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Abstract: This article investigates a penalty-based distributed optimization algorithm of bipartite
containment control for high-order nonlinear uncertain multi-agent systems with state constraints. The
proposed method addresses the distributed optimization problem by designing a penalty function in
the form of a quadratic function, which is the sum of the global objective function and the consensus
constraint. Moreover, the observer is presented to address the unmeasurable state of each agent. Radial
basis function neural networks (RBFNN) are employed to approximate the unknown nonlinear functions.
Then, by integrating RBFNN and dynamic surface control (DSC) techniques, an adaptive backstepping
controller based on the barrier Lyapunov function (BLF) is proposed. Finally, the effectiveness of
the suggested control strategy is verified under the condition that the state constraints are not broken.
Simulation results indicate that the output trajectories of all agents remain within the upper and lower
boundaries, converging asymptotically to the global optimal signal.

Keywords: multi-agent systems; distributed optimization; bipartite containment control; state
constraints; dynamic surface control

1. Introduction

Recently, due to its remarkable computational performance and scalability, distributed convex
optimization has garnered significant attention from researchers [1, 2]. Distributed convex opti-
mization algorithms effectively address optimization problems in complex and large-scale network
environments by integrating traditional optimization theories with recently developed theoretical
techniques for coordinated control of multi-agent systems (MASs) [3, 4]. Compared to centralized
optimization, distributed convex optimization offers improved scalability, robustness, privacy and
flexibility, making it widely applicable in various fields, such as economic dispatching of smart grid
systems [5, 6], resource assignment for sensor networks [7], large-scale machine learning [8] and
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distributed source location and estimation [9].
In distributed convex optimization, agents are assigned local objective functions, and the global

objective function is constructed by aggregating these local objective functions. Through continuous
information exchange in the communication network, the optimal solution to the global objective
function is eventually obtained. As an extension of the consensus problem in MASs, the consensus
problem in distributed optimization has garnered increased attention from researchers. In engineering
practices, designing distributed protocols to achieve both consensus and performance optimization in
MASs is highly reasonable. In UAV formation control, aircraft should consume a small amount of fuel
when the speed and attitude are consistent. Discrete-time distributed consensus optimization algorithms
for MASs have been studied in [10, 11]. However, to meet the requirements of practical applications,
research on a distributed consensus in continuous-time MASs [12, 13] is more prevalent.

Actually, most distributed optimization problems can be reformulated as optimization problems with
consensus constraints. For example, in [14], a distributed consensus optimization algorithm based on a
penalty function was proposed for a first-order system. For first-order [15,16] and second-order [17–19]
MASs, several distributed optimization algorithms have been presented. For instance, a non-uniform
gradient gain was proposed in [20], and a continuous-time zero-gradient-sum algorithm was designed
in [21]. However, in comparison to the articles [20–22], a more concise distributed optimization
algorithm based on the penalty function was proposed in [23], which avoided the involvement of
distributed estimations.

The objective of this paper is to devise a distributed controller that facilitates the collaborative
convergence of all agents towards the optimal solution. For high-order MASs, there are various control
methods for solving distributed optimization. For example, a distributed output feedback integral
controller is proposed to address the output consensus problem for the distributed optimization in [24].
A projection-based second-order control algorithm was proposed in [19]. A Non-smooth embedded
control framework was designed in [25]. In [26], the penalty function method and the additive power
integrator technique were combined. However, when the states are unmeasurable, the aforementioned
distributed optimization problem cannot be solved. Therefore, the unmeasurable system states highly
affect the running of high-order nonlinear MASs. Compared to other control methods, adaptive control
is widely used and exhibits a robustness to system uncertainties.

As suggested by the general approximation theory, radial basis function neural networks (RBFNN) and
fuzzy logic systems are applicable in addressing the uncertainty of nonlinear systems. In [27], a fuzzy state
observer based on radial basis functions was presented to estimate unavailability states. In [28], for a class
of nonlinear MASs distributed control with strict feedback, adaptive neural networks were employed to
approximate uncertain states. Moreover, RBFNN and backstepping techniques were combined to construct
an adaptive controller in [29]. Dynamic surface control (DSC) was employed to avoid the complexity
explosion in the backstepping method [29–31]. For high-order nonlinear uncertain MASs, the utilization
of the adaptive neural network backstepping control method to solve distributed optimization problems
is relatively rare. Therefore, designing an adaptive controller to address the distributed optimization
problem for high-order nonlinear MASs with unknown states is a meaningful task.

Furthermore, these above protocols are designed with little regard to the control performance and
state constraints, which is impractical in systems with either limited resources or actuators. As a matter
of fact, the problem of being state-constrained is common in practical systems. The barrier Lyapunov
function (BLF) method has been presented by domestic and foreign scholars [32], keeping the system
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state within constraints. In [33], the employment of BLF ensured the boundedness of the entire system
state and constrained all closed-loop signals within a compact set. In [34], the log-asymmetric BLF
was proposed, combined with the DSC technique and an adaptive backstepping controller is designed
to solve the constraints. With the extension of the nonlinear system with state constraints, the BLF is
applied more widely. However, distributed optimization for high-order nonlinear uncertain MASs with
state constraints have not been studied, which provides the research motivation of this paper.

Based on previous observations and discussions, this paper focuses on investigating the distributed
optimization problem of high-order MASs with state constraints by using the penalty function method.
First, by integrating RBFNN and DSC techniques, an adaptive backstepping controller is proposed.
From the second step, the introduction of the BLF guarantees the preservation of state constraints. The
unknown state of the system is observed by a state observer. The key research contributions of the
article are outlined below in comparison to earlier works.

1) Differing from the adaptive controller designed only for the consensus problem [35, 36] and the
containment problem [37], we take the distributed optimization problem into account to enhance
the system performance. Besides, compared to the bipartite consensus control studied in [38, 39],
we introduce two virtual leaders to achieve a bipartite containment effect. The trajectory of the
optimal solution in the distributed optimization remains within the convex hulls delineated by the
upper and lower reference signals.

2) Unlike [40] and [26], in which the distributed optimization for high-order nonlinear MASs is
studied, in this paper, for purpose of meeting the practical requests of the system, we consider
state constraints in distributed optimization problems. The introduction of the BLF guarantees
the preservation of state constraints. Distributed optimization for high-order nonlinear uncertain
MASs with state constraints have not been studied before.

3) In contrast to [14, 15, 41], in which the distributed optimization algorithm is proposed for the
fist-order nonlinear MASs, in this paper, we focus on the high-order MASs with unknown variables,
which have an increased engineering application value. Combined with RBFNN technology, the
observer is designed to estimate the states of each agent.

The structure of the remainder of this paper is presented below. The second part introduces some
reserve knowledge, such as the basic theory of the multi-agent and distributed optimization principle.
In Section 3, an adaptive observer is prepared and we create a BLF-based adaptive backstepping
controller, and a DSC technique is utilized to update virtual control law constantly. In Section 4,
simulations are carried out to verify the validity of the controller. The final section summarizes the
whole text and draws some conclusions.

2. Preliminaries

2.1. Graph theory

Based on the information interaction between multiple agents, we use digraph G =
(
w, χ, Ā

)
to repre-

sent the relationship between agents. w = {n1, ..., nN} represents a set of node and χ =
{(

ni, n j

)}
∈ w × w

is defined as a set of edges. Information can be transferred between the agent i and agent j. There exists

Ni =

{
j
∣∣∣∣(ni, n j

)
∈ χ

}
, which expresses the set of neighboring agents for agents i. Ā =

{
ai j

}
∈ RN×N is
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the adjacency matrix and the element ai j of it has two possible values. When
(
ni, n j

)
∈ χ, ai j = 1; in

other cases, ai j = 0. It is presumed that ai j = 0. Then, we design D = diag (d1, ..., dN) as the diagonal
matrix, di =

∑
j∈n=Ni

ai j. The Laplacian matrix can be defined as L = D − Ā.

2.2. Nonlinear multi-agent system

Consider the following nonlinear high-order multi-agent system:
ẋi,p = xi,p+1 + hi,p(xi,1, · · · , xi,p)
ẋi,n = ui(t) + hi,n(xi,1, · · · , xi,n)
yi = xi,1

(2.1)

where yi represents the system output and hi,p (·) , (p = 1, 2, ..., n − 1) are unknown nonlinear functions.
The control input is defined as ui. Xi,p = (xi,1, · · · , xi,p)T ∈ Rp is defined as the system state vectors.
Rewrite the system (2.1) into the form below:

Ẋi,n = AiXi,n + Tiyi +

n∑
p=1

Bi,p

[
hi,p(Xi,p)

]
+ Biui (2.2)

where Hurwitz matrix Ai =


−εi,1
... In−1

−εi,n 0 ··· 0

, Ti =

 Ti,1

...
Ti,n

, Bi =

 0
...
1

, Bi,p =


0
...
1
...
0

. QT
i = Qi and PT

i = Pi are

predetermined positive matrix,
AT

i Pi + PiAi = −2Qi. (2.3)

2.3. Barrier lyapunov function

In this paper, consider the BLF of the ith agent as follows:

Vi,1 =
1
2

log
ki,b1

2

ki,b1
2
− si,1

2
(2.4)

where ki,b1 is the constraint on si,1 and
∣∣∣si,1

∣∣∣ ≤ ki,b1.

Lemma 1. ( [42, 43]) For any given positive constant ki,b1 and si,1 satisfying
∣∣∣si,1

∣∣∣ ≤ ki,b1, we have

log
ki,b1

2

ki,b1
2
− si,1

2
<

si,1
2

ki,b1
2
− si,1

2
. (2.5)

2.4. Problem formulation

To facilitate subsequent calculations, we refer to the following lemmas.

Lemma 2. ( [44]) For an undirected connected communication topology, distributed optimization
problems can be

min
x∈RNm

N∑
i=1

fi (xi) , s.t. (L ⊗ Im) x = 0Nm (2.6)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17296–17323.



17300

where x = [x1
T , · · ·, xN

T ]T . Utilizing the principles of the penalty function theory, the approximate
optimization problem is formulated as follows:

min
x∈RNm

N∑
i=1

fi (xi) +
1
2
ϑxT (L ⊗ Im) x (2.7)

where ϑ > 0 is a constant penalty parameter and 1
2ϑxT (L ⊗ Im) x is the penalty term for violating the

consensus constraint L ⊗ Imx = 0Nm.

Lemma 3. ( [45]) The inequality relationship shown below is valid

xT y ≤
na

a
∥x∥a +

1
bnb ∥y∥

b (2.8)

where x, y ∈ Rn, a, b > 1, n > 0, and (a − 1) (b − 1) = 1.

The distributed optimization problem is the subject of this paper, so for N agents, the global objective
function f is the sum of strictly convex local objective functions fi:

f
(
xi,1

)
=

N∑
i=1

fi(xi,1). (2.9)

Define x1 =
[
x1,1 x2,1 · · · xN,1

]T . According to [46], 1N is eigenvector for eigenvalue 0 of Laplacian
matrix; for some α ∈ R, if x1 = α · 1N , we obtain

Lx1 = 0 (2.10)

xT
1 Lx1 = 0. (2.11)

It should be noted that in this paper x ∈ RN , therefore, based on Lemma 2, we construct the following
penalty function:

P(x1) =
N∑

i=1

fi(xi,1) + xT
1 Lx1. (2.12)

Our target is as follows (
x∗1,1, . . . , x

∗
N,1

)
= arg min

(x1,1,...,xN,1)
P(x1). (2.13)

The local cost function of the ith agent fi(xi,1) can be designed as:

fi
(
xi,1

)
= ai,1

(
xi,1 − xd1

)2
+ ai,2

(
xi,1 − xd2

)2
+ c

= aix2
i,1 + bixi,1 + ci

(2.14)

where xd1 and xd2 are the upper and lower bound of the trajectory of motion, ai = ai,1 + ai,2, ai > 0,
bi = −2ai,1xd1 − 2ai,2xd2, ci = ai,1xd1

2 + ai,2xd2
2 + c and ai, c are scalars.

Remark 1. Based on the strong convexity of the quadratic function, the global objective function
designed in this paper is composed of quadratic functions. To solve the optimization problem of the
bipartite containment control, it involves multiple virtual leaders. By constructing a penalty function,
all followers are converged to the optimal solution of the distributed optimization problem, which lies
within the convex hull of the trajectories of each virtual leader and their opposite trajectories.
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Control objectives: The purpose of this paper is to design a distributed optimization controller, so
that the optimal solution for the trajectory moving between the upper and lower bounds of the virtual
leaders under state constraints can be found.

3. Main results

3.1. Observer design

Assumption 1. The unknown functions hi,p

(
Xi,p

)
, (i = 1, · · · , n) can be shown as follows:

hi,p

(
Xi,p|θi,p

)
= θTi,pΨi,p

(
Xi,p

)
, 1 ≤ i ≤ n (3.1)

in which Ψi,p

(
Xi,p

)
delegates the Gaussian basis function vector, and θi,p represents the ideal constant

vector.

In this paper, an observer is placed to estimate the agent’s unmeasurable states, since the assumption
that the state variables given in (2.2) are unavailable. The observer is presented as follows:

˙̂Xi,n = AiX̂i,n + Tiyi +

n∑
p=1

Bi,p

[
ĥi,p

(
X̂i,p|θi,p

)]
+ Biui

ŷi = CiX̂i,n

(3.2)

where Ci = [1 . . . 0 . . . 0], X̂i,p =
(
x̂i,1, x̂i,2, ..., x̂i,p

)T
are the estimated values of Xi,p.

Let ei = Xi,n − X̂i,n be state observation errors of system (2.1). Combining Eqs (2.2) and (3.2), we get

ėi =Aiei +

n∑
p=1

Bi,p

[
hi,p

(
X̂i,p

)
− ĥi,p

(
X̂i,p

∣∣∣θi,p ) + ∆hi,p

]
(3.3)

where ∆hi,p = hi,p

(
Xi,p

)
− hi,p

(
X̂i,p

)
.

By Assumption 1, we can obtain

ĥi,p

(
X̂i,p

∣∣∣θi,p ) = θTi,pΨi,p

(
X̂i,p

)
. (3.4)

The optimal parameters are set as

θ∗i,p = arg min
θi,p∈Ωi,p

[
supX̂i,p∈Ui,p

∣∣∣∣ĥi,l

(
X̂i,p

∣∣∣θi,p ) − hi,p

(
X̂i,p

)∣∣∣∣] (3.5)

where 1 ≤ p ≤ n, Ωi,p and Ui,p are tight regions for θi,p, Xi,p and X̂i,p.
Define errors of the optimal approximation ξi,p and parameter estimation θ̃i,p as

ξi,p = hi,p

(
X̂i,p

)
− ĥi,p

(
X̂i,p

∣∣∣θ∗i,p )
θ̃i,p = θ

∗
i,p − θi,p.

(3.6)

Assumption 2. ( [47, 48]) The boundedness of the optimal approximation errors is ensured by the
existence of positive constants ξi0, such that

∣∣∣ξi,p∣∣∣ ≤ ξi0.
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Assumption 3. The set of constants γi satisfies the following relationship∣∣∣∣hi,p

(
Xi,p

)
− hi,p

(
X̂i,p

)∣∣∣∣ ≤ γi,p

∥∥∥∥Xi,p − X̂i,p

∥∥∥∥ . (3.7)

From Eqs (3.2) and (3.3), we obtain

ėi = Aiei +

n∑
p=1

Bi,p

[
ξi,p + ∆hi,p + θ̃

T
i,pΨi,p

(
X̂i,p

)]
= Aiei + ∆hi + ξi +

n∑
p=1

Bi,p

[̃
θTi,pΨi,p

(
X̂i,p

)] (3.8)

where ξi =
[
ξi,1, ..., ξi,n

]T , ∆hi =
[
∆hi,1, ...,∆hi,n

]T .
Constructing the Lyapunov function:

V0 =

N∑
i=1

Vi,0 =

N∑
i=1

1
2

eT
i Piei.

Then, by derivation, we have

V̇0 ≤

N∑
i=1

{1
2

eT
i

(
PiAT

i + AiPi

)
ei + eT

i Pi (ξi + ∆hi) +
n∑

p=1

eT
i PiBi,p

[̃
θTi,pΨi,p

(
X̂i,p

)]}
≤

N∑
i=1

{
−eT

i Qiei + eT
i Pi (ξi + ∆hi) + eT

i Pi

n∑
p=1

Bi,pθ̃
T
i,pΨi,p

(
X̂i,p

)}
.

(3.9)

According to Lemma 3 and Assumption 3, we obtain

eT
i Pi (ξi + ∆hi) ≤

∣∣∣eT
i Piξi

∣∣∣ + ∣∣∣eT
i Pi∆hi

∣∣∣
≤ ∥ei∥

2 +
1
2
∥Piξi∥

2 +
1
2
∥Pi∥

2
n∑

p=1

∣∣∣∆hi,p

∣∣∣2
≤ ∥ei∥

2 +
1
2
∥ei∥

2
∥Pi∥

2
n∑

p=1

γ2
i,p +

1
2
∥Piξi∥

2

≤ ∥ei∥
2

1 + 1
2
∥Pi∥

2
n∑

p=1

γi,p
2

 + 1
2
∥Piξi∥

2

(3.10)

and

eT
i Pi

n∑
p=1

Bi,pθ̃
T
i,pΨi,p

(
X̂i,p

)
≤

1
2

eT
i PT

i Piei +
1
2

n∑
p=1

θ̃Ti,pΨi,p

(
X̂i,p

)
ΨT

i,p

(
X̂i,p

)
θ̃i,p

≤
1
2
λ2

i,max (Pi) ∥ei∥
2 +

1
2

n∑
p=1

θ̃Ti,pθ̃i,p.

(3.11)
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Due to the positive definite matrix Pi, the maximum eigenvalue is proposed as λi,max(Pi). Based on
Eqs (3.9), (3.10) and (3.11), we have

V̇0 ≤

N∑
i=1

−qi,0∥ei∥
2 +

1
2
∥Piξi∥

2 +
1
2

n∑
p=1

θ̃Ti,pθ̃i,p

 (3.12)

where 0 < Ψi,p (·)ΨT
i,p (·) ≤ 1 and qi,0 = λi,min (Qi) −

(
1 + 1

2∥Pi∥
2

n∑
p=1
γ2

i,p +
1
2λ

2
i,max (Pi)

)
.

Then, (3.12) turns to

V̇0 ≤ −q0∥e∥2 +
1
2
∥Pξ∥2 +

N∑
i=1

n∑
p=1

1
2
θ̃Ti,pθ̃i,p (3.13)

where q0 =
∑N

i=1 qi,0.

3.2. Controller design

Theorem 1. For systems (2.1) where Assumptions 1–3 hold, combining observer (3.2), virtual control
laws (3.36), (3.48) and (3.60), adaptive laws (3.37), (3.49), (3.61), (3.70) and control input (3.69)
together, signals xi,1 which converge to the distributed optimization problem’s optimal solution x∗1 ,
remain semi-global uniformly ultimately bounded (SGUUB) in the closed-loop system.

Define the virtual control laws
x∗i,2 = −ci,1[2ai,1(xi,1 − xd1) + 2ai,2(xi,1 − xd2) +

∑
j∈Ni

ai j(xi,1 − x j,1)] − θTi,1Ψi,1(X̂i,1)

x∗i,3 = −ci,2si,2 −
(

1
2δ1
+ 5

2

)
si,2 − θ

T
i,2Ψi,2(X̂i,2) +

x∗i,2−vi,2

λi,2

x∗i,m+1 = −ci,msi,m − ( 1
2δm
+ 5

2 )si,m − θ
T
i,mΨi,m(X̂i,m) +

x∗i,m−vi,m

λi,m

(3.14)

adaptive laws
θ̇i,1 = σi,1Ψi,1(X̂i,1)[2ai,1(xi,1 − xd1) + 2ai,2(xi,1 − xd2) +

∑
j∈Ni

ai j(xi,1 − x j,1)] − ρi,1θi,1

θ̇i,2 = σi,2δ1Ψi,2(X̂i,2)si,2 − ρi,2θi,2

θ̇i,m = σi,mδmΨi,m(X̂i,m)si,m − ρi,mθi,m

θ̇i,n = σi,nδnΨi,n(X̂i,n)si,n − ρi,nθi,n

(3.15)

control input

ui = −ci,nsi,n −

(
1

2δn
+

3
2

)
si,n − θ

T
i,nΨi,n(X̂i,n) +

x∗i,n − vi,n

λi,n
(3.16)

where ci,1 = 3 +
γ 2

i,1

2 , c > 0, ρ > 0, σ > 0, δ = 1
k2

i,b−s2
i
, |si| ≤ ki,b.

Proof. Specify the error variables in the following manner:

si,1 = xi,1 − x∗i,1
si,p = x̂i,p − vi,p

wi,p = vi,p − x∗i,p p = 2, · · · , n
(3.17)
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where si,p represents the tracking error, vi,p is a state variable that can be obtained using a filter with the
virtual controller x∗i,p, wi,p denotes the error between vi,p and x∗i,p, and x̂i,p is the estimation of xi,p.

Through the DSC technique, this paper constructs the following filter

λi,pv̇i,p + vi,p = x∗i,p, vi,p(0) = x∗i,p(0) (3.18)

where p is the order of the multi-agent model and 2 ≤ p ≤ n. Combining (3.17) with (3.18), we have

ẇi,p = v̇i,p − ẋ∗i,p

= −
vi,p − x∗i,p
λi,p

− ẋ∗i,p

= −
wi,p

λi,p
+ Bi,p

(3.19)

where λi,p is the parameter we set. Bi,p = −ẋ∗i,p. According to [49] and [50], there exist constants
Mi,p > 0, |Bi,p| ≤ Mi,p.

Step 1. First, the gradient of the penalty function (2.12) is calculated as follows

∂P(x1)
∂x1

= vec
(
∂ fi

(
xi,1(t)

)
∂xi,1

)
+ Lx1 (3.20)

where vec
(
∂ fi(xi,1(t))
∂xi,1

)
is a column vector. To find the extremum of the penalty function, we need to locate

the point where its derivative is zero

∂P(x∗1)
∂x∗1

= 0.

Combining (2.12) and (3.20), we obtain:

∂ fi(x∗i,1(t))

∂x∗i,1
+

∑
j∈Ni

ai j(x∗i,1 − x∗j,1) = 0. (3.21)

According to (2.14) and (3.21),we have

2ai,1
(
x∗i − xd1

)
+ 2ai,2

(
x∗i − xd2

)
+

∑
j∈Ni

ai j(x∗i,1 − x∗j,1) = 0. (3.22)

Then according to (3.17) and (3.22), we have

∂P(x1)
∂xi,1

=
∂ fi

(
xi,1(t)

)
∂xi,1

+
∑
j∈Ni

ai j(xi,1 − x j,1)

=2ai,1
(
xi,1 − xd1

)
+ 2ai,2

(
xi,1 − xd2

)
+

∑
j∈Ni

ai j(xi,1 − x j,1)

− 2ai,1
(
x∗i − xd1

)
− 2ai,2

(
x∗i − xd2

)
+

∑
j∈Ni

ai j(x∗i,1 − x∗j,1)

=2aisi,1 +
∑
j∈Ni

ai j(si,1 − s j,1).

(3.23)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17296–17323.



17305

Let s1 = [s1,1 · · · sN,1]T ,A = diag{2ai}, H = A + L. According to (3.23), we have

∂P(x1)
∂x1

= Hs1.

Construct the following Lyapunov function:

V1 =V0 +
1
2

(
∂P(x1)
∂x1

)T

H−1
(
∂P(x1)
∂x1

)
+

N∑
i=1

1
σi,1
θ̃Ti,1θ̃i,1

=V0 +
1
2

sT
1 Hs1 +

N∑
i=1

1
σi,1
θ̃Ti,1θ̃i,1

(3.24)

where s1 = [s1,1 · · · sN,1]T and σi,1 are the parameter we set. According to (2.1), (3.2) and (3.17), we have

ṡi,1 = x̂i,2 + θ
T
i,1Ψi,1 + θ̃

T
i,1Ψi,1 + ∆hi,1 + ξi,1 + ei,2. (3.25)

Then, according to (3.24) and (3.25), we can obtain

V̇1 =V̇0 + sT
1 Hṡ1 +

N∑
i=1

1
σi,1
θ̃Ti,1

˙̃θi,1

=V̇0 + sT
1 H

(
x̂2 + vec

(
θTi,1Ψi,1

)
+ vec

(̃
θTi,1Ψi,1

)
+ ∆h1 + ξ1 + e2

)
+

N∑
i=1

1
σi,1
θ̃Ti,1

˙̃θi,1

=V̇0 + sT
1 H

(
s2 + w2 + x∗2 + vec

(
θTi,1Ψi,1

)
+ vec

(̃
θTi,1Ψi,1

)
+ ∆h1 + ξ1 + e2

)
+

N∑
i=1

1
σi,1
θ̃Ti,1

˙̃θi,1

=V̇0 + sT
1 Hs2 + sT

1 Hw2 + sT
1 H

(
x∗2 + vec

(
θTi,1Ψi,1

)
+ vec

(̃
θTi,1Ψi,1

))
+ sT

1 H∆h1 + sT
1 Hξ1

+ sT
1 He2 −

N∑
i=1

1
σi,1
θ̃Ti,1θ̇i,1

(3.26)

where s2 = [s1,2 · · · sN,2]T , w2 = [w1,2 · · · wN,2]T , x∗2 = [x∗1,2 · · · x∗N,2]T , ∆h1 = [∆h1,1 ∆h2,1 · · · ∆hN,1]T ,
ξ1 = [ξ1,1 ξ2,1 · · · ξN,1]T , e2 = [e1,2 e2,2 · · · eN,2]T , vec

(
θTi,1Ψi,1

)
and vec

(̃
θTi,1Ψi,1

)
are column vectors.

According to Lemma 3, we have

sT
1 Hs2 ≤

1
2

sT
1 HHT s1 +

1
2

sT
2 s2 (3.27)

sT
1 He2 ≤

1
2

sT
1 HHT s1 +

1
2

eT
2 e2 (3.28)

sT
1 Hw2 ≤

1
2

sT
1 HHT s1 +

1
2

wT
2 w2 (3.29)

sT
1 H∆h1 ≤

1
2

sT
1 Hγ1γ

T
1 HT s1 +

1
2

eT
1 e1 (3.30)

sT
1 Hξ1 ≤

1
2

sT
1 HHT s1 +

1
2
ξT

1 ξ1 (3.31)
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where γ1 = diag[γi,1], e1 = [e1,1 e2,1 · · · eN,1]T . Substituting (3.27)–(3.28) into (3.26), V̇1 turns to

V̇1 ≤V̇0 + sT
1 H

(
x∗2 + vec

(
θTi,1Ψi,1

)
+ vec

(̃
θTi,1Ψi,1

))
+

1
2

sT
1 HHT s1 +

1
2

wT
2 w2 +

1
2

sT
1 HHT s1 +

1
2

sT
2 s2

+
1
2

sT
1 Hγ1γ

T
1 HT s1 +

1
2

eT
1 e1 +

1
2

sT
1 HHT s1 +

1
2
ξT

1 ξ1

+
1
2

sT
1 HHT s1 +

1
2

eT
2 e2 −

N∑
i=1

1
σi,1
θ̃Ti,1θ̇i,1.

(3.32)

Due to H = A + L, we can obtain

sT
1 H =

[
2a1s1,1 +

∑
j∈Ni

a1 j(s1,1 − s j,1), · · · , 2aN sN,1 +
∑
j∈Ni

aN j(sN,1 − s j,1)
]
. (3.33)

Then, we have

sT
1 HHT s1 =

(
∂P(x1)
∂x1

)T (
∂P(x1)
∂x1

)
=

N∑
i=1

[
2ai,1

(
xi,1 − xd1

)
+ 2ai,2(xi,1 − xd2) +

∑
j∈Ni

ai j(si,1 − s j,1)
]2 (3.34)

and

sT
1 Hγ1γ

T
1 HT s1 =

N∑
i=1

γ 2
i,1

[
2ai,1

(
xi,1 − xd1

)
+ 2ai,2(xi,1 − xd2) +

∑
j∈Ni

ai j(si,1 − s j,1)
]2

. (3.35)

According to Theorem1,

x∗i,2 = − ci,1[2ai,1(xi,1 − xd1) + 2ai,2(xi,1 − xd2) +
∑
j∈Ni

ai j(xi,1 − x j,1)] − θTi,1Ψi,1(X̂i,1) (3.36)

θ̇i,1 =σi,1Ψi,1(X̂i,1)[2ai,1(xi,1 − xd1) + 2ai,2(xi,1 − xd2) +
∑
j∈Ni

ai j(xi,1 − x j,1)] − ρi,1θi,1. (3.37)

Substituting (3.34)–(3.37) into (3.32), after (3.13), we have

V̇1 ≤ − q0∥e∥2 +
1
2
∥Pξ∥2 +

N∑
i=1

n∑
p=1

1
2
θ̃Ti,pθ̃i,p +

1
2

eT
2 e2 +

1
2

eT
1 e1 +

1
2
ξT

1 ξ1

+

N∑
i=1

ρi,1

σi,1
θ̃Ti,1θi,1 +

1
2

sT
2 s2 +

1
2

wT
2 w2 −

(
∂P(x1)
∂x1

)T (
∂P(x1)
∂x1

)

≤ − q1∥e∥2 + η1 +

N∑
i=1

n∑
p=1

1
2
θ̃Ti,pθ̃i,p +

N∑
i=1

ρi,1

σi,1
θ̃Ti,1θi,1 +

N∑
i=1

1
2

s2
i,2 +

N∑
i=1

1
2

w2
i,2

−
2

λmax
(
H−1)(∂P (x1)

∂x1

)T

H−1
(
∂P (x1)
∂x1

)
(3.38)
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where q1 = q0 − N, η1 =
1
2∥Pξ∥

2 + 1
2ξ

T
1 ξ1, λmax(H−1) is the maximum eigenvalue of the positive matrix H−1.

Step 2. In accordance with (3.17), design si,2 = x̂i,2 − vi,2. By (3.2) and (3.4), we obtain

ṡi,2 = ˙̂xi,2 − v̇i,2

=si,3 + wi,3 + x∗i,3 + εi,2ei,1 + θ̃
T
i,2Ψi,2 + θ

T
i,2Ψi,2 + ξi,2 + ∆hi,2 − v̇i,2.

(3.39)

Starting from this step, according to Lemma 1, we add the state constraints condition and define
δ1 =

1
k2

i,b1−s2
i,2

. Construct the BLF

V2 = V1 +

N∑
i=1

Vi,2

= V1 +
1
2

N∑
i=1

{
δ1s2

i,2 +
1
σi,2
θ̃Ti,2θ̃i,2 + w2

i,2

} (3.40)

where ki,b1 and σi,2 are parameters we set.
Then, we have

V̇2 = V̇1 +

N∑
i=1

{
δ1si,2 ṡi,2 +

1
σi,2
θ̃Ti,2

˙̃θi,2 + wi,2ẇi,2

}
. (3.41)

Substituting (3.39) into (3.41), V̇2 turns to

V̇2 =V̇1 +

N∑
i=1

[
δ1si,2

(
wi,3 + si,3 + x∗i,3 + εi,2ei,1 + θ

T
i,2Ψi,2 + θ̃

T
i,2Ψi,2 + ξi,2 + ∆hi,2 − v̇i,2

)
+

1
σi,2
θ̃Ti,2

˙̃θi,2 + wi,2ẇi,2

]
.

(3.42)

According to Lemma 3, we obtain

si,2εi,2ei,1 ≤
1
2

s2
i,2 +

1
2
ε2

i,2∥ei,1∥
2 (3.43)

si,2si,3 + si,2wi,3 ≤ s2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)
(3.44)

si,2ξi,2 ≤
1
2

s2
i,2 +

1
2
∥ξi,2∥

2 (3.45)

si,2∆hi,2 ≤
1
2

s2
i,2 +

1
2
γ2

i,2∥ei,2∥
2. (3.46)

Substituting (3.43)–(3.46) into (3.42), we have

V̇2 ≤V̇1 +

N∑
i=1

[
δ1si,2

(
x∗i,3 + θ

T
i,2Ψi,2 + θ̃

T
i,32Ψi,2 − v̇i,2

)
+

5δ1

2
s2

i,2 +
1
2

(
s2

i,3 + w2
i,3

)
+

1
2
ε2

i,2∥ei,1∥
2 +

1
2
∥ξi,2∥

2 +
1
2
γ2

i,2∥ei,2∥
2 −

1
σi,2
θ̃Ti,2θ̇i,2 + wi,2ẇi,2

]
.

(3.47)
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According to Theorem1,

x∗i,3 = − ci,2si,2 −

(
1

2δ1
+

5
2

)
si,2 − θ

T
i,2Ψi,2(X̂i,2) +

x∗i,2 − vi,2

λi,2
(3.48)

θ̇i,2 = σi,2δ1Ψi,2(X̂i,2)si,2 − ρi,2θi,2. (3.49)

Substitute (3.19), (3.48) and (3.49) into (3.47). According to Lemma 3, we have wi,2Bi,2 ≤
1
2w2

i,2 +
1
2 M2

i,2; after (3.38), we can obtain

V̇2 ≤ − q2∥e∥2 + η2 +

N∑
i=1

n∑
p=1

1
2
θ̃Ti,pθ̃i,p +

N∑
i=1

ρi,1

σi,1
θ̃Ti,1θi,1 +

N∑
i=1

ρi,2

σi,2
θ̃Ti,2θi,2 −

N∑
i=1

ci,2s2
i,2

−

N∑
i=1

(
1
λi,2
− 1

)
w2

i,2 −
2

λmax
(
H−1)(∂P (x1)

∂x1

)T

H−1
(
∂P (x1)
∂x1

)

+

N∑
i=1

[
1
2

M2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)]
(3.50)

where q2 = q1 −
1
2

∑N
i=1

(
ε2

i,2 + γ
2
i,2

)
, η2 = η1 +

1
2

∑N
i=1 ∥ξi,2∥

2.

Step m. Design si,m = x̂i,m − vi,m, by (3.2) and (3.4), we obtain

ṡi,m =x̂i,m+1 + εi,mei,1 + θ
T
i,mΨi,m + θ̃

T
i,mΨi,m + ξi,m + ∆hi,m − v̇i,m. (3.51)

According to Lemma 1, define δm =
1

k2
i,bm−s2

i,m
. Put forward the BLF

Vm = Vm−1 +
1
2

N∑
i=1

{
δms2

i,m +
1
σi,m
θ̃Ti,mθ̃i,m + w2

i,m

}
(3.52)

where ki,bm and σi,m are designed parameters.
After derivation,

V̇m =

N∑
i=1

{
δmsi,m ṡi,m +

1
σi,m
θ̃Ti,m

˙̃θi,m + wi,mẇi,m

}
+ V̇m−1. (3.53)

Substituting (3.51) into (3.53), refer to (3.17), we have

V̇m =V̇m−1 +

N∑
i=1

[
δmsi,m

(
si,m+1 + wi,m+1 + x∗i,m+1 + εi,mei,1 + θ

T
i,mΨi,m + θ̃

T
i,mΨi,m + ξi,m

+ ∆hi,m − v̇i,m

)
+

1
σi,m
θ̃Ti,m

˙̃θi,m + wi,mẇi,m

]
.

(3.54)

According to Lemma 3, we obtain

si,mεi,mei,1 ≤
1
2

s2
i,m +

1
2
ε2

i,m∥ei,1∥
2 (3.55)
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si,msi,m+1 + si,mwi,m+1 ≤ s2
i,m +

1
2

(
s2

i,m+1 + w2
i,m+1

)
(3.56)

si,mξi,m ≤
1
2

s2
i,m +

1
2
∥ξi,m∥

2 (3.57)

si,m∆hi,m ≤
1
2

s2
i,m +

1
2
γ2

i,m∥ei,m∥
2. (3.58)

Then, V̇m turns to

V̇m ≤V̇m−1 +

N∑
i=1

[
δmsi,m

(
x∗i,m+1 + θ

T
i,mΨi,m + θ̃

T
i,mΨi,m − v̇i,m

)
+

5δm

2
s2

i,m

+
1
2
(
s2

i,m+1 + w2
i,m+1

)
+

1
2
ε2

i,m∥ei,1∥
2 +

1
2
∥ξi,m∥

2

+
1
2
γ2

i,m∥ei,m∥
2 −

1
σi,m
θ̃Ti,mθ̇i,m + wi,mẇi,m

]
.

(3.59)

According to Theorem1,

x∗i,m+1 = − ci,msi,m − (
1

2δm
+

5
2

)si,m − θ
T
i,mΨi,m(X̂i,m) +

x∗i,m − vi,m

λi,m
(3.60)

θ̇i,m = σi,mδmΨi,m(X̂i,m)si,m − ρi,mθi,m. (3.61)

According to Eqs (3.60), (3.61) and (3.19), by Lemma 3, we have wi,mBi,m ≤
1
2w2

i,m +
1
2 M2

i,m. (3.59)
can be rewritten as

V̇m ≤V̇m−1 +

N∑
i=1

[
δmsi,m

(
−ci,msi,m −

(
1

2δm
+

5
2

)
si,m − θ

T
i,mΨi,m(X̂i,m)

+
x∗i,m − vi,m

λi,m
+ θTi,mΨi,m + θ̃

T
i,mΨi,m − v̇i,m

)
+

5δm

2
s2

i,m +
1
2
(
s2

i,m+1 + w2
i,m+1

)
+

1
2
ε2

i,m∥ei,1∥
2 +

1
2
∥ξi,m∥

2 +
1
2
γ2

i,m∥ei,m∥
2 −

1
σi,m
θ̃Ti,m

(
σi,mΨi,msi,m − ρi,mθi,m

)
−

w2
i,m

λi,m
+

1
2

w2
i,m +

1
2

M2
i,m

]
.

(3.62)

Combining (3.13), (3.38) and (3.50), we have

V̇m ≤ − qm∥e∥2 + ηm +

N∑
i=1

n∑
p=1

1
2
θ̃Ti,pθ̃i,p −

2
λmax

(
H−1)(∂P (x1)

∂x1

)T

H−1
(
∂P (x1)
∂x1

)

+

N∑
i=1

[ m∑
p=1

ρi,p

σi,p
θ̃Ti,pθi,p −

m∑
p=2

ci,ps2
i,p −

m∑
p=2

(
1
λi,p
− 1

)
w2

i,p +
1
2

m∑
p=2

M2
i,m +

1
2

(
s2

i,m+1 + w2
i,m+1

)] (3.63)

where qm = qm−1 −
1
2

∑N
i=1

(
ε2

i,m + γ
2
i,m

)
, ηm = ηm−1 +

1
2

∑N
i=1 ∥ξi,m∥

2.
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Step n. Design si,n = x̂i,n − vi,n, by (3.2) and (3.4), we obtain

ṡi,n = ˙̂xi,n − v̇i,n

=ui + εi,nei,1 + θ
T
i,nΨi,n + θ̃

T
i,nΨi,n + ξi,n + ∆hi,n − v̇i,n.

(3.64)

According to Lemma 1, define δn =
1

k2
i,bn−s2

i,n
. Put forward the BLF,

Vn = Vn−1 +
1
2

N∑
i=1

{
δns2

i,n +
1
σi,n
θ̃Ti,nθ̃i,n + w2

i,n

}
(3.65)

where ki,bn and σi,n are the parameter we set.
Then, we have

V̇n = V̇n−1 +

N∑
i=1

{
δnsi,n ṡi,n +

1
σi,n
θ̃Ti,n

˙̃θi,n + wi,nẇi,n

}
. (3.66)

Substituting (3.64) into (3.66), we obtain

V̇n =V̇n−1 +

N∑
i=1

[
δnsi,n

(
ui + εi,mei,1 + θ

T
i,nΨi,n + θ̃

T
i,nΨi,n + ξi,n + ∆hi,n − v̇i,n

)
+

1
σi,n
θ̃Ti,n

˙̃θi,n + wi,nẇi,n

]
.

(3.67)

According to Lemma 3 and the derivation principle of the previous steps, Eq (3.67) is formulated as

V̇n ≤V̇n−1 +

N∑
i=1

[
δnsi,n

(
ui + θ

T
i,nΨi,n + θ̃

T
i,nΨi,n − v̇i,n

)
+

3δn

2
s2

i,n

+
1
2
ε2

i,n∥ei,1∥
2 +

1
2
∥ξi,n∥

2 +
1
2
γ2

i,n∥ei,n∥
2 −

1
σi,n
θ̃Ti,nθ̇i,n + wi,nẇi,n

]
.

(3.68)

According to Theorem1,

ui = − ci,nsi,n −

(
1

2δn
+

3
2

)
si,n − θ

T
i,nΨi,n(X̂i,n) +

x∗i,n − vi,n

λi,n
(3.69)

θ̇i,n = σi,nδnΨi,n(X̂i,n)si,n − ρi,nθi,n. (3.70)

Substitute Eqs (3.69), (3.70) and (3.19) into (3.68). By Lemma 3, we have wi,nBi,n ≤
1
2w2

i,n +
1
2 M2

i,n,
then we can obtain

V̇n ≤ − qn∥e∥2 + ηn +

N∑
i=1

n∑
p=1

1
2
θ̃Ti,pθ̃i,p −

2
λmax

(
H−1)(∂P (x1)

∂x1

)T

H−1
(
∂P (x1)
∂x1

)

+

N∑
i=1

[ n∑
p=1

ρi,p

σi,p
θ̃Ti,pθi,p −

n∑
p=2

ci,ps2
i,p −

n∑
p=2

(
1
λi,p
− 1

)
w2

i,p +
1
2

n∑
p=2

M2
i,p

] (3.71)
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where qn = qn−1 −
1
2

∑N
i=1

(
ε2

i,n + γ
2
i,n

)
, ηn = ηn−1 +

1
2

∑N
i=1 ∥ξi,n∥

2.
Through Lemma 3, we have

θ̃T∗,pθ∗,p ≤ −
1
2
θ̃T∗,pθ̃∗,p +

1
2
θ∗T∗,pθ

∗
∗,p. (3.72)

Define

ζ = ηn +

N∑
i=1

n∑
p=1

ρi,p

2σi,p
θ∗Ti,pθ

∗
i,p +

1
2

n∑
p=2

M2
i,p. (3.73)

Thus, we rewrite (3.71) as follows

V̇n ≤ − qn∥e∥2 −
2

λmax
(
H−1)(∂P (x1)

∂x1

)T

H−1
(
∂P (x1)
∂x1

)
+

N∑
i=1

[
−

n∑
p=2

ci,ps2
i,p −

n∑
p=1

(
ρi,p

2σi,p
−

1
2

)
θ̃Ti,pθ̃i,p −

n∑
p=2

(
1
λi,p
− 1

)
w2

i,p

]
+ ζ

(3.74)

where ci,p > 0,
(
ρi,p

2σi,p
− 1

2

)
> 0,

(
1
λi,p
− 1

)
> 0, (p = 2, · · · , n), 2

λmax(H−1) > 0.
Define

C = min
{

2
qn

λmin(P)
, 2ci,p, 2

(
ρi,p

2σi,p
−

1
2

)
, 2

(
1
λi,p
− 1

)
,−

4
λmin

(
H−1)}. (3.75)

Thus, we obtain

V̇n ≤ −CV(x(t)) + ζ. (3.76)

According to the study conducted by [51], it is easily verified that in the closed-loop system, all of
the signals from system (2.1) stay SGUUB.

Remark 2. As is shown in Theorem1, compared to the papers that study the bipartite consensus control
of MASs [38, 39], Eq (3.22) introduces two reference signals xd1 and xd2 in the design of a distributed
optimization controller. Serving as virtual leaders, xd1 and xd2 achieve a bipartite containment effect,
which aims to ensure that the trajectory of the optimal solution in the distributed optimization lies within
the convex hulls defined by the upper and lower reference signals. These signals generate upper and
lower convex hulls due to the negative signals emitted by agents.

Remark 3. For the distributed optimization problem of bipartite containment control in high-order
nonlinear MASs with state constraints, by integrating RBFNN and DSC techniques, a BLF-based
adaptive backstepping controller is designed. Moreover, a more concise optimization algorithm based
on penalty functions is presented to minimize the global objective function and achieve optimal output.

4. Simulations

In this session, we use two examples to show how successful the control mechanism is. The results
prove that the distributed optimal control algorithm in this paper has practical applications.
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4.1. Example 1

For a second-order system, the model is as follows
ẋi,1 = xi,2 + hi,1

(
xi,1

)
ẋi,2 = ui + hi,2

(
xi,1, xi,2

)
yi = xi,1.

(4.1)

The unknown functions in system (4.1) are

hi,1 =0
h1,2 =x1,1 − 0.25x1,2 − x3

1,1 + 0.3 cos (t)

h2,2 =x2,1 − 0.25x2,2 − x3
2,1 + 0.1

(
x2

2,1 + x2
2,2

)1/2
+ 0.3 cos (t)

h3,2 =x3,1 − 0.25x3,2 − x3
3,1 + 0.1 sin (t)

(
x2

3,1 + 2x2
3,2

)1/2
+ 0.3 cos (t)

h4,2 =x4,1 − 0.25x4,2 − x3
4,1 + 0.1 sin (t)

(
2x2

4,1 + 2x2
4,2

)1/2
+ 0.3 cos (t)

h5,2 =x5,1 − 0.1x5,2 − x3
5,1 + 0.2 sin (t)

(
x2

5,1 + x2
5,2

)1/2
+ 0.3 cos (t) .

The topology of Figure 1 shows the information exchange between five agents, with agent 4
receiving the opposite information. The initial states of five agents are set as x1(0) = [0.05, 0.05],
x2(0) = [0.1, 0.1], x3(0) = [0.15, 0.15], x4(0) = [−0.2,−0.2], x5(0) = [0.25, 0.25]. Define xd1 =

0.2 ∗ sin (t) + 0.2, xd2 = 0.2 ∗ sin (t) + 0.4 as the reference signals. Thus, the trajectory of the optimal
signal is x∗1 = 0.2 ∗ sin (t) + 0.3. The local objective functions of agents are given as follows

f 1 = 8.5x2
1 − (8xd1 + 9xd2)x1 + 4xd1

2 + 4.5xd2
2 + 1

f 2 = 16.5x2
2 − (16xd1 + 17xd2)x2 + 8xd1

2 + 8.5xd2
2 + 2

f 3 = 13x2
3 − (12xd1 + 14xd2)x3 + 12xd1

2 + 14xd2
2 + 1

f 4 = 15.2x2
4 + (14.4xd3 + 16xd4)x4 + 7.2xd3

2 + 8xd4
2 + 2

f 5 = 9.5x2
5 − (9xd1 + 10xd2)x5 + 4.5xd1

2 + 5xd2
2 + 2.

Regarding the observer, the parameters are chosen as εi,1 = 500, εi,2 = 5, 000 and the initial states
are selected as x̂1 = [0.05, 0.05], x̂2 = [0.1, 0.1], x̂3 = [0.15, 0.15], x̂4 = [−0.2,−0.2], x̂5 = [0.25, 0.25].

According to the virtual control law x∗i,2 (3.36), adaptive law θi,1 (3.37), θi,n (3.70) and control
input ui (3.69) in Theorem 1, we chose control parameters as ci,1 = 3.5, ci,2 = 30, σi,1 = σi,2 = 1,
ρi,1 = ρi,2 = 80, λi,2 = 0.05. To guarantee the state constraints are not violated, kb1 = 0.3 is given.

In this simulation, Figures 2–7 display the simulation outcomes. Figure 2 describes the trajectories of
x∗1 and xi,1, verifying that each agent can track the optimal signal x∗1. Besides, xd1 and xd2 act as virtual
leaders to achieve a bipartite containment effect. In Figure 3, we use xi,1 as an example via comparing
the true value and the estimated value. It can be seen that the designed observer performs well and
can approximately observe the unknown states. Figure 4 shows the trajectories of si,1, which clearly
demonstrates how the tracking error can rapidly approach zero by the designed controller. Together,
Figures 2 and 4 illustrate that there is a good distributed optimization consensus tracking effect and
the tracking error is within 0.05. Figure 5 displays the trajectories of xi,2, the state in this paper is
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constrained. Figure 6 gives the trajectories of control input ui. Figure 7 shows that si,2 are all in the
range of −0.3 to 0.3, satisfying |si,2| ≤ kb1. From Figures 5 and 7, we can draw the conclusion that
based on the BLF, si,2 and xi,2 can be limited successfully under the designed parameters. The state
constraints are not violated, and the tracking error can converge to the compact sets.

Remark 4. Compared to the simulation example in our previous work [37], under the unchanged initial
conditions and parameters, Figure 8 is the trajectory tracking graph of all agents, which confirms that
the agent outputs converge inside both the positive and negative convex hulls defined by the reference
leader signals. Based on this, the distributed optimization problem is considered in our paper. We
design a distributed optimization algorithm based on a penalty function. It can be clearly seen that the
control protocol proposed in this paper enables all agents to track the optimal solution. The controller
we designed can ensure that all agents have a good distributed optimization consensus tracking effect
for high-order nonlinear uncertain MASs.

Figure 1. Communication graph in simulation.

Figure 2. Tracking performance of xi,1 (i = 1, · · · , 5).
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Figure 3. Trajectories of xi,1 (i = 1, · · · , 5) estimation.

Figure 4. The curves of error si,1 (i = 1, · · · , 5).

Figure 5. Constraint trajectories of xi,2 (i = 1, · · · , 5).
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Figure 6. Control input ui.

Figure 7. Constraint error si,2 (i = 1, · · · , 5).

Figure 8. Trajectories of xi,1 (i = 1, · · · , 4) estimation in the previous work.
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4.2. Example 2

Given a single-link manipulator that includes motor dynamics [52], the dynamic equation of the
system is as follows: {

Diq̈i + Biq̇i + Ni sin qi = τi

Miτ̇i + Hiτi = ui − Kiq̇i
(4.2)

where qi , q̇ and q̈ represent the link position, velocity and acceleration for the ith mechanical system.
τi is the torque produced by the electrical subsystem, respectively. Di = 1kg · m2 is the inertia,
Bi = 1N · m · s/rad represents the viscous friction coefficient at the joint and Ni = 2 is a constant that is
related to the coefficient of gravity and the mass of the load. Mi = 1H denotes the armature inductance.
Hi = 1Ω represents armature resistance. Ki = 2N ·m/A signifies the back electromotive force coefficient.
ui is the input signal. Letting xi,1 = qi, xi,2 = q̇i, xi,3 = τi, system (4.2) can be expressed as:

ẋi,1 = xi,2

ẋi,2 = xi,3 − Ni sin xi,1 − Bixi,2

ẋi,3 = ui − Kixi,2 − Hixi,3.

(4.3)

Consider the topology of Figure 1 including five agents, whose initial states are set as x1(0) =
[0.3, 0.3, 0.3], x2(0) = [0.15, 0.15, 0.15], x3(0) = [0.15, 0.15, 0.15], x4(0) = [−0.2,−0.2,−0.2], x5(0) =
[0.25, 0.25, 0.25]. Define xd1 = 0.2 ∗ sin (t) + 0.2, xd2 = 0.2 ∗ sin (t) + 0.4 as the reference signals. The
optimal signal is x∗1 = 0.2 ∗ sin (t) + 0.3.

The local objective functions of agents are given as follows

f 1 = 8.5x2
1 − (8xd1 + 9xd2) ∗ x1 + 4xd1

2 + 4.5xd2
2 + 1

f 2 = 13.5x2
2 − (12xd1 + 15xd2)x2 + 6xd1

2 + 7.5xd2
2 + 2

f 3 = 13x2
3 − (12xd1 + 14xd2)x3 + 6xd1

2 + 7xd2
2 + 1

f 4 = 14.2x2
4 + (14xd3 + 14.4xd4)x4 + 7xd3

2 + 7.2xd4
2 + 2

f 5 = 9.5x2
5 − (9xd1 + 10xd2)x5 + 4.5xd1

2 + 5xd2
2 + 2.

According to the virtual control laws x∗i,2 (3.36), x∗i,3 (3.48), adaptive laws θi,1 (3.37), θi,2 (3.49),
θi,n (3.70) and control input ui (3.69) in Theorem 1, we chose control parameters as ci,1 = 3.5, ci,2 = 2,
ci,3 = 60, σi,1 = σi,2 = σi,3 = 1, ρi,1 = ρi,2 = 80, ρi,3 = 8 λi,2 = λi,3 = 0.01. To guarantee the state
constraints are not violated, kb1 = 4 and kb2 = 4 are given.

In this simulation, Figures 9–13 display the simulation outcomes. Figure 9 shows the trajectories of xd

and xi,1, each agent can track the optimal signal x∗i,1. Meanwhile, xd1 and xd2 act as virtual leaders to achieve
a bipartite containment effect. Figure 10 shows the trajectories of si,1 which clearly demonstrates how
the tracking error can rapidly approach to near zero, proving that there is a good distributed optimization
consensus tracking effect and the tracking error is within 0.05. Figure 11 gives the trajectories of the
control input ui. The common barrier Lyapunov method mainly forms the error constraint, Figures 12
and 13 show that si,2 and si,3 are all in the range of –4 to 4, respectively, which indicates that the BLF
can solve the state constraints problem of high-order nonlinear uncertain MASs well.
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According to the simulation results, the distributed optimization controller proposed in this research
can make agents converge to the optimal solution, which lies within the convex hull of the trajectories
of each virtual leader and their opposite trajectories. Meanwhile, the tracking error gradually converges
to a small range of the origin, which indicates the control performance is good. In addition, the barrier
Lyapunov method is generally used to impose constraints on errors. From step 2, the BLF-based control
scheme transforms the original state constraints into a new bound on the tracking error and achieves the
state constraints by constraining the error surfaces.

Figure 9. Tracking performance of xi,1 (i = 1, · · · , 5).

Figure 10. The curves of error si,1 (i = 1, · · · , 5).
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Figure 11. Control input ui.

Figure 12. Constraint error si,2 (i = 1, · · · , 5).

Figure 13. Constraint error si,3 (i = 1, · · · , 5).
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5. Conclusions

This paper researches the bipartite containment distributed optimization problem of high-order
MASs with uncertain nonlinear functions. Combining the consensus condition of MASs with the
global objective function, we designed a penalty function, which is constructed by combining the
bipartite containment definition. By integrating RBFNN and DSC techniques, an adaptive backstepping
controller is proposed to avoid the complexity explosion and a distributed optimal consensus is accurately
achieved. In addition, introducing state constraints in the distributed optimization holds significant
practical importance in engineering applications. Besides, we will consider addressing the problem of
prescribed-time distributed optimization of high-order nonlinear stochastic MASs with disturbances.
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10. Q. Lü, H. Li, Event-triggered discrete-time distributed consensus optimization over time-varying
graphs, Complexity, 2017 (2017), 1–12. https://doi.org/10.1155/2017/5385708

11. X. Shi, J. Cao, W. Huang, Distributed parametric consensus optimization with an applica-
tion to model predictive consensus problem, IEEE Trans. Cybern., 48 (2017), 2024–2035.
https://doi.org/10.1109/TCYB.2017.2726102

12. G. Wang, Distributed control of higher-order nonlinear multi-agent systems with unknown non-
identical control directions under general directed graphs, Automatica, 110 (2019), 108559.
https://doi.org/10.1016/j.automatica.2019.108559

13. T. Guo, J. Han, C. Zhou, J. Zhou, Multi-leader-follower group consensus of stochastic time-
delay multi-agent systems subject to markov switching topology, Math. Biosci. Eng., 19 (2022),
7504–7520. https://doi.org/10.3934/mbe.2022353

14. C. Sun, M. Ye, G. Hu, Distributed time-varying quadratic optimization for multiple
agents under undirected graphs, IEEE Trans. Autom. Control, 62 (2017), 3687–3694.
https://doi.org/10.1109/TAC.2017.2673240

15. Z. Li, Z. Ding, J. Sun, Z. Li, Distributed adaptive convex optimization on directed
graphs via continuous-time algorithms, IEEE Trans. Autom. Control, 63 (2017), 1434–1441.
https://doi.org/10.1109/TAC.2017.2750103

16. S. Yang, Q. Liu, J. Wang, A multi-agent system with a proportional-integral protocol for
distributed constrained optimization, IEEE Trans. Autom. Control, 62 (2016), 3461–3467.
https://doi.org/10.1109/TAC.2016.2610945

17. M. Hong, M. Razaviyayn, J. Lee, Gradient primal-dual algorithm converges to second-order
stationary solution for nonconvex distributed optimization over networks, in Proceedings of the
35th International Conference on Machine Learning, (2018), 2009–2018.
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