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Abstract: This paper investigates input-to-state stability (ISS) of nonlinear systems with delayed
impulse under event-triggered impulse control, where external inputs are different in continuous and
impulse dynamics. First, an event-triggered mechanism (ETM) is proposed to avoid Zeno behavior.
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Keywords: input-to-state stability; nonlinear delayed impulse; event-triggered impulse control;
nonlinear systems; Zeno behavior
Mathematics Subject Classification: 93C30

1. Introduction

For systems subject to external disturbances, the requirement to maintain robust dynamic behavior
under the influence of exogenous perturbations is particularly important. Therefore, the proposed
concept of input-to-state stability [1] proves to be very effective in characterizing the effects of external
disturbances on the considered system. Input-to-state stability means that when input is bounded,
the state of the system remains bounded. If there is no external disturbance, input-to-state stability
indicates that the system is asymptotically stable in the sense of Lyapunov. Based on this thought,
input-to-state stability results have been investigated for different types of systems, such as switched
systems [2, 3], impulsive systems [4, 5], and stochastic systems [6, 7]. Additionally, it has also been
extended to finite time control problems and finite time input-to-state stability [8].

Impulsive systems are a special class of hybrid systems containing both continuous and discrete
dynamics, which are widely used in the fields of communication networks, control technology, and
image encryption; see [9–12]. From the perspective of impulse effect, work on the stability of
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impulsive systems primarily focuses on two major areas: impulse perturbation and impulse control.
Impulse perturbation considers the robustness of the system under unstable impulses. Whereas impulse
control [13] considers stabilization of systems containing stable impulses. By using discrete impulse
signals as control inputs, satisfactory performance can be obtained, breaking through the limitations
of traditional continuous control methods. As a discontinuous control method, impulse control has
advantages of low cost, low energy consumption, high efficiency, and the ability to describe sudden
change phenomena of systems. Thus, impulse control has attracted a wide range of attention in different
fields [14–16]. In this literature, impulse controllers adopt a time-triggered mechanism, i.e., signal
transmission is independent of system state, but impulse moments are pre-scheduled. However, this
may lead to overuse of resources in the process of information transmission, resulting in unnecessary
depletion of communication resources. Therefore, in order to better save network resources and
overcome the drawbacks of time-triggered control methods, the event-triggered mechanism has been
introduced; transmission occurs solely when the mechanism is activated; otherwise, the control signals
remain updated. In recent years, there have been extensive research on event-triggered mechanisms;
for example, reference [17] developed dynamic event-triggered schemes for uncertain nonlinear strict-
feedback systems, and reference [18] proposed event-triggered asymptotic tracking control for multi-
input and multi-output nonlinear systems.

Event-triggered impulse control combines the characteristics of event-triggered and impulse control,
so that impulse control only acts on the considered system at the event-triggered instant, and there
is no longer any control effect within two adjacent event-triggered intervals. This control mode is
characterized by the fact that the control signal is released only when a specific state-dependence
criterion is satisfied, thus greatly reducing the resource consumption. In practical application, this
control strategy needs to exclude infinite triggering behaviors occurring within a limited time. A
typical example is Zeno behavior, i.e., there exist an infinite number of triggering instants that
converge to a positive constant [19]. It has been shown in [20] that Zeno behavior can occur in
external perturbation or measurement noise, which gives caution when designing event-triggered
control. Another circumstance is that trigger intervals tend to 0 as trigger instants tend to infinity.
From a practical perspective, a trigger interval should have a minimum lower bound of a normal
number. And in recent years, event-triggered impulse control has been applied in various control
issues, such as consensus problems of multiagent systems [21], asymptotic stability of impulsive
systems [22], synchronization of multiple neural networks [23], etc. It is noted that the results of
the literature just mentioned can only be applied to some specific dynamical systems, but the influence
of exogenous disturbances has not been considered, leading to certain limitations. Therefore, ISS
under event-triggered impulse control has received more and more attention [24–28]. For example,
ISS characteristics of nonlinear systems under continuous and discrete event-triggered impulse control
were investigated in [25]. Based on event-triggered impulse control strategy, the ISS of nonlinear
impulsive systems was developed, and Zeno behavior was excluded in [26, 27], but impulse delay was
not considered in this literature. In practical applications, time delay is inevitable during transmission
of impulses; that is, the transient of impulse depends not only on the current state of the system
but also on the historical state of the system. In [28], by designing three levels of event triggering
schemes, the influence of event-triggered impulse control with time delay on ISS stabilization was
discussed. Although delayed impulse is taken into account, these works ignore interference of external
input in discrete dynamics. On the other hand, there is some ISS work on impulse control based
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on the assumption [29], that is, the ratio coefficient of the Lyapunov function is constant. Recently,
reference [30] explores the ISS properties of nonlinear impulse systems under event-triggered impulse
control. The Lyapunov rate coefficients considered are all constant, but this may not be achieved
in practical applications. Therefore, it is necessary to consider the case where the Lyapunov rate
coefficient is time-varying. In [31], ISS results of time-varying nonlinear impulsive systems are
obtained, but event-triggered impulse control is not considered, resulting in certain conservatism. ISS
criteria obtained from [27] are applicable to the nonlinear rate of the Lyapunov functions, but impulse
delay and hybrid inputs are not considered, which makes its application limited. In view of this, when
delayed impulse is involved, related work to ensure ISS of nonlinear impulsive systems via event-
triggered impulse control needs to be further enriched.

On the basis of the above motivation, the main work of this paper is to explore the ISS of nonlinear
systems with delayed impluse in the framework of event-triggered impulse control. A Lyapunov-based
ETM containing forced impulse sequence is proposed to realize ISS of the considered system, and
Zeno behavior is ruled out. Subsequently, design criteria of impulse control gain and ETM are derived
by solving LMI. The contribution of this paper can be summarized in three points:

(i) External inputs of continuous and discrete parts are the same in [27, 30, 32], leading to certain
restrictions. This paper considers hybrid inputs, that is, external inputs can be different for the
continuous and impulsive parts, which broadens the existing conclusions.

(ii) Compared to [25, 27], the impulse part of this paper involves time delay, and delay information
is incorporated into the dynamic analysis of the considered system to establish relationships among
event- triggering parameters, impulse intensity, and impulse delay.

(iii) ISS criteria in this paper are derived on the premise that the Lyapunov rate coefficient is time-
varying, rather than constant, which makes the results relax restrictions in [26, 28, 30].

2. Preliminaries

Notations: R+, N+, R are sets of non-negative real numbers, positive integers, and real numbers.
Rm is m-dimensional space. PC([e, f ]; Rm) : [e, f ] → Rm denotes piecewise continuous function. v0

denotes a given category of local Lipschtiz function. Symbol ? represents a symmetric block in a
symmetric matrix. λmax(%), %−1 and %T represent the maximum eigenvalue, inverse, and transpose of
matrix %, respectively. I > 0 denotes a positive definite matrix I. K is said to be a class of continuous
strictly increasing function c : R+ → R+ with c(0) = 0. K∞ is a radially unbounded subset of K . A
function d : R+ × R+ → R+ is defined to be class KL if d(•, t) is a kind of K for every fixed t ≥ 0,
d(•, t)→ 0 as t → +∞. A ∨ B = max {A, B}.

Consider the following delayed impulsive systems:

ż(t) = g(z(t), vc(t)), t , tr, t ≥ t0,

z(t) = hr(z(t− − τ), vd(t−)), t = tr, r ∈ N+,

z(n − t0) = εn, n ∈ [t0 − τ, t0],
(1)

where z(t) ∈ Rm is system state. εn is the initial state. τ > 0 is constant delay. vc(t), vd(t) ∈ Rm

are locally bounded exogenous perturbation and impulsive perturbation input. g, h : Rm × Rn → Rm

satisfy i(0, 0) = §(0, 0) = 0 and some appropriate conditions such that existence and uniqueness of
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solution of system (1) are guaranteed. Impulse instant {tr}r∈N+ satisfies 0 = t0 < t1 < · · · < tr < · · · and
limr→+∞ tr = +∞. Assume the solution of system (1) is right continuous, that is, z(t+) = z(t).

Definition 1 ([33]). If there exist functions ξ ∈ KL and β, Γc, Γd ∈ K∞, system (1) is ISS if

β(|z(t)|) < ξ(‖ε‖τ, t − t0) + sup
t0≤s≤t

Γc(|vc(s)|) + Γd
(

max
t0≤tr≤t

{
|vd(t−r − τ)|

} )
, t ≥ t0,

where ‖ε‖τ = sup[t0−τ,t0]|ε|.

Lemma 1 ([34]). Let continuous functions ∆(t), Θ(t), v1(t), v2(t) ∈ pc([t0,+∞); Rm) for t ∈
[tr−1, tr), ∀r ∈ N+, ∆ ∈ R+ satisfy{

D+v1(t) ≤ ∆(t)v1(t) + Θ(t), t , tr, t ≥ t0,

v1(tr) ≤ ∆(t)v1(tr) + Θ(t−r ), t = tr,

and {
D+v2(t) > ∆(t)v2(t) + Θ(t), t , tr, t ≥ t0,

v2(tr) ≥ ∆(t)v2(tr) + Θ(t−r ), t = tr,

then v1(t) ≤ v2(t) for t ≥ t0.

Lemma 2 ([25]). There exist real matrices T > 0, Ψ, Ψ , and constant c > 0, and the following
inequality holds:

ΨTΨ + ΨT Ψ ≤ cΨT TΨ + c−1ΨT T−1Ψ.

3. Main results

In this section, in the framework of the event-triggered impulse control approach, considering the
effect of delayed impulses, some conditions to ensure ISS of system (1) are established and Zeno
behavior is eliminated. First, the following ETM is considered:

tr = min
{
t∗r , tr−1 + 4r

}
, r ∈ N+,

t∗r = in f
{
t ≥ tr−1 : V(t, z(t)) − exp(ır − ς(t − tr−1))V(tr−1, z(tr−1)) − exp(ı̄r − ς̄(t − tr−1))φ1(‖vc‖[tr−1,t]) ≥ 0

}
,

(2)

where φ1 ∈ K∞, V(t, z(t)) is Lyapunov function depending on solution z(t) of system (1) at time t.
Event-triggering parameters ı, ı̄, ς, ς̄ ∈ R+ and 4r ∈ R+ satisfy

s∑
r=1

ı→ +∞,

s∑
r=1

ı̄→ +∞, s→ +∞, (3)

and
in f
r∈N+

{4r} > 0. (4)

In order to exclude Zeno behavior, we give the following result based on designed ETM (2).

Theorem 1. If functions Υ(t) ∈ PC([t0,+∞); R), φ1 ∈ K∞, V ∈ v0 satisfy:

D+V(t, z(t)) ≤ Υ(t)V(t, z(t)) + φ1(|vc(t)|),
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and ∫ t

s
Υ(u)du ≤ c(t − s),∀s, t ≥ 0,

where c ≥ 0 is constant, then system (1) has no Zeno phenomenon via ETM (2), impulse sequence
{tr}r∈N+ satisfies

tr − tr−1 ≥ t∗ = max
{

ır
c + ς

,
ı̄r

c + ς̄

}
. (5)

Proof. According to the definition of ETM (2), three scenarios will be considered.

Case 1. Impulse instant tr is made up entirely of forced impulse instant, i.e., tr = tr−1 + 4r. Based on
tr − tr−1 = 4r and assumption condition (4), it is possible to know that there is no Zeno behavior.

Case 2. Forced impulse instant tr−1 + 4r and event-triggered impulse instant t∗r occur simultaneously.
First, assume that forced impulse instants are finite and satisfy t1 + 4r < t2 + 4r < · · · < tn+1 + 4r. It
clearly holds that impulse instant tr is composed entirely of event-triggered impulse instant t∗r after the
last forced impulse instant tn+1 + 4r, thus tn+1+r = t∗n+1+r, r ∈ N+. By Lemma 1, we derive

V(t, z(t)) ≤ v(t) = exp
(∫ t

tn+r

Υ(u)du
)

V(tn+r, z(tn+r)) +

∫ t

tn+r

exp
(∫ t

s
Υ(v)dv

)
φ1(|vc(u)|)du.

Based on ETM (2), we obtain

V(t−n+r+1, z(t−n+r+1)) = exp(ın+r+1 − ς(tr − tr−1))V(tn+r, z(tn+r)) + exp(ı̄n+r+1 − ς̄(tr − tr−1))φ1(‖vc‖[tn+r ,tn+r+1])

≤ exp
(∫ tn+r+1

tn+r

Υ(u)du
)

V(tn+r, z(tn+r)) +

∫ tn+r+1

tn+r

exp
(∫ tn+r+1

tn+r

Υ(v)dv
)
φ1(|vc(u)|)du

≤ exp(c(tn+r+1 − tn+r))V(tn+r, z(tn+r)) + exp(c(tn+r+1 − tn+r))φ1(‖vc‖[tn+r ,tn+r+1]),
(6)

which yields that
tr − tr−1 ≥

ın+r+1

c + ς
,

tr − tr−1 ≥
ı̄n+r+1

c + ς̄
,

hence

tr − tr−1 ≥ max
{
ın+r+1

c + ς
,
ı̄n+r+1

c + ς̄

}
,

then, according to condition (3), we know tn+r+1 → +∞ as r → +∞, which means that Zeno behavior
is excluded under this circumstance.

Second, forced impulse instants are infinite. Supposing that under ETM (2) Zeno behavior occurs
in system (1), which indicates that there are countless impulse moments in the interval [t0,T ∗], and T ∗

represents the accumulated time of impulse instants. Then, impulse instants tend to T ∗, that is, forced
impulse instants also tend to T ∗, which is inconsistent with expression (4). Thus, Zeno behavior is also
ruled out.

Case 3. Impulse instant tr consists absolutely of event-triggered impulse instant t∗r , that is, tr = t∗r , r ∈
N+. Proof is similar to case 2, we find

V(t, z(t)) ≤ v(t) = exp
(∫ t

tr−1

Υ(u)du
)

V(tr−1, z(tr−1)) +

∫ t

tr−1

exp
(∫ t

s
Υ(v)dv

)
φ1(|vc(u)|)du,

AIMS Mathematics Volume 9, Issue 10, 26446–26461.



26451

and
V(tr, z(tr)) = exp(ır − ς(tr − tr−1))V(tr−1, z(tr−1)) + exp(ı̄r − ς̄(tr − tr−1))φ1(‖vc‖[tr−1,tr])

≤ exp
(∫ tr

tr−1

Υ(u)du
)

V(tr−1, z(tr−1)) +

∫ tr1

tr−1

exp
(∫ tr

tr−1

Υ(v)dv
)
φ1(|vc(u)|)du

≤ exp(c(tr − tr−1))V(tr−1, z(tr−1)) + exp(c(tr − tr−1))φ1(‖vc‖[tr−1,tr]).

(7)

Similarly,

tr − tr−1 ≥
ır

c + ς
, tr − tr−1 ≥

ı̄r
c + ς̄

,

then

tr − tr−1 ≥ max
{

ır
c + ς

,
ı̄r

c + ς̄

}
.

We can conclude that there is no Zeno phenomenon. Thus, it is clear from the above that Zeno
behaviour does not occur under ETM (2) in either case. �

Remark 1. Zeno behavior implies that an infinite number of continuous trigger instants occur in
a finite period of time. ETM (2) consisting of event-triggered impulse instants and forced impulse
moments can effectively eliminate Zeno behavior, and it is clear from (4) that there is no upper bound
on forced impulse instants in this paper. In addition, condition (5) provides a variable lower bound
with respect to parameters ır, c, ς, ı̄r, ς̄ on the neighboring event-triggered impulse instants. Whereas
literature [28, 35, 36] gives a uniformly positive lower bound, which suggests that conditions in this
paper have less conservatism.

Remark 2. Due to the existence of the effect of exogenous interference, unlike literature [36], this
paper introduces φ1(‖vc‖[t0,t]) to represent the potential effect of exogenous disturbance, leading to a
difference from the proof of [37]. It is worth noting that φ1(‖vc‖[t0,t]) cannot be replaced by φ1(‖vc(t)‖).
This is because the fact that Theorem 1 effectively rules out Zeno behavior, φ1(‖vc‖[t0,t]) and φ1(‖vc(t)‖)
are not comparable in size; therefore, it is necessary to show the value of φ1 on this interval [t0, t].

Theorem 2. Let conditions in Theorem 1 hold, and there exist functions α1, α2, φ2 ∈ K∞,V ∈ v0,

constants ır, ı̄r, ς, ς̄, ℵr, $ ∈ R+, r ∈ N+ satisfying:
(i) α1(|z|) ≤ V(t, z) ≤ α2(|z|),
(ii) V(tr, hr(z(t−r − τ), vd(t−r − τ))) ≤ exp(−ℵr)V(t−r − τ, z(t−r − τ)) + φ2(|vd(t−r − τ)|),
(iii) ır, ı̄r, ς, ς̄r, impulse strengths ℵr and impulse instant tr satisfy:

−ℵr + ır+1 + ςτ > (ς − ς̄)(tr+1 − tr),

l∑
r=1

(ım−r − ℵm−r) + ı̄m−l + ςmτ ≤ $, l ∈ {1, 2, . . . ,m − 1} , m ≥ 2,

then system (1) is ISS under ETM (2).

Proof. It can be seen from ETM (2) that

V(t, z(t)) ≤ exp(ı1 − ς(t − t0))V(t0, z(t0)) + exp(ı̄1 − ς̄(t − t0))φ1(‖vc‖[t0,t]), t ∈ [t0, t1).
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Using condition (ii), for triggering instant t1, we gain

V(t1, z(t1)) = h1(z(t−1 − τ), vd(t−1 − τ)) ≤ exp(−ℵ1)V(t−1 − τ, z(t−1 − τ)) + φ2(|vd(t−1 − τ)|)

≤


exp(−ℵ1 + ı1 − ς(t1 − τ − t0))V∗ + exp(−ℵ1 + ı̄1 − ς̄(t1 − τ − t0))φ1(‖vc‖[t0,t1])
+φ2(|vd(t−1 − τ)|), t0 ≤ t1 − τ ≤ t1

exp(−ℵ1)V∗ + φ2(|vd(t−1 − τ)|), t1 − τ ≤ t0

≤ exp(−ℵ1 + ı1 − ς(t1 − τ − t0))V∗

+ exp(−ℵ1 + ı̄1 − ς̄(t1 − τ − t0))φ1(‖vc‖[t0,t1]) + φ2(|vd(t−1 − τ)|),

where V∗ = supn∈[t0−τ,t0]V(n, z(n)), and

V(t, z(t)) ≤exp(ı2 − ς(t − t1))V(t1, z(t1)) + exp(ı̄2 − ς̄(t − t1))φ1(‖vc‖[t1,t])
≤exp(−ℵ1 + ı1 + ı2 − ς(t − τ − t0))V∗

+ exp(−ℵ1 + ı̄1 + ı2 − ς(t − t1) − ς̄(t1 − τ − t0))φ1(‖vc‖[t0,t1])
+ exp(ı2 − ς(t − t1))φ2(|vd(t−1 − τ)|) + exp(ı̄2 − ς̄(t − t1))φ1(‖vc‖[t1,t]), t ∈ [t1, t2).

Similarly, at triggering instant t2,

V(t2, z(t2)) = h2(z(t−2 − τ), vd(t−2 − τ)) ≤ exp(−ℵ2)V(t−2 − τ, z(t−2 − τ)) + φ2(|vd(t−2 − τ)|)

≤



exp(−ℵ1 − ℵ2 + ı1 + ı2 − ς(t2 − 2τ − t0))V∗ + exp(−ℵ1 − ℵ2 + ı̄1 + ı2 − ς(t2 − τ − t1)
−ς̄(t1 − τ − t0))φ1(‖vc‖[t0,t1]) + exp(−ℵ2 + ı2 − ς(t2 − τ − t1))φ2(|vd(t−1 − τ)|)
+exp(−ℵ2 + ı̄2 − ς̄(t2 − τ − t1))φ1(‖vc‖[t1,t2]) + φ2(|vd(t−2 − τ)|), t1 ≤ t2 − τ ≤ t2

exp(−ℵ2 + ı1 − ς(t2 − τ − t0))V∗ + exp(−ℵ2 + ı̄1 − ς̄(t2 − τ − t0))φ1(‖vc‖[t0,t1])
+φ2(|vd(t−2 − τ)|), t0 ≤ t2 − τ ≤ t1

exp(−ℵ2)V∗ + φ2(|vd(t−2 − τ)|), t2 − τ ≤ t0

≤exp(−ℵ1 − ℵ2 + ı1 + ı2 − ς(t2 − 2τ − t0))V∗

+ exp(−ℵ1 − ℵ2 + ı̄1 + ı2 − ς(t2 − τ − t1) − ς̄(t1 − τ − t0))
φ1(‖vc‖[t0,t1]) + exp(−ℵ2 + ı2 − ς(t2 − τ − t1))φ2(|vd(t−1 − τ)|)
+ exp(−ℵ2 + ı̄2 − ς̄(t2 − τ − t1))φ1(‖vc‖[t1,t2]) + φ2(|vd(t−2 − τ)|).

Analogously,

V(t, z(t)) ≤exp(ı3 − ς(t − t2))V(t2, z(t2)) + exp(ı̄3 − ς̄(t − t2))φ1(‖vc‖[t2,t])
≤exp(−ℵ1 − ℵ2 + ı1 + ı2 + ı3 − ς(t − 2τ − t0))V∗ + exp(−ℵ1 − ℵ2 + ı̄1 + ı2 + ı3 − ς(t − τ − t1)
− ς̄(t1 − τ − t0))φ1(‖vc‖[t0,t1]) + exp(−ℵ2 + ı2 + ı3 − ς(t − τ − t1))φ2(|vd(t−1 − τ)|)
+ exp(−ℵ2 + ı̄2 + ı3 − ς(t − t2) − ς̄(t2 − τ − t1))φ1(‖vc‖[t1,t2])
+ exp(ı3 − ς(t − t2))φ2(|vd(t−2 − τ)|)
+ exp(ı̄3 − ς̄(t − t2))φ1(‖vc‖[t2,t]), t ∈ [t2, t3).

Repeating the above steps, one can derive that
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V(t, z(t)) ≤exp(ık +

k−1∑
n=1

(ın − ℵn) − ς(t − (k − 1)τ) − t0)V∗

+ exp(ık +

k−1∑
n=2

(ın − ℵn) − ℵ1 + ı̄1 − ς̄(t1 − τ − t0) − ς(t − (k − 2)τ − t1)φ1(‖vc‖[t0,t1])

+ exp(ık +

k−1∑
n=3

(ın − ℵn) − ℵ2 + ı̄2 − ς̄(t2 − τ − t1) − ς(t − (k − 3)τ − t2)φ1(‖vc‖[t1,t2])

+ exp(ık +

k−1∑
n=2

(ın − ℵn) − ς(t − (k − 2)τ − t1)φ2(|vd(t−1 − τ)|)

+ exp(ık +

k−1∑
n=3

(ın − ℵn) − ς(t − (k − 3)τ − t2)φ2(|vd(t−2 − τ)|) + · · ·

+ exp(ık − ℵk−1 + ı̄k−1 − ς̄(tk−1 − τ − tk−2) − ς(t − tk−1))φ1(‖vc‖[tk−2,tk−1])
+ exp(ık − ς(t − tk−1))φ2(|vd(t−k−1 − τ)|) + exp(ı̄k − ς̄(tk − tk−1)φ1(‖vc‖[tk−1,t])), t ∈ (tk−1, tk).

Together with (i) and (iii), we obtain

α1(|z(t)|) ≤ exp($ + ı)α2(‖ε‖τ)exp(−ς(t − t0)) + exp(($ + ı) ∨ ı̄)φ1(‖vc‖[t0,t])
+ exp($ + ı)φ2( max

t0≤tk≤t
|vd(t−k − τ)|), t ∈ (tk−1, tk),

where ı = supk∈N+ {ık}, ı̄ = supk∈N+ {ı̄k}, which confirms system (1) is ISS under ETM (2). �

Remark 3. It follows from proof of Theorem 2 that in order to ensure ISS of system (1), it is necessary
to introduce forced impulse sequence into ETM (2). In other words, without a forced impulse instant,
an event trigger may not occur or occur countless times, so this requires frequent occurrence of stable
impulses. The average dwell time is often used to solve this problem in the previous literature, but it
causes unnecessary waste. However, forced impulse time in this paper satisfies conditions of ETM (2)
and does not necessarily need to occur continuously, reflecting the necessity of its existence.

Remark 4. The ISS problem of nonlinear systems without delayed impulse based on event-triggered
impulse control has been involved in [25, 27, 32]. When time delay in impulse is taken into account,
overdispersion of system causes some trouble in description of delayed impulses. Therefore, the
relationship among trigger parameters ır, ı̄r, ς, ς̄r, impulse intensity ℵr, and time delay τ is established
under condition (iii) of Theorem 2 to overcome the influence of time delay.

4. Applications

In this section, our presented event-triggered impulse control tactics are applied to nonlinear systems
to achieve ISS.

Considering the following systems with external disturbance:

ż(t) = Λz(t) + Γi(z(t)) + Υu(t) + v(t), t , tr, t ≥ t0, (8)
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where Λ, Γ, Υ ∈ Rn are given real matrices. u(t) ∈ Rm is the locally bounded interference input. i
satisfies globally Lipschitz with Lipschitz matrix M. The following Dirac control input is considered
to stabilize system (8):

v(t) =

∞∑
r=1

Oz(t)δ(t − tr), (9)

where {tr}r∈N+ is impulse instant. O is the impulsive control gain matrix; in this circumstance,
system (8) can be written in the underlying form:

ż(t) = Λz(t) + Γi(z(t)) + Υu(t), t ≥ t0, t , tr,

z(t) = (Ξ + O)z(t− − τ), t = tr, r ∈ N+,
(10)

where Ξ is the identity matrix.

Theorem 3. If positive constants Θ, a1, a2, ℵ and matrix Ωn×n, Pn×n > 0, diagonal matrix Kn×n > 0,
real matrix Xn×n satisfy: 

ΛT Ω + ΩΛ + MT KM − ΘΩ ΩΓ ΩΥ

? −K 0
? ? −P

 ≤ 0, (11)

(
−exp(−ℵ)Ω Ω + X

? −Ω

)
≤ 0, (12)

then, ISS is guaranteed for system (10) under impulsive control gain O = Ω−1XT and ETM:

tr = min
{
t∗r , tr−1 + 4r

}
, r ∈ N+,

t∗r = in f {t ≥ tr−1 : ∆(t) ≥ 0} ,
(13)

with
∆(t) = zT (t)Ωz(t) − a1zT (tr−1)Ωz(tr−1) − a2λmax(P)‖u‖2[tr−1,t].

Proof. Select V(t) = zT (t)Ωz(t). By using the Ito formula, we obtain

D+V(t) =2zT (t)Ω
(
Λz(t) + Γi(z(t)) + Υu(t)

)
=zT (t)(ΩΛ + ΛΩT )z(t) + 2zT (t)ΩΓi(z(t)) + 2zT (t)ΩΥu(t),

combined with Lemma 2, we conclude

2zT (t)ΩΓiz(t) =zT (t)ΩΓi(z(t)) + iT (z(t))ΓT Ωz(t)
≤zT (t)ΩΓK−1ΓT Ωz(t) + zT (t)MT KMz(t),

2zT (t)ΩΥu(t) =zT (t)ΩΥu(t) + uT (t)ΥT Ωz(t)
≤zT (t)ΩΥP−1ΥT Ωz(t) + uT (t)Pu(t).

Together with (11) and (12), it can be derived that

D+V(t) ≤ ΘzT (t)Ωz(t) + λmax(P)|u(t)|2,
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and

−exp(−ℵ)Ω + (Ξ + O)T Ω(Ξ + O) ≤ 0,

which implies that

V(z(tr)) =zT (tr)Ωz(tr)
≤zT (t−r − τ)(Ξ + O)T Ω(Ξ + O)z(t−r − τ)
≤exp(−ℵ)zT (t−r − τ)Ωz(t−r − τ)
=exp(−ℵ)V(z(t−r − τ)).

Similar to proof of Theorem 2, the ISS of system (10) is shown to hold under ETM (13). �

Remark 5. The ISS criterion given in Theorem 3 is based on the system being affected by delayed
impulse and external interference. Moreover, the impulse control gain matrix is determined by the LMI
method from the predetermined constants Θ and ℵ.

5. Examples

Example 1. Let us consider underlying system:

ż(t) = 1.9sin(t)z(t) + vc(t), t , tr, t ≥ t0,

z(t) = exp(−0.11)z(t− − τ) + vd(t−), t = tr, r ∈ N+,
(14)

where vc(t) and vd(t−) are external inputs for continuous and impulse parts, respectively. We select
V(z(t)) = z(t), c = 10, ı = 0.9, ς = 0.5, ı̄r = 0.2, ς̄ = 0.11, vc(t) = sin(t), vd(t−) = 1/10cos(t−). First,
when forced impulse instant is not present, ETM is as follows:

t∗r = in f
{
t ≥ tr−1 : |z(t)| ≥ exp(0.9 − 0.5(t − tr−1))V(tr−1, z(tr−1)) + exp(0.2 − 0.11(t − tr−1))φ1(‖vc‖[tr−1,t])

}
. (15)

Through simulation (Figure 1), we find that system (14) fails to satisfy ISS under ETM (15). Hence, we
will introduce the forced impulse sequence tr = tr−1 + 5, then ETM will be designed as follows:

tr = min
{
t∗r , tr−1 + 5

}
, r ∈ N+,

t∗r = in f
{
t ≥ tr−1 : |z(t)| ≥ exp(0.9 − 0.5(t − tr−1))V(tr−1, z(tr−1)) + exp(0.2 − 0.11(t − tr−1))φ1(‖vc‖[tr−1,t])

}
.

(16)

It follows from Theorem 1 that system (14) is ISS under ETM (16), and this is verified in Figure 2.
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Figure 1. State trajectory of system (14) without forced impulse instant.
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Figure 2. State trajectory of system (14) with forced impulse instant.

Example 2. Now we consider system (10) with

Λ =

(
0.69 −1.1
−0.79 0.3

)
, Γ =

(
0.4 1
0 0.18

)
, Υ =

(
0.1 0.4
0.2 0.3

)
,

i1(z(t)) = i2(z(t)) = tanh(2z(t)), u(t) = (sin(t), cos(t))T , Figure 3 shows that when the impulse effect is
not present, system (10) cannot reach ISS. So we will design ETM to make system (10) achieve ISS. We
select a1 = 1.1052, a2 = 0.075, Θ = 4.765 and ℵ = 0.31. By using Matlab to solve LMI (11) and (12),
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then ETM is presented as follows:

tr = min
{
t∗r , tr−1 + 3

}
, r ∈ N+,

t∗r = in f
{
t ≥ tr−1 : zT (t)Ωz(t) ≥ 1.1052zT (tr−1)Ωz(tr−1) − 0.075λmax(P)‖u‖2[tr−1,t]

}
,

(17)

where

Ω =

(
22.4211 −4.6996
−4.6996 25.1256

)
, P =

(
35.2366 0

0 35.2366

)
,

K =

(
13.7092 5.4444
5.4444 19.7417

)
, X =

(
−31.3896 −5.1481
−5.1481 −29.9487

)
and impulsive control gain

O = Ω−1XT =

(
−1.5018 −0.4556
−0.4858 −1.0782

)
.

According to Theorem 3, system (10) is ISS; see Figure 4. From the other side, with other parameters
fixed, we only change impulsive control gain so that it does not satisfy conditions of Theorem 3, such

as Ō =

(
1 5
2 3

)
, as can be seen from Figure 5, system (10) is non-ISS, which shows the feasibility of our

proposed event-triggered impulse control method.

Remark 6. In Example 1, Figure 1 illustrates that when ETM (2) does not contain forced impulse
instant, the system is not ISS. But when a forced impulse instant is introduced into ETM (2), the system
reaches ISS (i.e., Figure 2). In other words, forced impulse instant plays a key role in ensuring ISS
characteristics. In Example 2, Figure 3 demonstrates that when the impulse effect is not present,
system (10) is unstable under external perturbations. Therefore, in order to enable system (10) to
achieve ISS, ETM (17) and impulse control gain are designed and verified in Figure 3. Figure 4
shows that when impulse control gain changes, that is, conditions (11) and (12) are not satisfied, the
system cannot achieve ISS under ETM (17), which shows the feasibility of our proposed event-triggered
impulse control method.
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Figure 3. State trajectory of system (10) without impulse.
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Figure 4. State trajectory of system (10) under (17).

0 20 40 60 80 100 120 140 160 180 200

Time t

0

0.5

1

1.5

2

2.5

3

z
(t

)

10
307

Figure 5. State trajectory of system (10) under (17) with Ō.

6. Conclusions

In this paper, ISS properties of nonlinear delayed impulse systems with hybrid inputs in the
framework of event-triggered impulse control are investigated, and related criteria of the considered
system are derived based on designed ETM, where Zeno behavior is excluded. Then the theoretical
results are applied to nonlinear systems, and some sufficient conditions of ETM and impulse control
gain are obtained by LMI. Finally, two simulation examples are given to demonstrate the rationality of
theoretical results. However, due to time delay in the impulse part, only constant delay is considered,
and the control mechanism in this paper is given in advance, which has limitations in application. Then,
if it can be extended to multi-agent systems with actuation delay and a self-triggered impulse control
method for group consensus of multi-agent systems with sensing/ actuation delays is considered, this
is worth further study.
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