), 918–927. https://doi.org/10.1016/j.automatica.2008.11.017 doi: 10.1016/j.automatica.2008.11.017 |
[33] | K. Zhao, Y. Song, T. Ma, L. He, Prescribed performance control of uncertain euler–lagrange systems subject to full-state constraints, IEEE Trans. Neural Netw. Learn. Syst., 29 (2017), 3478–3489. https://doi.org/10.1109/TNNLS.2017.2727223 doi: 10.1109/TNNLS.2017.2727223 |
[34] | L. Chen, Asymmetric prescribed performance-barrier lyapunov function for the adaptive dynamic surface control of unknown pure-feedback nonlinear switched systems with output constraints, Int. J. Adapt. Control Signal Process., 32 (2018), 1417–1439. https://doi.org/10.1002/acs.2921 doi: 10.1002/acs.2921 |
[35] | J. Ni, P. Shi, Adaptive neural network fixed-time leader–follower consensus for multiagent systems with constraints and disturbances, IEEE Trans. Cybern., 51 (2020), 1835–1848. https://doi.org/10.1109/TCYB.2020.2967995 doi: 10.1109/TCYB.2020.2967995 |
[36] | M. Zamanian, F. Abdollahi, S. K. Yadavar Nikravesh, Finite-time consensus of heterogeneous unknown nonlinear multi-agent systems with external disturbances via event-triggered control, J. Vib. Control, 27 (2021), 1806–1823. https://doi.org/10.1177/1077546320948347 doi: 10.1177/1077546320948347 |
[37] | J. Yuan, T. Chen, Observer-based adaptive neural network dynamic surface bipartite containment control for switched fractional order multi-agent systems, Int. J. Adapt. Control Signal Process., 36 (2022), 1619–1646. https://doi.org/10.1002/acs.3413 doi: 10.1002/acs.3413 |
[38] | T. Han, W. X. Zheng, Bipartite output consensus for heterogeneous multi-agent systems via output regulation approach, IEEE Trans. Circuits-II, 68 (2020), 281–285. https://doi.org/10.1109/TCSII.2020.2993057 doi: 10.1109/TCSII.2020.2993057 |
[39] | T. Han, Z. H. Guan, B. Xiao, H. Yan, Bipartite average tracking for multi-agent systems with disturbances: Finite-time and fixed-time convergence, IEEE Trans. Circuits Syst. I: Regular Papers, 68 (2021), 4393–4402. https://doi.org/10.1109/TCSI.2021.3104933 doi: 10.1109/TCSI.2021.3104933 |
[40] | Q. Ma, Q. Meng, S. Xu, Distributed optimization for uncertain high-order nonlinear multiagent systems via dynamic gain approach, IEEE Trans. Syst. Man Cybern., 53 (2023), 4351–4357. https://doi.org/10.1109/TSMC.2023.3247456 doi: 10.1109/TSMC.2023.3247456 |
[41] | X. He, T. Huang, J. Yu, C. Li, Y. Zhang, A continuous-time algorithm for distributed optimization based on multiagent networks, IEEE Trans. Syst. Man Cybern., 49 (2019), 2700–2709. https://doi.org/10.1109/TSMC.2017.2780194 doi: 10.1109/TSMC.2017.2780194 |
[42] | F. Shojaei, M. M. Arefi, A. Khayatian, H. R. Karimi, Observer-based fuzzy adaptive dynamic surface control of uncertain nonstrict feedback systems with unknown control direction and unknown dead-zone, IEEE Trans. Syst. Man Cybern., 49 (2018), 2340–2351. https://doi.org/10.1109/TSMC.2018.2852725 doi: 10.1109/TSMC.2018.2852725 |
[43] | X. M. Sun, W. Wang, Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics, Automatica, 48 (2012), 2359–2364. https://doi.org/10.1016/j.automatica.2012.06.056 doi: 10.1016/j.automatica.2012.06.056 |
[44] | B. Gharesifard, J. Cortés, Distributed continuous-time convex optimization on weight-balanced digraphs, IEEE Trans. Autom. Control, 59 (2013), 781–786. https://doi.org/10.1109/TAC.2013.2278132 doi: 10.1109/TAC.2013.2278132 |
[45] | Y. Liu, Q. Zhu, N. Zhao, L. Wang, Adaptive fuzzy backstepping control for nonstrict feedback nonlinear systems with time-varying state constraints and backlash-like hysteresis, Inf. Sci., 574 (2021), 606–624. https://doi.org/10.1016/j.ins.2021.07.068 doi: 10.1016/j.ins.2021.07.068 |
[46] | Z. Li, Z. Duan, Cooperative Control of Multi-Agent Systems: A Consensus Region Approach, CRC press, Florida, 2017. https://doi.org/10.1201/b17571 |
[47] | B. Chen, X. Liu, K. Liu, C. Lin, Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica, 45 (2009), 1530–1535. https://doi.org/10.1016/j.automatica.2009.02.025 doi: 10.1016/j.automatica.2009.02.025 |
[48] | K. Li, Y. Li, Adaptive neural network finite-time dynamic surface control for nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 32 (2020), 5688–5697. https://doi.org/10.1109/TNNLS.2020.3027335 doi: 10.1109/TNNLS.2020.3027335 |
[49] | D. Wang, J. Huang, Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form, IEEE Trans. Neural Netw., 16 (2005), 195–202. https://doi.org/10.1109/TNN.2004.839354 doi: 10.1109/TNN.2004.839354 |
[50] | J. Yu, P. Shi, W. Dong, B. Chen, C. Lin, Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 640–645. https://doi.org/10.1109/TNNLS.2014.2316289 doi: 10.1109/TNNLS.2014.2316289 |
[51] | X. Zhao, X. Wang, S. Zhang, G. Zong, Adaptive neural backstepping control design for a class of nonsmooth nonlinear systems, IEEE Trans. Syst. Man Cybern., 49 (2018), 1820–1831. https://doi.org/10.1109/TSMC.2018.2875947 doi: 10.1109/TSMC.2018.2875947 |
[52] | Y. F. Gao, X. M. Sun, C. Wen, W. Wang, Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation, IEEE Trans. Autom. Control, 62 (2016), 2498–2504. https://doi.org/10.1109/TAC.2016.2600340 doi: 10.1109/TAC.2016.2600340 |