Processing math: 44%
Research article

On cubic semisymmetric bi-Cayley graphs on nonabelian simple groups

  • In this paper, we classify cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, extending a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple groups.

    Citation: Jiangmin Pan, Yingnan Zhang. On cubic semisymmetric bi-Cayley graphs on nonabelian simple groups[J]. AIMS Mathematics, 2022, 7(7): 12689-12701. doi: 10.3934/math.2022702

    Related Papers:

    [1] D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, P. Hammachukiattikul . Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM. AIMS Mathematics, 2022, 7(5): 9424-9442. doi: 10.3934/math.2022523
    [2] Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the fuzzification of Lagrange's theorem in (α,β)-Pythagorean fuzzy environment. AIMS Mathematics, 2021, 6(9): 9290-9308. doi: 10.3934/math.2021540
    [3] Akarachai Satirad, Ronnason Chinram, Aiyared Iampan . Pythagorean fuzzy sets in UP-algebras and approximations. AIMS Mathematics, 2021, 6(6): 6002-6032. doi: 10.3934/math.2021354
    [4] Supriya Bhunia, Ganesh Ghorai, Qin Xin . On the characterization of Pythagorean fuzzy subgroups. AIMS Mathematics, 2021, 6(1): 962-978. doi: 10.3934/math.2021058
    [5] Mehwish Shehzadi, Hanan Alolaiyan, Umer Shuaib, Abdul Razaq, Qin Xin . Crafting optimal cardiovascular treatment strategy in Pythagorean fuzzy dynamic settings. AIMS Mathematics, 2024, 9(11): 31495-31531. doi: 10.3934/math.20241516
    [6] Muhammad Zeeshan Hanif, Naveed Yaqoob, Muhammad Riaz, Muhammad Aslam . Linear Diophantine fuzzy graphs with new decision-making approach. AIMS Mathematics, 2022, 7(8): 14532-14556. doi: 10.3934/math.2022801
    [7] Abdul Razaq, Ghaliah Alhamzi . On Pythagorean fuzzy ideals of a classical ring. AIMS Mathematics, 2023, 8(2): 4280-4303. doi: 10.3934/math.2023213
    [8] Damchaa Adiyanyam, Enkhbayar Azjargal, Lkhagva Buyantogtokh . Bond incident degree indices of stepwise irregular graphs. AIMS Mathematics, 2022, 7(5): 8685-8700. doi: 10.3934/math.2022485
    [9] Hifza, Muhammad Gulistan, Zahid Khan, Mohammed M. Al-Shamiri, Muhammad Azhar, Asad Ali, Joseph David Madasi . A new fuzzy decision support system approach; analysis and applications. AIMS Mathematics, 2022, 7(8): 14785-14825. doi: 10.3934/math.2022812
    [10] Saleem Abdullah, Muhammad Qiyas, Muhammad Naeem, Mamona, Yi Liu . Pythagorean Cubic fuzzy Hamacher aggregation operators and their application in green supply selection problem. AIMS Mathematics, 2022, 7(3): 4735-4766. doi: 10.3934/math.2022263
  • In this paper, we classify cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, extending a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple groups.



    Fractional calculus has garnered significant attention across various fields of study because of its ability to capture non-local and long-range dependencies in data analysis and modeling. Fractional calculus provides a more flexible framework for capturing intricate dynamics in real-world systems. By incorporating non-integer orders, it becomes possible to model processes that exhibit fractal or self-similar behavior, which are prevalent in many natural and man-made systems [2,18]. This flexibility allows for a more accurate representation of complex phenomena, leading to improved understanding and enhanced predictive capabilities. Moreover, the application of fractional calculus can unveil hidden patterns and long-range dependencies that may go unnoticed when using integer-order operators [3,4,12,13]. In physics, fractional derivatives have been used to model anomalous diffusion [41], viscoelastic materials [17], and complex transport phenomena [20,43].

    A wide range of real-world processes exhibit memory effects or non-local interactions, where the behavior of the system is significantly influenced by distant events or past observations [18]. For a detailed discussion, we refer to the monographs by Kilbas et al. [27], Lakshmikanthem et al. [28], Miller and Ross [29], Podlubny [31], Almeida et al. [11], and the references therein. Kilbas et al. [27] provided generalized Riemann-Liouville fractional operators to define the derivative with respect to a function. Several fractional derivatives concerning a function have been introduced, and their properties have been studied [5,8,9,14,24,34,37,38,39]. Katugampola expands upon the established framework of Erd'elyi-Kober operators, which are commonly used in the field of fractional derivatives. However, Katugampola introduced a specific modification and variation to these operators, which is referred to as the Hilfer-Katugampola fractional derivative [26]. These properties provide insights into the behavior of such fractional derivatives and their interactions with other mathematical operations.

    Terminal value problems have applications in various fields where the ability to specify a desired final state is crucial to the problem at hand. For instance, in optimal control, terminal value problems are employed to determine the optimal control that minimizes a cost function over a given time frame. The terminal value serves as a constraint, allowing the specification of a particular final position or velocity for the system. Researchers have extensively investigated the existence and uniqueness of solutions to the terminal value problem, exploring the conditions under which a unique value can be determined for the system. For example, Benchohra et al. [16] investigated the existence and uniqueness of solutions for the terminal value problem in the Hilfer-Katugampola operator by using different types of classical fixed point theory. Almalahi et al. [6,7], developed sufficient conditions for the existence and uniqueness of solutions as well as stability results for the new terminal problems with respect to another function. Shah et al. [35] introduced some important notes on terminal value problems for fractional differential equations (FDEs) on infinite intervals. Abdo et al. [1] investigated the novel properties for the solution of a coupled system for terminal value problems involving a generalized Hilfer fractional operator. On the other hand, the symmetric solutions offer valuable insights into the behavior, stability, and simplification of mathematical and physical systems. They play a crucial role in simplifying analysis, facilitating physical interpretation, aiding in stability analysis, enhancing numerical computations, and contributing to the development of mathematical theories [42,44].

    All of the aforementioned studies solely examined the properties of solutions within a single Banach space. However, our study seeks to expand upon this by investigating how the behavior of solutions is influenced by different weighted Banach spaces. Also, we aim to explore the impact of altering the function w on the solutions, while also examining multiple symmetric cases to observe the resulting variations in their behavior.

    In this study, we investigate the existence and uniqueness of solutions for a system of terminal FDEs with w-Hilfer fractional derivatives and study their Ulam-Hyers (UH) stability [19,33,40]. Specifically, we study the fractional system

    {Dpi,αa+,w(ι)ςi(ι)=Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)),   ι(a,b],a>0,ςi(b)=υiR,  i=1,2,....,n, (1.1)

    where

    wC1([a,b],R) is an increasing function such that w(ι)0, for all ι(a,b).

    Dpi,αa+,w(ι) denotes the w -Hilfer fractional derivatives of order pi,(0<pi<1) and type α,(0α1), for each i=1,2,....,n.

    ● The functions Fi:J×RnR,i=1,2,....,n, are continuous and satisfy some conditions that will be described later.

    One of the primary motivations for studying terminal value problems with fractional derivatives is to analyze the stability properties of the corresponding dynamical systems. The w-Hilfer fractional derivative can capture complex behaviors such as subdiffusion or superdiffusion, which are not possible with classical integer-order derivatives. By formulating the problem in a weighted space, stability analysis can be performed in a manner that accounts for the importance or significance of different components or variables within the system. The innovative aspects of this work compared to the existing literature can be summarized as follows:

    ● We extend the analysis from single Banach spaces to different weighted Banach spaces, exploring how the change of weights affects solution properties. This allows us to capture additional structural information and understand the impact of weight functions on solutions.

    ● We investigate the sensitivity of solutions to changes in the weight function, providing insights into the relationship between the weighted functions and solution behavior by considering multiple symmetric cases to observe variations in solution behavior under different symmetry conditions.

    ● Furthermore, our study examines the system's properties in various Banach weighted spaces. We establish the existence, uniqueness, and stability of solutions for the system of w-Hilfer FDEs with minimal hypotheses, contributing to the theoretical understanding and providing a foundation for further analysis and applications.

    ● To the best of our knowledge, this is the first study to establish the existence, uniqueness, and stability of solutions for a system of w-Hilfer FDEs in different Banach-weighted spaces. Our approach expands the understanding of the system's behavior and broadens the range of potential applications.

    ● Additionally, the study addresses various parallel problems by considering specific function instances w. System (1.1) encompasses a fractional derivative that integrates several traditional fractional derivatives. This broadens the scope of the analysis and allows for a comprehensive investigation of the system's properties.

    Notations: To enhance the readability, we fix the above notations and the following ones, we use these without any further mention.

    (1) For 0<a<b, let J:=(a,b]R.

    (2)Γ(p) is the standard Gamma function given in [15].

    (3)C(ˉJ,R) is the Banach space for all real-valued continuous functions defined on ˉJ, equipped with the norm ς=maxιJ|ς(ι)|, where ˉJ=[a,b]. The space ni=1C(ˉJ,R) is the product space of n copies of C(ˉJ,R).

    (4) For each i=1,2,...,n, let γi=pi+α(1pi), such that pi(0,1) and α[0,1]. Then, we define the following spaces:

    C1γi,w(J,R)={ς:JR;(w(ι)w(a))1γiςi(ι)C(ˉJ,R)},

    and

    Cγi1γi,w(J,R)={ςC1γi,w(J,R):Dγia+,wςC1γi,w(J,R)}.

    The spaces C1γi,w(J,R) are called weighted spaces. Clearly, these are Banach spaces equipped with the norm

    ςi1γi,w=maxιJ|(w(ι)w(a))1γiςi(ι)|.

    (5)B=ni=1C1γi,w(J,R) is the product space of C1γi,w(J,R),i=1,2,....,n. The product spaces B are Banach spaces equipped with the norm

    (ς1,ς2,.......,ςn)B=ni=1ςi1γi.

    Hypotheses: To obtain our results, the following hypotheses must be satisfied:

    (Hy1) For each (ι,ς1,ς2,....,ςn),(ι,ς1,ς2,....,ςn)J×Rn, there exist constants κjFi>0,i,j=1,2,....,n such that

    |Fi(ι,ς1(ι),ς2(ι),....,ςn(ι))Fi(ι,ς1(ι),ς2(ι),....,ςn(ι))|nj=1κjFi|ςj(ι)ςj(ι)|.

    (Hy2) For each (ι,ς1,ς2,....ςn)J×Rn, there exist φjFi>0 with

    |Fi(ι,ς1(ι),ς2(ι),....ςn(ι))|nj=1φjFi|ςj(ι)|.

    This paper is organized as follows. In Section 2, we state the needed fundamental notions of fractional derivatives, lemmas, and theorems that will be used in the conversion of the system into a fixed-point problem. In Section 3, we study the existence and uniqueness results of system (1.1), and discuss some properties of the symmetric cases of system (1.1). In Section 4, we investigate the UH stability of the solutions of system (1.1) and its symmetric cases. To illustrate our findings, Section 5 exhibits numerical examples with four cases and provides graphs of the solutions for all cases. We end the paper with concluding remarks.

    In this section, the background definitions, lemmas, and theorems are given [8,27,30,37].

    Definition 2.1. Let 0<p<1, ς be a continuous function on [a,b], and w be an increasing function on (a,b) such that w(ι)0 for all ι(a,b). Then

    (1) The w-Riemann-Liouville fractional integral for ς of order p is given as

    Ipa+,w(ι)ς(ι)=1Γ(p)ιaw(s)(w(ι)w(s))p1ς(s)ds.

    (2) The Riemann-Liouville fractional derivative for ς of order p with respect to w is given as

    Dpa+,w(ι)ς(ι)=(1w(ι)ddι)I1pa+,w(ι)ς(ι).

    Definition 2.2. Let 0<p<1, 0α1, ι>a, and w be an increasing function on (a,b) such that w(ι)0 for all ι(a,b). Then, the wHilfer fractional derivative of ς of order p and type α is defined by

    Dp,αa+,w(ι)ς(ι)=Iα(1p)a+,w(ι)(1w(ι)ddι) I(1α)(1p)a+,w(ι) ς(ι). (2.1)

    Clearly,

    Dp,αa+,w(ι)ς(ι)=Iγpa+,w(ι) Dγa+,w(ι)ς(ι),

    where γ=p+α(1p).

    Lemma 2.3. For p,η,δ>0, we have

    (1) Ipa+,w(ι) Iηa+,w(ι)ς(ι)=Ip+ηa+,w(ι)ς(ι).

    (2) Ipa+,w(ι)(w(ι)w(a))δ1=Γ(δ)Γ(p+δ)(w(ι)w(a))p+δ1.

    Note that Dγa+,w(ι)(w(ι)w(a))γ1=0, where γ=p+α(1p).

    Lemma 2.4. Let ςC(J,R), p(0,1) and α[0,1]. For γ=p+α(1p), we have

    Ipa+,w(ι) Dpa+,w(ι)ς(ι)=ς(ι)(w(ι)w(a))γ1Γ(γ) I1γa+,w(ι)ς(ι).

    Lemma 2.5. For each 0<p<1,0α1,γ=p+α(1p), and ςCγ1γ;w(ι)(J,R), we have

    Dp,αa+,w(ι)Ipa+,w(ι)ς(ι)=ς(ι),  Iγa+,w(ι)Dγa+,w(ι)ς(ι)=Ipa+,w(ι) Dp,αa+,w(ι)ς(ι),

    and

    Dγa+,w(ι)Ipa+,w(ι)ς(ι)=Dα(1p)a+,w(ι)ς(ι).

    Definition 2.6. (Contraction mapping) Let (X,d) be a metric space, and Q:XX be a mapping. Then, Q is a contraction mapping if there exists a constant 0L<1 such that for all ς,yX, the following inequality holds:

    d(Q(ς),Q(y))L d(ς,y).

    The constant L is referred to as the contraction constant. If L=0, the mapping is called a strict contraction.

    Theorem 2.7. (Banach fixed point theorem) Let (X,d) be a complete metric space, and Q:XX be a contraction mapping. Then, the mapping Q has a unique fixed point in X.

    Definition 2.8. Let a<b be real numbers, and X be the space of all continuous function h on [a,b]. The set ΩX is said to be

    (1) a uniformly bounded set if there exists M>0 with h=supι[a,b]|h(ι)|<M, for every hΩ.

    (2) an equicontinuous set if for every ε>0 there exists δ>0 such that

    |ιι|<δ|h(ι)h(ι)|<ε,

    for all hΩ and for any ι,ι[a,b].

    Theorem 2.9. (Arzelá-Ascoli's theorem) Let a<b be real numbers, and X be the space of all continuous function on [a,b]. The set ΩX is relatively compact if it is a uniformly bounded and equicontinuous set.

    Theorem 2.10. (Schauder's fixed-point theorem) Let X be a Banach space and ΩX be a non-empty, compact, convex subset. If Q:ΩΩ is a continuous mapping, and Q(Ω) is a relatively compact subset of X, then Q has at least one fixed point in Ω.

    In this section, we establish and develop sufficient conditions for the existence and uniqueness as well as UH stability results for the system (1.1). We begin by stating an equivalent integrals for the considered system.

    In the following theorem, we convert system (1.1) into equivalent integral equations.

    Theorem 3.1. Let 0<pi<1, 0α1, and γi=pi+α(1pi),i=1,2,....,n. If Fi(,ς1(),ς2(),......,ςn())C1γ,w(J,R), and ςiCγi1γi,w(J,R), then ςi satisfies system (1.1) if and only if ςi is given by:

    ςi(ι)=(w(ι)w(a)w(b)w(a))γi1[υiIpia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))(b)]+Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)), (3.1)

    where

    Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))(b)=1Γ(pi)baw(s)(w(b)w(s))pi1Fi(s,ς1(s),..,ςn(s))ds,

    and

    Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))=1Γ(pi)ιaw(s)(w(ι)w(s))pi1Fi(s,ς1(s),....,ςn(s))ds.

    Proof. Let ςiCγi1γi,w(J,R) be a solution of system (1.1). We prove that ςi is also a solution of Eq (3.1). From the definition of Cγi1γi,w(J,R), and using the definition 2.2, we have

    I1γia+,w(ι)ςi(ι)C1γi,w(J,R) and Dγia+,w(ι)ςi(ι)=D1a+,w(ι)I1γia+,w(ι)ςi(ι)C1γi,w(J,R).

    By the definition of the space Cn1γi,w(J,R), it follows that

    I1γia+,w(ι)ςi(ι)C11γi,w(J,R). (3.2)

    Using Lemma 2.4, with p=γi, we obtain

    (Iγia+,w(ι) Dγia+,w(ι)ςi)(ι)=ςi(ι)(w(ι)w(a))γi1Γ(γi) limιa(I1γia+,w(ι)ςi)(ι). (3.3)

    By hypothesis (ςiCγi1γi,w(J,R)) and Lemma 2.5, we have

    (Iγia+,w(ι) Dγia+,w(ι)ςi)(ι)=Ipia+,w(ι) Dpi,αa+,w(ι)ςi(ι).

    Since Dpi,αa+,w(ι)ςi(ι)=Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)), we have

    (Iγia+,w(ι) Dγia+,w(ι)ςi)(ι)=Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)). (3.4)

    Comparing Eqs (3.3) and (3.4), we see that

    ςi(ι)=(w(ι)w(a))γi1Γ(γi)limιa(I1γia+,w(ι)ςi)(ι)+Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)). (3.5)

    Replacing ι with b in Eq (3.5), we get

    ςi(b)=(w(b)w(a))γi1Γ(γi)limιa(I1γia+,w(ι)ςi)(ι)+Ipia+,w(b)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)).

    Using the terminal condition ςi(b)=υi, we get

    (w(b)w(a))γi1Γ(γi)limιa(I1γia+,w(ι)ςi)(ι)+Ipia+,w(b)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))=υi.

    Thus,

    limιa(I1γia+,w(ι)ςi)(ι)=Γ(γi)(w(b)w(a))γi1[υiIpia+,w(b)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))]. (3.6)

    Putting Eq (3.6) into Eq (3.5), we get

    ςi(ι)=((w(ι)w(a))(w(b)w(a)))γi1[υiIpia+,w(b)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))]+Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)).

    Hence, ςi(ι) satisfies Eq (3.1).

    Conversely, let ςiCγi1γi,w(J,R) be functions satisfying (3.1). We prove that ςi is also a solution of the system (1.1). Applying the operator Dγia+,w(ι) on both sides of Eq (3.1), we get

    Dγia+,w(ι)ςi(ι)=Dγia+,w(ι)((w(ι)w(a))(w(b)w(a)))γi1[υiIpia+,w(b)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))]+Dγia+,w(ι)Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)). (3.7)

    By Lemma 2.3, we have Dγia+,w(ι)(w(ι)w(a))γi1=0, and hence Eq (3.7) becomes

    Dγia+,w(ι)ςi(ι)=Dγia+,w(ι)Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)). (3.8)

    Then, from Lemma 2.5, the right side of Eq (3.8) becomes

    Dγia+,w(ι)Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))=Dα(1pi)a+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)).

    Thus, Eq (3.8) becomes

    Dγia+,w(ι)ςi(ι)=Dα(1pi)a+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)).

    From Eq (3.2), we have Dγia+,w(ι)ςi(ι)C1γi,w(J,R), and hence, Eq (3.8) implies

    Dγia+,w(ι)ςi(ι)=Dα(1pi)a+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))C1γi,w(J,R). (3.9)

    As Fi(,ς1(),ς2(),......,ςn())C1γi,w(J,R), it follows that

    I1α(1pi)a+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))C1γi,w(J,R). (3.10)

    From Eqs (3.9) and (3.10) and the definition of the space Cn1γi,w(J,R), we get

    I1α(1pi)a+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))C11γi,w(J,R).

    Now, by applying the operator Iα(1pi)a+,w(ι) on both sides of Eq (3.9) and using Lemma 2.4, we have

    Iα(1pi)a+,w(ι)Dγia+,w(ι)ςi(ι)=ςi(ι)I1α(1pi)a+,w(ι)Fi(a,ς1(a),ς2(a),......,ςn(a))Γ(α(1pi))(w(ι)w(a))α(1pi)1=Dpi,αa+,w(ι)ςi(ι)=Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)). (3.11)

    From Eq (2.1), Eq (3.11) reduces to

    Dpi,αa+,w(ι)ςi(ι)=Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)).

    Thus, Eq (1.1) holds.

    Let Q:BB be an operator defined by Q=(Q1,Q2,.....,Qn), where

    Qi(ς1,ς2,....,ςn)(ι)=(w(ι)w(a)w(b)w(a))γi1[υiIpia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))(b)]+Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι)).

    Theorem 3.2. Assume both (Hy1) and (Hy2) hold. For r=1,2,.....,n, let

    Pr=ni=12(w(b)w(a))1γiφrFiΓ(γr)Γ(pi+γr)(w(b)w(a))pi+γr1,

    and

    ζr=ni=12(w(b)w(a))1γiκrFiΓ(γr)Γ(pi+γr)(w(b)w(a))pi+γr1.

    If ζ=maxr{ζr}<1 and P=maxr{Pr}<1, then system (1.1) has at least one solution.

    Proof. Let β11Pni=1|υi|(w(b)w(a))γi1, and define a closed ball Sβ as

    Sβ={(ς1,ς2,....ςn)B:(ς1,ς2,....ςn)Bβ}.

    To apply Schauder's fixed point theorem, we divide the proof into the following steps.

    Step 1: Q(Sβ)Sβ. For any (ς1,ς2,....ςn)Sβ, we have

    Q(ς1,ς2,....ςn)Bni=1Qi(ς1,ς2,....ςn)C1γi,w. (3.12)

    From (Hy2), we get

    |Qi(ς1,ς2,....ςn)(ι)|(w(ι)w(a)w(b)w(a))γi1[|υi|+Ipia+,w(b)|Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))|]+Ipia+,w(ι)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))(w(ι)w(a)w(b)w(a))γi1[|υi|+ Ipia+,w(b)(nj=1φjFi|ςj(b)|)]+Ipia+,w(ι)(nj=1φjFi|ςj(ι)|). (3.13)

    Taking into consideration that (ς1,ς2,....ςn)B, we have

    Ipia+,w(ι)(nj=1φFji|ςj(ι)|)=nj=1Ipia+,w(ι)φjFi(w(ι)w(a))γj1|(w(ι)w(a))1γj(ςj(ι))|nj=1φjF1Γ(γj)Γ(pi+γj)(w(b)w(a))pi+γj1ςjC1γj,w. (3.14)

    From (3.13) and (3.14), it follows that

    |(w(ι)w(a))1γiQi(ς1,ς2,....ςn)(ι)|(w(b)w(a))1γi[|υi|+nj=1φjFiΓ(γj)Γ(pi+γj)(w(b)w(a))pi+γj1ςjC1γj,w]+(w(ι)w(a))1γinj=1φjFiΓ(γj)Γ(pi+γj)(w(b)w(a))pi+γj1ςjC1γj,w.

    Since γi<1, then 1γi>0, and hence (w(ι)w(a))1γi<(w(b)w(a))1γi. Then, we get

    Qi(ς1,ς2,....ςn)C1γi,w|υi|(w(b)w(a))1γi+2(w(b)w(a))1γi×nj=1φjFiΓ(γj)Γ(pi+γj)(w(b)w(a))pi+γj1ςjC1γj,w.

    Thus,

    Q(ς1,ς2,....ςn)Bni=1Qi((ς1,ς2,....ςn)C1γi,wni=1|υi|(w(b)w(a))1γi+ni=12(w(b)w(a))1γi×nj=1φjFiΓ(γj)Γ(pi+γj)(w(b)w(a))pi+γj1ςjC1γj,wni=1|υi|(w(b)w(a))1γi+P(ς1,ς2,....ςn)Bβ.

    Hence, Q(Sβ)Sβ.

    Step 2: Q is continuous. Let (ς1k,ς2k,....,ςnk) be a sequence in Sβ such that (ς1k,ς2k,....,ςnk)(ς1,ς2,....,ςn) in Sβ as k. Then, we have

    Q(ς1k,ς2k,....,ςnk)(ι)Q(ς1,ς2,....,ςn)(ι)Bni=1(Qi(ς1k,ς2k,....,ςnk)Qi(ς1,ς2,....,ςn))(ι)C1γi,wni=1(w(b)w(a))1γiIpia+,w(ι)|Fi(ι,ς1k(ι),ς2k(ι),....,ςnk(ι))(b)Fi(ι,ς1(ι),ς2(ι),....,ςn(ι))(b)|+ni=1(w(ι)w(a))1γiIpia+,w(ι)|Fi(ι,ς1k(ι),ς2k(ι),....,ςnk(ι))Fi(ι,ς1(ι),ς2(ι),....,ςn(ι))|ni=12(w(b)w(a))1γinj=1κiFiΓ(γj)Γ(pi+γj)(w(b)w(a))pi+γj1ςjkςjC1γj,wζ(ς1k,ς2k,....,ςnk)(ς1,ς2,....ςn)B.

    This implies that Q(ς1k,ς2k,....,ςnk)Q(ς1,ς2,....,ςn)B0 as k. So, Q is continuous.

    Step 3: Q(Sβ)is equicontinuous.

    For ι1,ι2J with ι1<ι2, and for any (ς1,ς2,....,ςn)Sβ, we have

    |Q(ς1,ς2,....,ςn)(ι2)Q(ς1,ς2,....,ςn)(ι1)|ni=1|Qi(ς1,ς2,....,ςn)(ι2)Qi(ς1,ς2,....,ςn)(ι1)|ni=1(w(ι2)w(a))γi1(w(ι1)w(a))γi1(w(b)w(a))γi1×[υiIpia+,w(b)Fi(ι,ς1(ι),ς2(ι),......,ςn(ι))(b)]+ni=1|Ipia+,w(ι2)Fi(ι2,ς1,ς2,....,ςn)Ip1a+,w(ι1)Fi(ι1,ς1,ς2,....,ςn)|.

    Since \mathbb{F}_{i}(\cdot, \varsigma _{1}(\cdot), ...., \varsigma _{n}(\cdot)) are continuous on \mathbb{J} , there exist \xi _{\mathbb{F} _{i}}\in \mathbb{R} such that

    \begin{equation*} \left\vert \mathbb{F}_{i}(\cdot ,\varsigma _{1}(\cdot ),....,\varsigma _{1}(\cdot ))\right\vert \leq \xi _{\mathbb{F}_{i}}. \end{equation*}

    Hence,

    \begin{eqnarray} &&\left\vert \mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})(\iota _{2})-\mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})(\iota _{1})\right\vert \\ &\leq &\sum\limits_{i = 1}^{n}\frac{\left( w(\iota _{2})-w(a)\right) ^{\gamma _{i}-1}-\left( w(\iota _{1})-w(a)\right) ^{\gamma _{i}-1}}{\left( w(b)-w(a)\right) ^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I} _{a^{+},w(b)}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))(b)\right] \\ &&+\sum\limits_{i = 1}^{n}\left\vert \mathbb{I}_{a^{+},w(\iota _{2})}^{p_{i}}\mathbb{F }_{i}(\iota _{2},\varsigma _{1}(\iota _{2}),\varsigma _{2}(\iota _{2}),....,\varsigma _{n}(\iota _{2}))-\mathbb{I}_{a^{+},w(\iota _{1})}^{p_{i}}\mathbb{F}_{i}(\iota _{1},\varsigma _{1}(\iota _{1}),\varsigma _{2}(\iota _{1}),....,\varsigma _{n}(\iota _{1}))\right\vert \\ &\leq &\sum\limits_{i = 1}^{n}\frac{\left( w(\iota _{2})-w(a)\right) ^{\gamma _{i}-1}-\left( w(\iota _{1})-w(a)\right) ^{\gamma _{i}-1}}{\left( w(b)-w(a)\right) ^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I} _{a^{+},w(b)}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))(b)\right] \\ &&+\sum\limits_{i = 1}^{n}\frac{1}{\Gamma (p_{i})}\int_{a}^{\iota _{1}}w^{\prime }(\iota )\left[ (w(\iota _{2})-w(\iota ))^{p_{i}-1}-(w(\iota _{1})-w(\iota ))^{p_{i}-1}\right] \left\vert \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota ))\right\vert d\iota \\ &&+\sum\limits_{i = 1}^{n}\frac{1}{\Gamma (p_{i})}\int_{\iota _{1}}^{\iota _{2}}w^{\prime }(\iota )(w(\iota _{2})-w(\iota ))^{p_{i}-1}\left\vert \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota ))\right\vert d\iota \\ &\leq &\sum\limits_{i = 1}^{n}\frac{\left( w(\iota _{2})-w(a)\right) ^{\gamma _{i}-1}-\left( w(\iota _{1})-w(a)\right) ^{\gamma _{i}-1}}{\left( w(b)-w(a)\right) ^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I} _{a^{+},w(b)}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))(b)\right] \\ &&+\sum\limits_{i = 1}^{n}\frac{\xi _{\mathbb{F}_{i}}}{\Gamma (p_{i})}\int_{a}^{\iota _{1}}w^{\prime }(\iota )\left[ (w(\iota _{2})-w(\iota ))^{p_{i}-1}-(w(\iota _{1})-w(\iota ))^{p_{i}-1}\right] d\iota \\ &&+\sum\limits_{i = 1}^{n}\frac{\xi _{\mathbb{F}_{i}}}{\Gamma (p_{i})}\int_{\iota _{1}}^{\iota _{2}}w^{\prime }(\iota )(w(\iota _{2})-w(\iota ))^{p_{i}-1}d\iota \\ &\leq &\sum\limits_{i = 1}^{n}\frac{\left( w(\iota _{2})-w(a)\right) ^{\gamma _{i}-1}-\left( w(\iota _{1})-w(a)\right) ^{\gamma _{i}-1}}{\left( w(b)-w(a)\right) ^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I} _{a^{+},w(b)}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))(b)\right] \\ &&+\sum\limits_{i = 1}^{n}\frac{\xi _{\mathbb{F}_{i}}}{\Gamma (p_{i}+1)}\left[ \left( w(\iota _{2})-w(a)\right) ^{p_{i}}-\left( w(\iota _{1})-w(a)\right) ^{p_{i}} \right] . \end{eqnarray} (3.15)

    Thus, we get

    \begin{eqnarray*} &&\left\vert \mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})(\iota _{2})-\mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})(\iota _{1})\right\vert \\ &\leq &\sum\limits_{i = 1}^{n}\frac{\left( w(\iota _{2})-w(a)\right) ^{\gamma _{i}-1}-\left( w(\iota _{1})-w(a)\right) ^{\gamma _{i}-1}}{\left( w(b)-w(a)\right) ^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I} _{a^{+},w(b)}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))(b)\right] \\ &&+\sum\limits_{i = 1}^{n}\frac{2\xi _{\mathbb{F}_{i}}}{\Gamma (p_{i}+1)}\left[ \left( w(\iota _{2})-w(a)\right) ^{p_{i}}-\left( w(\iota _{1})-w(a)\right) ^{p_{i}}\right] . \end{eqnarray*}

    Since w(\iota) is an increasing function, then

    \begin{equation*} \left\vert \mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})(\iota _{2})-\mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})(\iota _{1})\right\vert \rightarrow 0,\mbox{ as }\iota _{2}\rightarrow \iota _{1}. \end{equation*}

    This implies that \mathbb{Q} \left(\mathcal{S}_{\beta }\right) is equicontinuous. Since \mathbb{Q} \left(\mathcal{S}_{\beta }\right) is also uniformly bounded, then by Arzelá-Ascoli's theorem, it is relatively compact. By Theorem 3.1, \mathbb{Q} has a fixed point. Consequently, system (1.1) possesses at least one solution.

    Theorem 3.3. Suppose that hypothesis (Hy_{1}) holds. For r = 1, 2, ..., n, let

    \begin{equation*} \zeta _{r} = \sum\limits_{i = 1}^{n}2(w(b)-w(a))^{1-\gamma _{i}}\kappa _{\mathbb{F} _{i}}^{r}\frac{\Gamma (\gamma _{r})}{\Gamma (p_{i}+\gamma _{r})} (w(b)-w(a))^{p_{i}+\gamma _{r}-1}. \end{equation*}

    If \zeta = \underset{r}{\max }\left\{ \zeta _{r}\right\} < 1 , then system (1.1) has a unique solution.

    Proof. To show that system (1.1) has a unique solution, we show that the operator \mathbb{Q} is a contraction, where \Phi as defined in Theorem 3.1.

    For all \iota \in \mathbb{J} and (\varsigma _{1}, \varsigma _{2}, ...., \varsigma _{n}), (\varsigma _{1}^{\ast }, \varsigma _{2}^{\ast }, ...., \varsigma _{n}^{\ast })\in \mathcal{B}, we have

    \begin{eqnarray*} &&\left\Vert \mathbb{Q}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})- \mathbb{Q}(\varsigma _{1}^{\ast },\varsigma _{2}^{\ast },....,\varsigma _{n}^{\ast })\right\Vert _{\mathcal{B}}\leq \sum\limits_{i = 1}^{n}\left\Vert \mathbb{ Q}_{i}(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})-\mathbb{Q} _{i}(\varsigma _{1}^{\ast },\varsigma _{2}^{\ast },....,\varsigma _{n}^{\ast })\right\Vert _{\mathcal{C}_{1-\gamma _{i},w}} \\ &\leq &\sum\limits_{i = 1}^{n}(w(b)-w(a))^{1-\gamma _{i}}\mathbb{I} _{a^{+},w(b)}^{p_{i}}\left\vert \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))-\mathbb{F}_{i}(\iota ,\varsigma _{1}^{\ast }(\iota ),\varsigma _{2}^{\ast }(\iota ),....,\varsigma _{n}^{\ast }(\iota ))\right\vert \\ &&+\sum\limits_{i = 1}^{n}(w(\iota )-w(a))^{1-\gamma _{i}}\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\left\vert \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))-\mathbb{F}_{i}(\iota ,\varsigma _{1}^{\ast }(\iota ),\varsigma _{2}^{\ast }(\iota ),....,\varsigma _{n}^{\ast }(\iota ))\right\vert \\ &\leq &\sum\limits_{i = 1}^{n}2(w(b)-w(a))^{1-\gamma _{i}}\left( \sum\limits_{j = 1}^{n}\kappa _{\mathbb{F}_{i}}^{j}\frac{\Gamma (\gamma _{j})}{\Gamma (p_{i}+\gamma _{j})} (w(b)-w(a))^{p_{i}+\gamma _{j}-1}\left\Vert \varsigma _{j}-\varsigma _{j}^{\ast }\right\Vert _{\mathcal{C}_{1-\gamma _{j},w}}\right) \\ &\leq &\zeta \left\Vert (\varsigma _{1},\varsigma _{2},....,\varsigma _{n})-(\varsigma _{1}^{\ast },\varsigma _{2}^{\ast },....,\varsigma _{n}^{\ast })\right\Vert _{\mathcal{B}}. \end{eqnarray*}

    Since \zeta < 1 , the operator \mathbb{Q} is a contraction map. Thus, by Theorem 2.7, system (1.1) has a unique solution.

    In this subsection, we consider some symmetric cases of system (1.1):

    Case1: w(\iota) = \iota . In this case, system (1.1) reduces to a system of Hilfer fractional equations in the following form

    \begin{equation} \left\{ \begin{array}{c} \mathbb{D}_{a^{+},\iota }^{p_{i},\alpha }\varsigma _{i}(\iota ) = \mathbb{F} _{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )),\ \ \ \iota \in \mathbb{J}, \\ \varsigma _{i}(b) = \upsilon _{i}\in \mathbb{R},i = 1,2,....,n, \end{array} \right. \end{equation} (3.16)

    where \mathbb{D}_{a^{+}, \iota }^{p_{i}, \alpha } represents the Hilfer fractional derivative of order p_{i} [23]. Let \mathcal{B} _{1} = \prod_{i = 1}^{n}C_{1-\gamma _{i}, \iota }\left(\mathbb{J}, \mathbb{R} \right), where \mathcal{C}_{1-\gamma _{i}, \iota } is the weighted space defined as in the notation part and equipped with the norm

    \begin{equation} \left\Vert \varsigma _{i}\right\Vert _{1-\gamma _{i}} = \max\limits_{\iota \in \mathbb{J}}\left\vert (\iota -a)^{1-\gamma _{i}}\varsigma _{i}(\iota )\right\vert . \end{equation} (3.17)

    Theorems 3.2 and 3.3 imply the following corollary.

    Corollary 3.4. Assume that both (Hy _{1}) and (Hy _{2}) hold. For 1\leq r\leq n, let

    \begin{equation} \mathcal{P}_{r}^{\star } = \sum\limits_{i = 1}^{n}2(b-a)^{\gamma _{i}-1}\varphi _{ \mathbb{F}_{i}}^{r}\frac{\Gamma (\gamma _{r})}{\Gamma (p_{i}+\gamma _{r})} (b-a)^{p_{i}+\gamma _{r}-1}, \end{equation} (3.18)

    and

    \begin{equation} \zeta _{r}^{\star } = \sum\limits_{i = 1}^{n}2(b-a)^{\gamma _{i}-1}\kappa _{\mathbb{F} _{i}}^{r}\frac{\Gamma (\gamma _{r})}{\Gamma (p_{i}+\gamma _{r})} (b-a)^{p_{i}+\gamma _{r}-1}. \end{equation} (3.19)

    If \mathcal{P}^{\star } = \underset{r}{\max }\left\{ \mathcal{P}_{r}^{\star }\right\} < 1, and \zeta ^{\star } = \underset{r}{\max }\{\zeta _{r}^{\star }\} < 1 , then system (3.16) has at least one solution (\varsigma _{1}, \varsigma _{2}, ...., \varsigma _{n})\in \mathcal{B}_{1} , where \varsigma _{i} is given by

    \begin{eqnarray*} \varsigma _{i}(\iota ) & = &\frac{(\iota -a)^{\gamma _{i}-1}}{(b-a)^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I}_{a^{+},b}^{p_{i}}\mathbb{F} _{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right] \\ &&+\mathbb{I}_{a^{+},\iota }^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )), \end{eqnarray*}

    where

    \begin{equation*} \mathbb{I}_{a^{+},b}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota )) = \frac{1}{\Gamma (p_{i}) }\int_{a}^{b}(b-s)^{p_{i}-1}\mathbb{F}_{i}(s,\varsigma _{1}(s),\varsigma _{2}(s),....,\varsigma _{n}(s))ds, \end{equation*}

    and

    \begin{equation*} \mathbb{I}_{a^{+},\iota }^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota )) = \frac{1}{\Gamma (p_{i}) }\int_{a}^{\iota }(\iota -s)^{p_{i}-1}\mathbb{F}_{i}(s,\varsigma _{1}(s),\varsigma _{2}(s),....,\varsigma _{n}(s))ds. \end{equation*}

    Case 2: w(\iota) = \log \iota . In this case, system (1.1) has the form

    \begin{equation} \left\{ \begin{array}{c} \mathbb{D}_{1^{+},\log \iota }^{p_{i},\alpha }\varsigma _{i}(\iota ) = \mathbb{ F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )),\ \ \ \iota \in \mathbb{J},a = 1, \\ \varsigma _{i}(b) = \upsilon _{i}\in \mathbb{R},i = 1,2,....,n, \end{array} \right. \end{equation} (3.20)

    where, \mathbb{D}_{1^{+}, \log \iota }^{p_{i}, \alpha } is the Hilfer-Hadamard fractional derivative of order p_{i} [22,32]. Let \mathcal{B}_{2} = \prod_{i = 1}^{n}C_{1-\gamma _{i}, \log \iota }\left(\mathbb{J}, \mathbb{R}\right), where \mathcal{C}_{1-\gamma _{i}, \log \iota } is equipped with the norm

    \begin{equation} \left\Vert \varsigma _{i}\right\Vert _{1-\gamma _{i},\log \iota } = \max\limits_{\iota \in \mathbb{J}}\left\vert (\log \iota )^{1-\gamma _{i}}\varsigma _{i}(\iota )\right\vert . \end{equation} (3.21)

    Theorems 3.2 and 3.3 then imply the following corollary.

    Corollary 3.5. Assume that both (Hy_{1}) and (Hy_{2}) hold. For 1\leq r\leq n, let

    \begin{equation} \mathcal{P}_{r}^{\ast \ast } = \sum\limits_{i = 1}^{n}2\left( \log \iota \right) ^{\gamma _{i}-1}\varphi _{\mathbb{F}_{i}}^{r}\frac{\Gamma (\gamma _{r})}{ \Gamma (p_{i}+\gamma _{r})}\left( \log \iota \right) ^{p_{i}+\gamma _{r}-1}, \end{equation} (3.22)

    and

    \begin{equation} \zeta _{j}^{\ast \ast } = 2\left( \log \iota \right) ^{\gamma _{i}-1}\sum\limits_{j = 1}^{n}\kappa _{\mathbb{F}_{i}}^{j}\frac{\Gamma (\gamma _{j})}{ \Gamma (p_{i}+\gamma _{j})}(\log \iota )^{p_{i}+\gamma _{j}-1}. \end{equation} (3.23)

    If \mathcal{P}^{\ast \ast } = \underset{r}{\max }\left\{ \mathcal{P} _{r}^{\ast \ast }\right\} < 1, and \zeta ^{\ast \ast } = \underset{r}{\max } \{\zeta _{r}^{\ast \ast }\} < 1, then, system (3.20) has at least one solution (\varsigma _{1}, \varsigma _{2}, ...., \varsigma _{n})\in \mathcal{B} _{2}, where \varsigma _{i} is given by

    \begin{eqnarray*} \varsigma _{i}(\iota ) & = &\frac{(\log \iota )^{\gamma _{i}-1}}{(\log b)^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I}_{1^{+},\log b}^{p_{i}} \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right] \\ &&+\mathbb{I}_{1^{+},\log \iota }^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )), \end{eqnarray*}

    where

    \begin{equation*} \mathbb{I}_{1^{+},\log b}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota )) = \frac{1}{\Gamma (p_{i}) }\int_{1}^{b}\frac{1}{s}(\log \frac{b}{s})^{p_{i}-1}\mathbb{F} _{i}(s,\varsigma _{1}(s),\varsigma _{2}(s),....,\varsigma _{n}(s))ds, \end{equation*}

    and

    \begin{equation*} \mathbb{I}_{1^{+},\log \iota }^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota )) = \frac{1}{ \Gamma (p_{i})}\int_{1}^{\iota }\frac{1}{s}(\log \frac{\iota }{s})^{p_{i}-1} \mathbb{F}_{i}(s,\varsigma _{1}(s),\varsigma _{2}(s),....,\varsigma _{n}(s))ds. \end{equation*}

    Case 3: w(\iota) = \iota ^{q}, where q > 0 . In this case, system (1.1) becomes a system of Hilfer-Katugampola in the following form.

    \begin{equation} \left\{ \begin{array}{c} \mathbb{D}_{a^{+},\iota ^{q}}^{p_{i},\alpha }\varsigma _{i}(\iota ) = \mathbb{F }_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )),\ \ \ \iota \in \mathbb{J},a > 0, \\ \varsigma _{i}(b) = \upsilon _{i}\in \mathbb{R},i = 1,2,....,n, \end{array} \right. \end{equation} (3.24)

    where \mathbb{D}_{a^{+}, \iota ^{p}}^{p_{i}, \alpha } is the Hilfer-Katugampola fractional derivative of order p_{i} [26,30]. Let \mathcal{B}_{3} = \prod_{i = 1}^{n}C_{1-\gamma _{i}, \iota ^{q}}\left(\mathbb{J}, \mathbb{R}\right), where \mathcal{C}_{1-\gamma _{i}, \iota ^{q}} is the weighted space equipped with the norm

    \begin{equation} \left\Vert \varsigma _{i}\right\Vert _{1-\gamma _{i},\iota ^{q}} = \max\limits_{\iota \in \mathbb{J}}\left\vert (\iota ^{q}-a^{q})^{1-\gamma _{i}}\varsigma _{i}(\iota )\right\vert . \end{equation} (3.25)

    Theorems 3.2 and 3.3 imply the following corollary.

    Corollary 3.6. Assume that (Hy_{1}) and (Hy_{2}) hold. For 1\leq r\leq n, let

    \begin{equation} \mathcal{P}_{r}^{\ast \ast \ast } = \sum\limits_{i = 1}^{n}2(b^{q}-a^{q})^{\gamma _{i}-1}\varphi _{\mathbb{F}_{i}}^{r}\frac{\Gamma (\gamma _{r})}{\Gamma (p_{i}+\gamma _{r})}(b^{q}-a^{q})^{p_{i}+\gamma _{r}-1}, \end{equation} (3.26)

    and

    \begin{equation} \zeta _{r}^{\ast \ast \ast } = \sum\limits_{i = 1}^{n}2(b^{q}-a^{q})^{\gamma _{i}-1}\kappa _{\mathbb{F}_{i}}^{r}\frac{\Gamma (\gamma _{r})}{\Gamma (p_{i}+\gamma _{r})}(b^{q}-a^{q})^{p_{i}+\gamma _{r}-1}. \end{equation} (3.27)

    If \mathcal{P}^{\ast \ast \ast } = \underset{r}{\max }\left\{ \mathcal{P} _{r}^{\ast \ast \ast }\right\} < 1, and \zeta ^{\ast \ast \ast } = \underset{r }{\max }\{\zeta _{r}^{\ast \ast \ast }\} < 1, then system (3.20) has at least one solution (\varsigma _{1}, \varsigma _{2}, ...., \varsigma _{n})\in \mathcal{B}_{3}, where \varsigma _{i} is given by

    \begin{eqnarray*} \varsigma _{i}(\iota ) & = &\frac{(\frac{\iota ^{q}-a^{q}}{q})^{\gamma _{i}-1} }{(\frac{b^{q}-a^{q}}{q})^{\gamma _{i}-1}}\left[ \upsilon _{i}-\mathbb{I} _{a^{+},b^{q}}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right] \\ &&+\mathbb{I}_{a^{+},\iota ^{q}}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )), \end{eqnarray*}

    where

    \begin{equation*} \mathbb{I}_{a^{+},b^{q}}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota )) = \frac{1}{\Gamma (p_{i}) }\int_{a}^{b}qs^{q-1}(b^{q}-s^{q})^{p_{i}-1}\mathbb{F}_{i}(s,\varsigma _{1}(s),\varsigma _{2}(s),....,\varsigma _{n}(s))ds, \end{equation*}

    and

    \begin{equation*} \mathbb{I}_{a^{+},\iota ^{q}}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),....,\varsigma _{n}(\iota )) = \frac{1}{ \Gamma (p_{i})}\int_{a}^{\iota }qs^{q-1}(\iota ^{q}-s^{q})^{p_{i}-1}\mathbb{F }_{i}(s,\varsigma _{1}(s),\varsigma _{2}(s),....,\varsigma _{n}(s))ds. \end{equation*}

    Remark 3.7. There are many symmetric cases of the function w and parameter \alpha that result in symmetric systems, some of which have already been discussed in the literature. For example.

    1) For w(\iota) = \iota and \alpha = 0 , system (1.1) is equivalent to the Riemann-Liouville system [27].

    2) For w(\iota) = \iota and \alpha = 1 , system (1.1) is equivalent to the Caputo system [27].

    3) For w(\iota) = \iota ^{q} and \alpha = 1 , system (1.1) is equivalent to the Caputo-Katugampola system [10].

    4) For w(\iota) = \iota ^{q} and \alpha = 0, system (1.1) is equivalent to the Katugampola system [26].

    5) For w(\iota) = \iota and \alpha \in (0, 1) , system (1.1) is equivalent to the Hilfer system [23].

    6) For w(\iota) = \iota ^{q}, q > 0 and \alpha \in (0, 1) system (1.1) is equivalent to the Hilfer-Katugampola system [30].

    7) For w(\iota) = \log \iota and \alpha \in (0, 1) , system (1.1) is equivalent to the Hilfer-Hadamard system [32].

    8) For w(\iota) = \log \iota and \alpha = 0), system (1.1) is equivalent to the Hadamard system [22].

    9) For w(\iota) = \log \iota and \alpha = 1, system (1.1) is equivalent to the Caputo-Hadamard system [25].

    The UH stability of system (1.1) is discussed in this section. Following the notation of this paper, we state the following definition for UH for system (1.1) [19,33,40].

    Definition 4.1. System (1.1) is UH stable if there exists a positive constant \Upsilon = \max \{\Upsilon _{1}, \Upsilon _{2}, ..., \Upsilon _{n}\} such that for some \varepsilon = \max \{\varepsilon _{1}, \varepsilon _{2}, ..., \varepsilon _{n}\} > 0 and for each solution (z_{1}, z_{2}, ...., z_{n}) of system (1.1) satisfying the following inequality

    \begin{equation} \left\vert \mathbb{D}_{a^{+},w(\iota )}^{p_{i},\alpha }z_{i}(\iota )-\mathbb{ F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),......,z_{n}(\iota ))\right\vert \leq \varepsilon _{i}, \end{equation} (4.1)

    there exists a unique solution (\varsigma _{1}, \varsigma _{2}, ...., \varsigma _{n}) for system (1.1) such that

    \begin{equation} \left\Vert (z_{1},z_{2},....,z_{n})-(\varsigma _{1},\varsigma _{2},....,\varsigma _{n})\right\Vert _{\mathcal{B}}\leq \Upsilon \varepsilon . \end{equation} (4.2)

    Remark 4.2. The functions (z_{1}, z_{2}, ...., z_{n}) are a solution of inequality (4.1) if and only if there exist functions \sigma _{i}(\iota)\in \mathcal{C}_{1-\gamma _{i}, w}, i = 1, 2, ...., n (which depends on solution z_{i} ) such that

    \left\vert \sigma _{i}(\iota)\right\vert \leq \varepsilon _{i} .

    \mathbb{D}_{a^{+}, w(\iota)}^{p_{i}, \alpha }z_{i}(\iota) = \mathbb{F} _{i}(\iota, z_{1}(\iota), z_{2}(\iota), ......, z_{n}(\iota))+\sigma _{i}(\iota).

    Theorem 4.3. Under hypothesis (Hy_{1}) , system (1.1) is UH stable, provided that

    \begin{equation*} 2\frac{\kappa _{\mathbb{F}_{i}}^{i}\Gamma \left( \gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})}(w(b)-w(a))^{p_{i}} < 1, \end{equation*}

    for all 1\leq i\leq n.

    Proof. Let \varepsilon = \max \left\{ \varepsilon _{1}, \varepsilon _{2}, ...., \varepsilon _{n}\right\} > 0 and let (z_{1}, z_{2}, ...., z_{n})\in \mathcal{B} be a solution of system (1.1) satisfying inequality (4.1), and let (\varsigma _{1}, \varsigma _{2}, ...., \varsigma _{n}) \; \in \mathcal{B} be the unique solution of system (1.1). By virtue of Theorem 3.1, we obtain

    \begin{eqnarray} \varsigma _{i}(\iota ) & = &\mathcal{A}_{\varsigma _{i}}\mathcal{-}\left( \frac{(w(\iota )-w(a))}{(w(b)-w(a))}\right) ^{\gamma _{i}-1}\mathbb{I} _{a^{+},w(b)}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )) \\ &&+\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )), \end{eqnarray} (4.3)

    where

    \begin{equation} \mathcal{A}_{\varsigma _{i}} = \upsilon _{i}\left( \frac{(w(\iota )-w(a))}{ (w(b)-w(a))}\right) ^{\gamma _{i}-1}, \end{equation} (4.4)

    since, we have assumed that (z_{1}, z_{2}, ...., z_{n})\in \mathcal{B} is a solution of system (1.1) satisfying the inequality (4.1). Then, by Remark 4.2, we conclude that (z_{1}, z_{2}, ...., z_{n}) satisfies the following system

    \begin{equation} \left\{ \begin{array}{c} \mathbb{D}_{a^{+},w(\iota )}^{p_{i},\alpha }z_{i}(\iota ) = \mathbb{F} _{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),......,z_{n}(\iota ))+\sigma _{i}(\iota ),\ \ \ \iota \in \mathbb{J}, \\ z_{i}(b) = \upsilon _{i}\in \mathbb{R},i = 1,2,....,n. \end{array} \right. \end{equation} (4.5)

    By Theorem 3.1, the solution z_{i}(\iota) of system (4.5) is given as

    \begin{eqnarray*} z_{i}(\iota ) & = &\mathcal{A}_{z_{i}}\mathcal{-}\left( \frac{(w(\iota )-w(a)) }{(w(b)-w(a))}\right) ^{\gamma _{i}-1}\mathbb{I}_{a^{+},w(b)}^{p_{i}}\left[ \mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),...,z_{n}(\iota ))+\sigma _{i}(\iota )\right] \\ &&+\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\left[ \mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),...,z_{n}(\iota ))+\sigma _{i}(\iota )\right] , \end{eqnarray*}

    where

    \begin{equation} \mathcal{A}_{z_{i}} = \upsilon _{i}\left( \frac{(w(\iota )-w(a))}{(w(b)-w(a))} \right) ^{\gamma _{i}-1}. \end{equation} (4.6)

    Hence, we have

    \begin{eqnarray} &&\left\vert z_{i}(\iota )-\varsigma _{i}(\iota )\right\vert \\ &\leq &\left\vert \mathcal{A}_{z_{i}}-\mathcal{A}_{\varsigma _{i}}\right\vert +\left( \frac{(w(\iota )-w(a))}{(w(b)-w(a))}\right) ^{\gamma _{i}-1}\mathbb{I}_{a^{+},w(b)}^{p_{i}}\left\vert \sigma _{i}(\iota )\right\vert +\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\left\vert \sigma _{i}(\iota )\right\vert \\ &&+\left( \frac{(w(\iota )-w(a))}{(w(b)-w(a))}\right) ^{\gamma _{i}-1} \mathbb{I}_{a^{+},w(b)}^{p_{i}}\left\vert \mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),......,z_{n}(\iota ))-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \\ &&+\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\left\vert \mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),......,z_{n}(\iota ))-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert . \end{eqnarray} (4.7)

    By (4.4) and (4.6), we have \mathcal{A}_{z_{i}} = \mathcal{A} _{\varsigma _{i}}. Since the function w is increasing for each \iota \in \mathbb{J} and \gamma _{i} < 1 for i = 1, 2, ...n, we get

    \begin{equation*} \left( \frac{(w(\iota )-w(a))}{(w(b)-w(a))}\right) ^{\gamma _{i}-1} < 1. \end{equation*}

    Hence, Eq (4.7) becomes

    \begin{eqnarray*} &&\left\vert z_{i}(\iota )-\varsigma _{i}(\iota )\right\vert \\ &\leq &\mathbb{I}_{a^{+},w(b)}^{p_{i}}\left\vert \sigma _{i}(\iota )\right\vert +\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\left\vert \sigma _{i}(\iota )\right\vert \\ &&+\mathbb{I}_{a^{+},w(b)}^{p_{i}}\left\vert \mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),......,z_{n}(\iota ))-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \\ &&+\mathbb{I}_{a^{+},w(\iota )}^{p_{i}}\left\vert \mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{2}(\iota ),......,z_{n}(\iota ))-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert . \end{eqnarray*}

    By the first part of Remark 4.2 and (Hy_{1}), we get

    \begin{equation*} \left\vert z_{i}(\iota )-\varsigma _{i}(\iota )\right\vert \leq \varepsilon _{i}\frac{2(w(b)-w(a))^{p_{i}}}{\Gamma (p_{i}+1)}+2\mathbb{I} _{a^{+},w(b)}^{p_{i}}\sum\limits_{j = 1}^{n}\kappa _{\mathbb{F}_{i}}^{j}\left\vert z_{j}(\iota )-\varsigma _{j}(\iota )\right\vert . \end{equation*}

    Thus, for i = 1, we have

    \begin{equation*} \left\vert z_{1}(\iota )-\varsigma _{1}(\iota )\right\vert \leq \varepsilon _{1}\frac{2(w(b)-w(a))^{p_{1}}}{\Gamma (p_{1}+1)}+2\mathbb{I} _{a^{+},w(b)}^{p_{1}}\sum\limits_{j = 1}^{n}\kappa _{\mathbb{F}_{1}}^{j}\left\vert z_{j}(\iota )-\varsigma _{j}(\iota )\right\vert . \end{equation*}

    Since \left\Vert \varsigma _{i}\right\Vert _{1-\gamma _{i}, w} = \max_{\iota \in \mathbb{J}}\left\vert (w(\iota)-w(a))^{1-\gamma _{i}}\varsigma _{i}(\iota)\right\vert, and w is increasing function, then

    \begin{eqnarray*} \left\Vert z_{1}-\varsigma _{1}\right\Vert _{1-\gamma _{1},w} &\leq &\varepsilon _{1}\frac{2(w(b)-w(a))^{p_{1}}}{\Gamma (p_{1}+1)} +2\sum\limits_{j = 1}^{n}(w(b)-w(a))^{1-\gamma _{1}}\mathbb{I}_{a^{+},w(\iota )}^{p_{1}}\kappa _{\mathbb{F}_{1}}^{j}\left\vert z_{j}(\iota )-\varsigma _{j}(\iota )\right\vert \\ &\leq &\varepsilon _{1}\frac{2(w(b)-w(a))^{p_{1}}}{\Gamma (p_{1}+1)}+2\frac{ \kappa _{\mathbb{F}_{1}}^{1}\Gamma \left( \gamma _{1}\right) }{\Gamma (p_{1}+\gamma _{1})}(w(b)-w(a))^{p_{1}}\left\Vert z_{1}-\varsigma _{1}\right\Vert _{\mathcal{C}_{1-\gamma _{1},w}} \\ &&+2\sum\limits_{j = 2}^{n}\frac{\kappa _{\mathbb{F}_{1}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (p_{1}+\gamma _{j})}(w(b)-w(a))^{p_{1}+\gamma _{j}-\gamma _{1}}\left\Vert z_{j}-\varsigma _{j}\right\Vert _{\mathcal{C} _{1-\gamma _{j},w}}. \end{eqnarray*}

    Hence, we have

    \begin{eqnarray*} &&\left( 1-2\frac{\kappa _{\mathbb{F}_{1}}^{1}\Gamma \left( \gamma _{1}\right) }{\Gamma (p_{1}+\gamma _{1})}(w(b)-w(a))^{p_{1}}\right) \left\Vert z_{1}-\varsigma _{1}\right\Vert _{1-\gamma _{1},w} \\ &\leq &\varepsilon _{1}\frac{2(w(b)-w(a))^{p_{1}+1-\gamma _{1}}}{\Gamma (p_{1}+1)}+2\sum\limits_{j = 2}^{n}\frac{\kappa _{\mathbb{F}_{1}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (p_{1}+\gamma _{j})}(w(b)-w(a))^{p_{1}+\gamma _{j}-\gamma _{1}}\left\Vert z_{j}-\varsigma _{j}\right\Vert _{\mathcal{C} _{1-\gamma _{j},w}} \\ &\leq &\varepsilon _{1}\frac{2(w(b)-w(a))^{p_{1}+1-\gamma _{1}}}{\Gamma (p_{1}+1)}+2\varepsilon _{1}\sum\limits_{j = 2}^{n}\frac{\kappa _{\mathbb{F} _{1}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (p_{1}+\gamma _{j})} (w(b)-w(a))^{p_{1}+\gamma _{j}-\gamma _{1}}\left\Vert z_{j}-\varsigma _{j}\right\Vert _{\mathcal{C}_{1-\gamma _{j},w}}. \end{eqnarray*}

    Note that the positive values of the Gamma function on (0, 1] are necessary to obtain the last inequality.

    Let c_{1} = 1-2\frac{\kappa _{\mathbb{F}_{1}}^{1}\Gamma \left(\gamma _{1}\right) }{\Gamma (p_{1}+\gamma _{1})}(w(b)-w(a))^{p_{1}} , and

    \begin{equation*} \Upsilon _{1} = \frac{2(w(b)-w(a))^{p_{1}}}{\Gamma (p_{1}+1)}+2\sum\limits_{j = 2}^{n} \frac{\kappa _{\mathbb{F}_{1}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (p_{1}+\gamma _{j})}(w(b)-w(a))^{p_{1}+\gamma _{j}-\gamma _{1}}\left\Vert z_{j}-\varsigma _{j}\right\Vert _{\mathcal{C}_{1-\gamma _{j},w}}. \end{equation*}

    If 2\frac{\kappa _{\mathbb{F}_{1}}^{1}\Gamma \left(\gamma _{1}\right) }{ \Gamma (p_{1}+\gamma _{1})}(w(b)-w(a))^{p_{1}} < 1 , then c_{1} > 0 . Then, we obtain

    \begin{equation*} \left\Vert z_{1}-\varsigma _{1}\right\Vert _{1-\gamma _{1},w}\leq \frac{ \varepsilon _{1}}{c_{1}}\Upsilon _{1}. \end{equation*}

    Similarly, for each i = 2, 3, .., n , provided that 2\frac{\kappa _{\mathbb{F} _{i}}^{i}\Gamma \left(\gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})} (w(b)-w(a))^{p_{i}} < 1, we have

    \begin{equation*} \left\Vert z_{i}-\varsigma _{i}\right\Vert _{1-\gamma _{i},w}\leq \frac{ \varepsilon _{i}}{c_{i}}\Upsilon _{i}, \end{equation*}

    where c_{i} = 1-2\frac{\kappa _{\mathbb{F}_{i}}^{i}\Gamma \left(\gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})}(w(b)-w(a))^{p_{i}} , and

    \begin{equation*} \Upsilon _{i} = \frac{2(w(b)-w(a))^{p_{i}}}{\Gamma (p_{i}+1)}+\sum\limits_{j\neq i}^{n}\frac{\kappa _{\mathbb{F}_{i}}^{j}\Gamma \left( \gamma _{j}\right) }{ \Gamma (p_{i}+\gamma _{j})}(w(b)-w(a))^{p_{i}+\gamma _{j}-\gamma _{i}}\left\Vert z_{j}-\varsigma _{j}\right\Vert _{\mathcal{C}_{1-\gamma _{j},w}}. \end{equation*}

    Therefore, if 2\frac{\kappa _{\mathbb{F}_{i}}^{i}\Gamma \left(\gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})}(w(b)-w(a))^{p_{i}} < 1, i = 1, 2, ..n, then

    \begin{equation*} \left\Vert \left( z_{1},z_{2},....,z_{n}\right) -\left( \varsigma _{1},\varsigma _{2},....,\varsigma _{n}\right) \right\Vert _{\mathcal{B} }\leq \sum\limits_{i = 1}^{n}\left\Vert z_{i}-\varsigma _{i}\right\Vert _{1-\gamma _{i},w}\leq \sum\limits_{i = 1}^{n}\frac{\varepsilon _{i}}{c_{i}}\Upsilon _{i}\leq \varepsilon \Upsilon , \end{equation*}

    where \varepsilon = \underset{i}{\max }\{\varepsilon _{i}\} and \Upsilon = \sum_{i = 1}^{n}\frac{\Upsilon _{i}}{c_{i}}. By Definition 4.1, the solution of system (1.1) is UH stable.

    According to Theorem 4.3, we can easily prove the UH stability of symmetric systems as follows.

    (1) Under hypothesis (Hy_{1}) , system (3.16) is UH stable, provided that

    \begin{equation*} 2\frac{\kappa _{\mathbb{F}_{i}}^{i}\Gamma \left( \gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})}(b-a)^{p_{i}} < 1, \end{equation*}

    for all 1\leq i\leq n.

    (2) Under hypothesis (Hy_{1}) , system (3.20) is UH stable, provided that

    \begin{equation*} 2\frac{\kappa _{\mathbb{F}_{i}}^{i}\Gamma \left( \gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})}(\log \frac{b}{a})^{p_{i}} < 1, \end{equation*}

    for all 1\leq i\leq n.

    (3) Under the hypothesis (Hy_{1}) , the system (3.24) is UH stable, provided that

    \begin{equation*} 2\frac{\kappa _{\mathbb{F}_{i}}^{i}\Gamma \left( \gamma _{i}\right) }{\Gamma (p_{i}+\gamma _{i})}(b^{q}-a^{q})^{p_{i}} < 1, \end{equation*}

    for all 1\leq i\leq n.

    In this section, we consider an example of a system of w -Hilfer FDEs with different functions w .

    Example 5.1. We study the system

    \begin{equation} \left\{ \begin{array}{c} \mathbb{D}_{0,w\left( {\iota }\right) }^{\frac{1}{2},\frac{1}{2}}\varsigma _{i}(\iota ) = \frac{1}{18(5^{2\iota })\left[ 1+\sum_{j = 1}^{n}\left\vert \varsigma _{j}(\iota )\right\vert \right] },\mbox{ }\iota \in \left( 0,1 \right] , \\ \varsigma _{i}(1) = \frac{3i}{2},\ i = 1,2,...,n, \end{array} \right. \end{equation} (5.1)

    for the cases w(\iota) = e^{\iota }, w(\iota) = \iota, w(\iota) = \log \iota , and w(\iota) = \iota ^{q}.

    Here, p_{i} = \frac{1}{2}, \; \alpha _{i} = \frac{1}{2}, \; \gamma _{i} = \frac{3}{4}, \; a = 0, \; b = 1, \; \upsilon _{i} = \frac{3i}{2}, and

    \begin{equation*} \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota )) = \frac{1}{18(5^{2\iota })\left[ 1+\sum_{j = 1}^{n}\left\vert \varsigma _{j}(\iota )\right\vert \right] }. \end{equation*}

    Clearly, \mathbb{F}_{i}(\iota, \varsigma _{1}(\iota), \varsigma _{2}(\iota), ......, \varsigma _{n}(\iota)) are continuous functions on \left[ 0, 1\right] \times \mathbb{R}^{n} and satisfy

    \begin{equation*} \left\vert \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \leq \frac{1}{18}, \end{equation*}

    and

    \begin{equation*} \left\vert \mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))-\mathbb{F}_{i}(\iota ,z_{1}(\iota ),z_{1}(\iota ),......,z_{n}(\iota ))\right\vert \leq \frac{1}{18} \sum\limits_{j = 1}^{n}\left\vert \varsigma _{j}-z_{j}\right\vert , \end{equation*}

    for all \left(\varsigma _{1}, \varsigma _{2}, ....\varsigma _{n}\right), \left(z_{1}, z_{2}, ....z_{n}\right), i.e., \varphi _{\mathbb{F} _{i}}^{j} = \kappa _{\mathbb{F}_{i}}^{j} = \frac{1}{18}.

    We fix the number of equations to be n = 5 , and investigate the following cases:

    Case 1: w(\iota) = e^{\iota }. In this case, we have \mathcal{ P} = \max \{\mathcal{P}_{1}, ..., \mathcal{P}_{5}\}\simeq 0.75 < 1, and \zeta = \max \left\{ \zeta _{1}, ..., \zeta _{5}\right\} = 0.75 < 1, where \mathcal{P} _{r} and \zeta _{r} are given in Theorems 3.2 and 3.3, respectively.

    Hence, all conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Thus, the system has a unique solution \left(\varsigma _{1}, \varsigma _{2}, ..., \varsigma _{5}\right). This solution has the form

    \begin{eqnarray*} \varsigma _{i}(\iota ) & = &\frac{(e^{\iota }-1)^{\frac{-1}{4}}}{(e-1)^{\frac{ -1}{4}}}\left[ \frac{3i}{2}-\frac{1}{\Gamma (\frac{1}{2})}\int_{0}^{1}\frac{ e^{s}(e-e^{s})^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds\right] \\ && \\ &&+\frac{1}{\Gamma (\frac{1}{2})}\int_{0}^{\iota }\frac{e^{s}(e^{\iota }-e^{s})^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds. \end{eqnarray*}

    On the other hand, let \iota \in \left(0, 1\right] and \varepsilon _{i} > 0, i = 1, 2, ..., n satisfying the following inequality

    \begin{equation*} \left\vert \mathbb{D}_{0^{+},e^{\iota }}^{\frac{1}{2},\frac{1}{2}}\varsigma _{i}(\iota )-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \leq \varepsilon _{i}. \end{equation*}

    Then, system (1.1) is UH stable with

    \begin{equation*} \left\Vert \left( z_{1},z_{2},....,z_{n}\right) -\left( \varsigma _{1},\varsigma _{2},....,\varsigma _{n}\right) \right\Vert _{\mathcal{B} }\leq \sum\limits_{i = 1}^{n}\frac{\varepsilon _{i}}{c_{i}}\Upsilon _{i}, \end{equation*}

    where

    \begin{equation*} \Upsilon _{i} = \frac{2(e^{\iota }-1)^{\frac{1}{2}}}{\Gamma (\frac{1}{2}+1)} +\sum\limits_{j\neq i}^{n}\frac{\kappa _{\mathbb{F}_{i}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (\frac{1}{2}+\gamma _{j})}(e-1)^{\frac{1}{2}+\gamma _{j}-\gamma _{i}} > 0, \end{equation*}

    and

    \begin{equation*} c_{i} = 1-2\frac{\frac{1}{18}\Gamma \left( \frac{3}{4}\right) }{\Gamma (\frac{1 }{2}+\frac{3}{4})}(e-1)^{\frac{1}{2}} = 0.8 > 0. \end{equation*}

    Symmetric cases:

    Case 2: w(\iota) = \iota . In this case, we have \mathcal{ P^{\ast }} = \max \{\mathcal{P}_{1}^{\ast }, ..., \mathcal{P}_{5}^{\ast }\}\simeq 0.37 < 1, and \zeta ^{\ast } = \max_{\iota \in \mathbb{J}}\left\{ \zeta _{1}^{\ast }, ..., \zeta _{5}^{\ast }\right\} = 0.37 < 1 , where \mathcal{P }_{r}^{\mathcal{\ast }} and \zeta _{r}^{\ast } are given in (3.18) and (3.19), respectively.

    Hence, all conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Thus, the system has at least one solution \left(\varsigma _{1}, \varsigma _{2}, ..., \varsigma _{5}\right) given by

    \begin{eqnarray} \varsigma _{i}(\iota ) & = &\iota ^{\frac{-1}{4}}\left[ \frac{3i}{2}-\frac{1}{ \Gamma (\frac{1}{2})}\int_{0}^{1}\frac{(1-s)^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds\right] \\ && \\ &&+\frac{1}{\Gamma (\frac{1}{2})}\int_{0}^{\iota }\frac{(\iota -s)^{\frac{-1 }{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds. \end{eqnarray} (5.2)

    On the other hand, let \iota \in \left(0, 1\right] and \varepsilon _{i} > 0, i = 1, 2, ..., n , satisfying the following inequality,

    \begin{equation*} \left\vert \mathbb{D}_{0^{+},\iota }^{\frac{1}{2},\frac{1}{2}}\varsigma _{i}(\iota )-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \leq \varepsilon _{i}. \end{equation*}

    Then, system (3.16) is UH stable with

    \begin{equation*} \left\Vert \left( z_{1},z_{2},....,z_{n}\right) -\left( \varsigma _{1},\varsigma _{2},....,\varsigma _{n}\right) \right\Vert _{\mathcal{B} }\leq \sum\limits_{i = 1}^{n}\frac{\varepsilon _{i}}{c_{i}}\Upsilon _{i}, \end{equation*}

    where

    \begin{equation*} \Upsilon _{i} = \frac{2}{\Gamma (\frac{1}{2}+1)}+\sum\limits_{j\neq i}^{n}\frac{ \kappa _{\mathbb{F}_{i}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (\frac{ 1}{2}+\gamma _{j})} > 0, \end{equation*}

    and

    \begin{equation*} c_{i} = 1-2\frac{\frac{1}{18}\Gamma \left( \frac{3}{4}\right) }{\Gamma (\frac{1 }{2}+\frac{3}{4})} = 0.9 > 0. \end{equation*}

    Case 3: w(\iota) = \log \iota. For this case, we need to change the interval \mathbb{J} , as the function w is not defined on (0, 1] . So, in this case, only a and b will be changed to be a = 1, b = 2 , \mathcal{P}^{\ast \ast } = \max \{\mathcal{P}_{1}^{\ast \ast }, ..., \mathcal{P}_{5}^{\ast \ast }\}\simeq 0.75 < 1, and \zeta ^{\ast \ast } = \max \left\{ \zeta _{1}^{\ast \ast }, ..., \zeta _{5}^{\ast \ast }\right\} = 0.76 < 1 , where \mathcal{P}_{r}^{\ast \ast } and \zeta _{r}^{\ast \ast } are defined in (3.22) and (3.23), respectively. Hence, all conditions in Theorem 3.2 and Theorem 3.3 are satisfied. Thus, the system has at least one solution \left(\varsigma _{1}, \varsigma _{2}, ..., \varsigma _{5}\right) given by

    \begin{eqnarray} \varsigma _{i}(\iota ) & = &\frac{(\log \iota )^{\frac{-1}{4}}}{(\log 2)^{ \frac{-1}{4}}}\left[ \frac{3i}{2}-\frac{1}{\Gamma (\frac{1}{2})}\int_{1}^{2} \frac{s^{-1}(\log 2-\log s)^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds\right] \\ && \\ &&+\frac{1}{\Gamma (\frac{1}{2})}\int_{1}^{\iota }\frac{s^{-1}(\log \iota -\log s)^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds. \end{eqnarray} (5.3)

    On the other hand, let \iota \in \left(1, 2\right] and \varepsilon _{i} > 0, i = 1, 2, ..., n , satisfying the following inequality.

    \begin{equation*} \left\vert \mathbb{D}_{0^{+},\log \iota }^{\frac{1}{2},\frac{1}{2}}\varsigma _{i}(\iota )-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \leq \varepsilon _{i}. \end{equation*}

    Then, system (3.20) is UH stable with

    \begin{equation*} \left\Vert \left( z_{1},z_{2},....,z_{n}\right) -\left( \varsigma _{1},\varsigma _{2},....,\varsigma _{n}\right) \right\Vert _{\mathcal{B} }\leq \sum\limits_{i = 1}^{n}\frac{\varepsilon _{i}}{c_{i}}\Upsilon _{i}, \end{equation*}

    where

    \begin{equation*} \Upsilon _{i} = \frac{2(\log 2-\log 1)^{\frac{1}{2}}}{\Gamma (\frac{1}{2}+1)} +\sum\limits_{j\neq i}^{n}\frac{\kappa _{\mathbb{F}_{i}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (\frac{1}{2}+\gamma _{j})}(\log 2-\log 1)^{\frac{1}{2} +\gamma _{j}-\gamma _{i}} > 0, \end{equation*}

    and

    \begin{equation*} c_{i} = 1-2\frac{\frac{1}{18}\Gamma \left( \frac{3}{4}\right) }{\Gamma (\frac{1 }{2}+\frac{3}{4})}(\log 2-\log 1)^{\frac{1}{2}} = 0.9 > 0. \end{equation*}

    Case 4: w(\iota) = \iota ^{q}, q > 0. We also consider this case on (1, 2] , even though we can consider the system on [0, 1] , where it will be generalizing case 2. In this case, we have \mathcal{P} = \max \{\mathcal{P} _{1}^{\ast \ast \ast }, .., \mathcal{P}_{5}^{\ast \ast \ast }\}\simeq 0.75 < 1, and \zeta = \max \left\{ \zeta _{1}^{\ast \ast \ast }, .., \zeta _{5}^{\ast \ast \ast }\right\} = 0.75 < 1 , where \mathcal{P}_{r}^{\ast \ast \ast } and \zeta _{r}^{\ast \ast \ast } are defined in (3.26) and (3.27), respectively. Hence, all conditions in Theorem 3.2 are satisfied. Thus, the system has at least one solution \left(\varsigma _{1}, \varsigma _{2}, ..., \varsigma _{n}\right) given by

    \begin{eqnarray} \varsigma _{i}(\iota ) & = &\frac{(\iota ^{q}-1)^{\frac{-1}{4}}}{(2^{q}-1)^{ \frac{-1}{4}}}\left[ \frac{3i}{2}-\frac{1}{\Gamma (\frac{1}{2})}\int_{1}^{2} \frac{qs^{q-1}(2^{q}-s^{q})^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds\right] \\ && \\ &&+\frac{1}{\Gamma (\frac{1}{2})}\int_{1}^{\iota }\frac{qs^{q-1}(\iota ^{q}-s^{q})^{\frac{-1}{2}}}{18(5^{2s})\left[ 1+\sum_{j = 1}^{5}\left\vert \varsigma _{j}(s)\right\vert \right] }ds. \end{eqnarray} (5.4)

    Let q = 2 and \varepsilon _{i} > 0, i = 1, 2, ..., n , satisfying the following inequality.

    \begin{equation*} \left\vert \mathbb{D}_{0^{+},\iota ^{2}}^{\frac{1}{2},\frac{1}{2}}\varsigma _{i}(\iota )-\mathbb{F}_{i}(\iota ,\varsigma _{1}(\iota ),\varsigma _{2}(\iota ),......,\varsigma _{n}(\iota ))\right\vert \leq \varepsilon _{i}. \end{equation*}

    Then, system (3.24) is UH stable with

    \begin{equation*} \left\Vert \left( z_{1},z_{2},....,z_{n}\right) -\left( \varsigma _{1},\varsigma _{2},....,\varsigma _{n}\right) \right\Vert _{\mathcal{B} }\leq \sum\limits_{i = 1}^{n}\frac{\varepsilon _{i}}{c_{i}}\Upsilon _{i}, \end{equation*}

    where

    \begin{equation*} \Upsilon _{i} = \frac{2(2^{2}-1)^{\frac{1}{2}}}{\Gamma (\frac{1}{2}+1)} +\sum\limits_{j\neq i}^{n}\frac{\kappa _{\mathbb{F}_{i}}^{j}\Gamma \left( \gamma _{j}\right) }{\Gamma (\frac{1}{2}+\gamma _{j})}(2^{2}-1)^{\frac{1}{2}+\gamma _{j}-\gamma _{i}} > 0, \end{equation*}

    and

    \begin{equation*} c_{i} = 1-2\frac{\frac{1}{18}\Gamma \left( \frac{3}{4}\right) }{\Gamma (\frac{1 }{2}+\frac{3}{4})}(2^{2}-1)^{\frac{1}{2}} = 0.7 > 0. \end{equation*}

    We fix i = 2 and present the graphical presentations of solutions for the above four cases in Figures 1, 2, 3, and 4 respectively as follows:

    Figure 1.  Graphical presentations of solutions for Case I.
    Figure 2.  Graphical presentations of solutions for Case II.
    Figure 3.  Graphical presentations of solutions for Case III.
    Figure 4.  Graphical presentations of solutions for Case IV.

    In Figure 1, we have presented the graphical presentation of Case I using i = 2 to investigate the properties of the system under the Banach weighted spaces and provide insights into the system's response by using the weighted measurable function w(\iota) = e^{\iota } over the interval [0, 1]. From Figure 1, the UH stability is obvious and the symmetry in the approximation solution also arises. Moreover, the uniqueness of the solutions here clearly corresponds to the coupled system of two equations. Remember, we use for graphical presentation (1.1) using i = 2 .

    In Figure 2, we have presented the approximate solution for the system using i = 2 to investigate the properties of the system under the Banach weighted spaces and provide insights into the system's response by using the weighted measurable function w(\iota) = \iota over the interval [0, 1]. The graphical illustration for the approximate solution demonstrates the symmetry in both solutions for the given weighted measurable function. Here, we have also used (5.2) to illustrate graphs for the approximate solution using i = 2 .

    In Figure 3, the approximate solutions using the weighted measurable function w(\iota) = \log \iota in Banach weighted spaces are displayed by selecting the interval [1, 2] . We considered again (5.3) using i = 2 and demonstrated the approximate solutions to elaborate the behaviors of both graphs. From the graphs, we see that, as \log \iota is considered, we have displayed the approximate solutions over the interval [1, 2] . The UH stability can be observed in the graphs and the symmetry also is understandable. There is a little bit of difference in both graphs' behaviors is due to the reason that we do not know the exact solution as the problem is very highly nonlinear.

    In Figure 4, we have displayed the approximate solution of (5.4) using i = 2 by utilizing the weighted measurable function w(\iota) = \iota {^{q}} in Banach weighted spaces. The solutions for the coupled system have been plotted over [1, 2] . From the graphs, we see the symmetric behaviors and UH stability. From these discussions, we conclude that symmetry concepts are significant when it comes to natural laws. Further, it is highly interesting that symmetry is the key to nature, but symmetry-breaking processes are mostly responsible for the texture of the universe. There are many different ways that nature's symmetry can be obscured or disturbed. All these discussions about the symmetry in solutions of type as mentioned above integrals will be helpful for those researchers working in physical sciences including quantum physics, mechanics, etc.

    In our study, we focused on exploring the existence and uniqueness of symmetric solutions for a system of terminal FDEs in the context of weighted spaces. The specific operator we utilized was the w -Hilfer FD, which is known for its importance in fractional calculus. To examine the existence and uniqueness of symmetric solutions, we employed two fixed-point theorems, the Schauder and Banach fixed-point theorems. These theorems provide the mathematical tools for establishing the existence and uniqueness of solutions in various settings. By applying Schauder and Banach fixed-point theorems to our system, we were able to obtain two key theoretical findings and four symmetry cases. These findings clarify the behavior and properties of symmetric solutions in the considered Banach weighted spaces. By mathematical analysis, we discussed two types of stability in the Ulam sense. The investigation of terminal FDEs using the w -Hilfer FD operator in Banach weighted spaces represents a recent and cutting-edge research direction. We believe this study contributes to the advancement of knowledge in this particular area. Overall, our study not only addresses the challenge of examining the existence and uniqueness of symmetric solutions, but also provides valuable insights into the dynamics and applications of such solutions in fractal mediums. By offering a comprehensive explanation of these processes, our research contributes to the existing literature and expands the understanding of the real-world application of fractional calculus. In future work, we will extend these results with a piecewise fractional operator with the concept of Atangana-Baleanu.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (grant no. 6057). This study is supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2024/R/1445). The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program.

    The author declares that the research was conducted in the absence of any conflict of interest.



    [1] W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
    [2] I. Z. Bouwer, An edge but not vertex transitive cubic graph, Bull. Can. Math. Soc., 11 (1968), 533–535. https://doi.org/10.4153/CMB-1968-063-0 doi: 10.4153/CMB-1968-063-0
    [3] I. Z. Bouwer, Vertex and edge transitive but not 1-transitive graph, Bull. Can. Math. Soc., 13 (1970), 231–237. https://doi.org/10.4153/CMB-1970-047-8 doi: 10.4153/CMB-1970-047-8
    [4] M. Conder, A. Malnič, D. Marušič, P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin., 23 (2006), 255–294. https://doi.org/10.1007/s10801-006-7397-3 doi: 10.1007/s10801-006-7397-3
    [5] M. Conder, J.-X. Zhou, Y.-Q. Feng, M.-M. Zhang, Edge-transitive bi-Cayley graphs, J. Combin. Theory Ser. B, 145 (2020), 264–306. https://doi.org/10.1016/j.jctb.2020.05.006 doi: 10.1016/j.jctb.2020.05.006
    [6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Lonon/New York: Oxford Univ. Press, 1985.
    [7] J. D. Dixon, B. Mortimer, Permutation Groups, New York: Springer, 1996. https://doi.org/10.1007/978-1-4612-0731-3
    [8] J. L. Du, Y.-Q. Feng, J.-X. Zhou, Pentavalent symmetric graphs admitting a vertex- transitive non-abelian simple groups, Europ. J. Combin., 73 (2017), 134–145. https://doi.org/10.1016/j.ejc.2017.03.007 doi: 10.1016/j.ejc.2017.03.007
    [9] J. L. Du, M. Conder, Y, -Q. Feng, Cubic core-free symmetric m-Cayley graphs, J. Algebraic Combin., 50 (2019), 143–163. https://doi.org/10.1007/s10801-018-0847-x doi: 10.1007/s10801-018-0847-x
    [10] S. F. Du, M. Y. Xu, A classifiction of semisymmetric graphs of order 2pq, Comm. Algebra, 28 (2000), 2685–2715.
    [11] X. G. Fang, X. S. Ma, J. Wang, On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118 (2011), 1039–1051. https://doi.org/10.1016/j.jcta.2010.10.008 doi: 10.1016/j.jcta.2010.10.008
    [12] M. Giudici, Factorisations of sporadic simple groups, J. Algebra, 304 (2006), 311–323. https://doi.org/10.1016/j.jalgebra.2006.04.019 doi: 10.1016/j.jalgebra.2006.04.019
    [13] M. Giudici, C. H. Li, C. E. Praeger, Analysing finite locally s-arc-transitive graphs, Trans. Amer. Math. Soc., 350 (2003), 291–317.
    [14] D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. Math., 111 (1980), 377–406. https://doi.org/10.2307/1971203 doi: 10.2307/1971203
    [15] C. H. Li, Isomorphisms of finite Cayley graphs (Ph.D. thesis), The University of Weastern Australia, 1996.
    [16] B. Ling, A two-transitive pentavalent nonnormal Cayley graph on the alternating group {{{ \rm A }}}_119 (in Chinese), Acta Sci. Natur. Univ. Sunyatseni, 57 (2018), 85–88.
    [17] B. Ling, A note on tetravalent s-arc-regular Cayley graphs of finite simple groups, Ars Combin., 144 (2019), 49–54. https://doi.org/10.1097/01.BMSAS.0000554724.29762.5b doi: 10.1097/01.BMSAS.0000554724.29762.5b
    [18] B. Ling, B. G. Lou, On arc-transitive pentavalent Cayley graphs on finite nonabelian simple groups, Graph Combin., 33 (2017), 1297–1306. https://doi.org/10.1007/s00373-017-1845-9 doi: 10.1007/s00373-017-1845-9
    [19] G. X. Liu, Z. P. Lu, On edge-transitive cubic graphs of square-free order, Europ. J. Combin., 45 (2015), 41–46.
    [20] J. M. Pan, Y. Liu, Z. H. Huang, C. L. Liu, Tetravalent edge-transitive graphs of order p^2q, Sci. China Math. Ser. A, 57 (2014), 293–302. https://doi.org/10.1007/s11425-013-4708-8 doi: 10.1007/s11425-013-4708-8
    [21] J. M. Pan, Y. N. Zhang, An explicit characterization of cubic symmetric bi-Cayley graphs on nonabelian simple groups, Discrete Math., in press.
    [22] C. W. Parker, Semisymmetric cubic graphs of twice odd order, Europ. J. Combin., 28 (2007), 572–591. https://doi.org/10.1016/j.ejc.2005.06.007 doi: 10.1016/j.ejc.2005.06.007
    [23] I. Schur, Untersuchen über die Darstellung der endlichen Gruppen durch gebrochenen linearen Substitutionen, J. Reine Angew. Math., 132 (1907), 85–137. https://doi.org/10.1515/crll.1907.132.85 doi: 10.1515/crll.1907.132.85
    [24] W. T. Tutte, Connectivity in graphs, Toronto: Toronto Univ. Press, 1966. https://doi.org/10.3138/9781487584863
    [25] S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, On cubic s-arc-transitive Cayley graphs on finite simple groups, Europ. J. Combin., 26 (2005), 133–143. https://doi.org/10.1016/j.ejc.2003.10.015 doi: 10.1016/j.ejc.2003.10.015
    [26] S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, 5-arc-transitive cubic graphs on finite simple groups, Europ. J. Combin., 28 (2007), 1023–1036. https://doi.org/10.1016/j.ejc.2005.07.020 doi: 10.1016/j.ejc.2005.07.020
    [27] F. G. Yin, Y. Q. Feng, Symmetric graphs of valency 4 having a quasi-semiregular automorphism, Applied Math. Comput., 399 (2021), 126014. https://doi.org/10.1016/j.amc.2021.126014 doi: 10.1016/j.amc.2021.126014
    [28] F. G. Yin, Y. Q. Feng, J. X. Zhou, S. S. Chen, Arc-transitive Cayley graphs on nonabelian simple groups with prime valency, J. Combin. Theory Ser. A, 177 (2021), 105303. https://doi.org/10.1016/j.jcta.2020.105303 doi: 10.1016/j.jcta.2020.105303
    [29] J. X. Zhou, Y. Q. Feng, The automorphisms of bi-Cayley graphs, J. Combin. Theory Ser. B, 116 (2016), 504–532.
  • This article has been cited by:

    1. Muhammad Akram, Ayesha Shareef, Ahmad N. Al-Kenani, Pythagorean fuzzy incidence graphs with application in one-way toll road network, 2024, 9, 2364-4966, 10.1007/s41066-024-00455-9
    2. Muhammad Akram, Uzma Ahmad, Mohammed M. Ali Al-Shamiri, Ayesha Shareef, Algorithms for computing Pythagorean fuzzy average edge connectivity of Pythagorean fuzzy graphs, 2024, 1598-5865, 10.1007/s12190-023-01970-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(78) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog