Research article

Discussion on the hybrid Jaggi-Meir-Keeler type contractions

  • Received: 01 March 2022 Revised: 01 April 2022 Accepted: 12 April 2022 Published: 29 April 2022
  • MSC : 47H10, 54H25

  • In this paper, the notion of hybrid Jaggi-Meir-Keeler type contraction is introduced. The existence of a fixed point for such operators is investigated. The derived results combine and extend a number of existing results in the corresponding literature. Examples are established to express the validity of the obtained results.

    Citation: Erdal Karapınar, Andreea Fulga. Discussion on the hybrid Jaggi-Meir-Keeler type contractions[J]. AIMS Mathematics, 2022, 7(7): 12702-12717. doi: 10.3934/math.2022703

    Related Papers:

  • In this paper, the notion of hybrid Jaggi-Meir-Keeler type contraction is introduced. The existence of a fixed point for such operators is investigated. The derived results combine and extend a number of existing results in the corresponding literature. Examples are established to express the validity of the obtained results.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (France), Fund. Math., 3 (1922) 133–181.
    [2] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. http://dx.doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6
    [3] D. Jaggi, Some unique fixed point theorems, Indian. J. Pure. Appl. Math., 8 (1977), 223–230.
    [4] E. Karapınar, Revisiting the Kannan type contractions via interpolation, Advances in the Teory of Nonlinear Analysis and its Application, 2 (2018), 85–87. http://dx.doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
    [5] R. Bisht, V. Rakoćević, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory, 19 (2018), 57–64. http://dx.doi.org/10.24193/fpt-ro.2018.1.06 doi: 10.24193/fpt-ro.2018.1.06
    [6] R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968), 71–76.
    [7] E. Karapınar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 256. http://dx.doi.org/10.3390/math6110256 doi: 10.3390/math6110256
    [8] H. Aydi, E. Karapınar, A. Roldan Lopez de Hierro, $\omega$-interpolative Ćirić-Reich-Rus-type contractions, Mathematics, 7 (2019), 57. http://dx.doi.org/10.3390/math7010057 doi: 10.3390/math7010057
    [9] E. Karapınar, H. Aydi, Z. Mitrovic, On interpolative Boyd-Wong and Matkowski type contractions, TWMS J. Pure Appl. Math., 11 (2020), 204–212.
    [10] H. Aydi, C. Chen, E. Karapınar, Interpolative Ciric-Reich-Rus type contractions via the Branciari distance, Mathematics, 7 (2019), 84. http://dx.doi.org/10.3390/math7010084 doi: 10.3390/math7010084
    [11] M. Nazam, H. Aydi, A. Hussain, Generalized interpolative contractions and an application, J. Math., 2021 (2021), 6461477. http://dx.doi.org/10.1155/2021/6461477 doi: 10.1155/2021/6461477
    [12] O. Popescu, Some new fixed point theorems for $\alpha$-geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 190. http://dx.doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190
    [13] E. Karapınar, B. Samet, Generalized ($\alpha-\psi$) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793486. http://dx.doi.org/10.1155/2012/793486 doi: 10.1155/2012/793486
    [14] U. Aksoy, E. Karapınar, I. Erhan, Fixed points of generalized $\alpha$-admissible contractions on $b$-metric spaces with an application to boundary value problems, J. Nonlinear Convex A., 17 (2016), 1095–1108.
    [15] H. Aydi, E. Karapınar, H. Yazidi, Modified F-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. http://dx.doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A
    [16] H. Aydi, E. Karapınar, D. Zhang, A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces, Results Math., 71 (2017), 73–92.
    [17] V. Todorĉević, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham: Springer, 2019. http://dx.doi.org/10.1007/978-3-030-22591-9
    [18] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: applications in science, engineering and behavioural sciences, Singapore: Springer, 2021. http://dx.doi.org/10.1007/978-981-16-4896-0
    [19] H. Huang, Y. Singh, M. Khan, S. Radenović, Rational type contractions in extended $b$-metric spaces, Symmetry, 13 (2021), 614. http://dx.doi.org/10.3390/sym13040614 doi: 10.3390/sym13040614
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1611) PDF downloads(89) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog