In this paper, the notion of hybrid Jaggi-Meir-Keeler type contraction is introduced. The existence of a fixed point for such operators is investigated. The derived results combine and extend a number of existing results in the corresponding literature. Examples are established to express the validity of the obtained results.
Citation: Erdal Karapınar, Andreea Fulga. Discussion on the hybrid Jaggi-Meir-Keeler type contractions[J]. AIMS Mathematics, 2022, 7(7): 12702-12717. doi: 10.3934/math.2022703
In this paper, the notion of hybrid Jaggi-Meir-Keeler type contraction is introduced. The existence of a fixed point for such operators is investigated. The derived results combine and extend a number of existing results in the corresponding literature. Examples are established to express the validity of the obtained results.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (France), Fund. Math., 3 (1922) 133–181. |
[2] | A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. http://dx.doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6 |
[3] | D. Jaggi, Some unique fixed point theorems, Indian. J. Pure. Appl. Math., 8 (1977), 223–230. |
[4] | E. Karapınar, Revisiting the Kannan type contractions via interpolation, Advances in the Teory of Nonlinear Analysis and its Application, 2 (2018), 85–87. http://dx.doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135 |
[5] | R. Bisht, V. Rakoćević, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory, 19 (2018), 57–64. http://dx.doi.org/10.24193/fpt-ro.2018.1.06 doi: 10.24193/fpt-ro.2018.1.06 |
[6] | R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76. |
[7] | E. Karapınar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 256. http://dx.doi.org/10.3390/math6110256 doi: 10.3390/math6110256 |
[8] | H. Aydi, E. Karapınar, A. Roldan Lopez de Hierro, $\omega$-interpolative Ćirić-Reich-Rus-type contractions, Mathematics, 7 (2019), 57. http://dx.doi.org/10.3390/math7010057 doi: 10.3390/math7010057 |
[9] | E. Karapınar, H. Aydi, Z. Mitrovic, On interpolative Boyd-Wong and Matkowski type contractions, TWMS J. Pure Appl. Math., 11 (2020), 204–212. |
[10] | H. Aydi, C. Chen, E. Karapınar, Interpolative Ciric-Reich-Rus type contractions via the Branciari distance, Mathematics, 7 (2019), 84. http://dx.doi.org/10.3390/math7010084 doi: 10.3390/math7010084 |
[11] | M. Nazam, H. Aydi, A. Hussain, Generalized interpolative contractions and an application, J. Math., 2021 (2021), 6461477. http://dx.doi.org/10.1155/2021/6461477 doi: 10.1155/2021/6461477 |
[12] | O. Popescu, Some new fixed point theorems for $\alpha$-geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 190. http://dx.doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190 |
[13] | E. Karapınar, B. Samet, Generalized ($\alpha-\psi$) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793486. http://dx.doi.org/10.1155/2012/793486 doi: 10.1155/2012/793486 |
[14] | U. Aksoy, E. Karapınar, I. Erhan, Fixed points of generalized $\alpha$-admissible contractions on $b$-metric spaces with an application to boundary value problems, J. Nonlinear Convex A., 17 (2016), 1095–1108. |
[15] | H. Aydi, E. Karapınar, H. Yazidi, Modified F-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. http://dx.doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A |
[16] | H. Aydi, E. Karapınar, D. Zhang, A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces, Results Math., 71 (2017), 73–92. |
[17] | V. Todorĉević, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham: Springer, 2019. http://dx.doi.org/10.1007/978-3-030-22591-9 |
[18] | P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: applications in science, engineering and behavioural sciences, Singapore: Springer, 2021. http://dx.doi.org/10.1007/978-981-16-4896-0 |
[19] | H. Huang, Y. Singh, M. Khan, S. Radenović, Rational type contractions in extended $b$-metric spaces, Symmetry, 13 (2021), 614. http://dx.doi.org/10.3390/sym13040614 doi: 10.3390/sym13040614 |