In this paper, we classify cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, extending a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple groups.
Citation: Jiangmin Pan, Yingnan Zhang. On cubic semisymmetric bi-Cayley graphs on nonabelian simple groups[J]. AIMS Mathematics, 2022, 7(7): 12689-12701. doi: 10.3934/math.2022702
In this paper, we classify cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, extending a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple groups.
[1] | W. Bosma, J. Cannon, C. Playoust, The MAGMA algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125 |
[2] | I. Z. Bouwer, An edge but not vertex transitive cubic graph, Bull. Can. Math. Soc., 11 (1968), 533–535. https://doi.org/10.4153/CMB-1968-063-0 doi: 10.4153/CMB-1968-063-0 |
[3] | I. Z. Bouwer, Vertex and edge transitive but not 1-transitive graph, Bull. Can. Math. Soc., 13 (1970), 231–237. https://doi.org/10.4153/CMB-1970-047-8 doi: 10.4153/CMB-1970-047-8 |
[4] | M. Conder, A. Malnič, D. Marušič, P. Potočnik, A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin., 23 (2006), 255–294. https://doi.org/10.1007/s10801-006-7397-3 doi: 10.1007/s10801-006-7397-3 |
[5] | M. Conder, J.-X. Zhou, Y.-Q. Feng, M.-M. Zhang, Edge-transitive bi-Cayley graphs, J. Combin. Theory Ser. B, 145 (2020), 264–306. https://doi.org/10.1016/j.jctb.2020.05.006 doi: 10.1016/j.jctb.2020.05.006 |
[6] | J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Lonon/New York: Oxford Univ. Press, 1985. |
[7] | J. D. Dixon, B. Mortimer, Permutation Groups, New York: Springer, 1996. https://doi.org/10.1007/978-1-4612-0731-3 |
[8] | J. L. Du, Y.-Q. Feng, J.-X. Zhou, Pentavalent symmetric graphs admitting a vertex- transitive non-abelian simple groups, Europ. J. Combin., 73 (2017), 134–145. https://doi.org/10.1016/j.ejc.2017.03.007 doi: 10.1016/j.ejc.2017.03.007 |
[9] | J. L. Du, M. Conder, Y, -Q. Feng, Cubic core-free symmetric $m$-Cayley graphs, J. Algebraic Combin., 50 (2019), 143–163. https://doi.org/10.1007/s10801-018-0847-x doi: 10.1007/s10801-018-0847-x |
[10] | S. F. Du, M. Y. Xu, A classifiction of semisymmetric graphs of order $2pq$, Comm. Algebra, 28 (2000), 2685–2715. |
[11] | X. G. Fang, X. S. Ma, J. Wang, On locally primitive Cayley graphs of finite simple groups, J. Combin. Theory Ser. A, 118 (2011), 1039–1051. https://doi.org/10.1016/j.jcta.2010.10.008 doi: 10.1016/j.jcta.2010.10.008 |
[12] | M. Giudici, Factorisations of sporadic simple groups, J. Algebra, 304 (2006), 311–323. https://doi.org/10.1016/j.jalgebra.2006.04.019 doi: 10.1016/j.jalgebra.2006.04.019 |
[13] | M. Giudici, C. H. Li, C. E. Praeger, Analysing finite locally $s$-arc-transitive graphs, Trans. Amer. Math. Soc., 350 (2003), 291–317. |
[14] | D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. Math., 111 (1980), 377–406. https://doi.org/10.2307/1971203 doi: 10.2307/1971203 |
[15] | C. H. Li, Isomorphisms of finite Cayley graphs (Ph.D. thesis), The University of Weastern Australia, 1996. |
[16] | B. Ling, A two-transitive pentavalent nonnormal Cayley graph on the alternating group ${{{ \rm A }}}_119$ (in Chinese), Acta Sci. Natur. Univ. Sunyatseni, 57 (2018), 85–88. |
[17] | B. Ling, A note on tetravalent s-arc-regular Cayley graphs of finite simple groups, Ars Combin., 144 (2019), 49–54. https://doi.org/10.1097/01.BMSAS.0000554724.29762.5b doi: 10.1097/01.BMSAS.0000554724.29762.5b |
[18] | B. Ling, B. G. Lou, On arc-transitive pentavalent Cayley graphs on finite nonabelian simple groups, Graph Combin., 33 (2017), 1297–1306. https://doi.org/10.1007/s00373-017-1845-9 doi: 10.1007/s00373-017-1845-9 |
[19] | G. X. Liu, Z. P. Lu, On edge-transitive cubic graphs of square-free order, Europ. J. Combin., 45 (2015), 41–46. |
[20] | J. M. Pan, Y. Liu, Z. H. Huang, C. L. Liu, Tetravalent edge-transitive graphs of order $p^2q$, Sci. China Math. Ser. A, 57 (2014), 293–302. https://doi.org/10.1007/s11425-013-4708-8 doi: 10.1007/s11425-013-4708-8 |
[21] | J. M. Pan, Y. N. Zhang, An explicit characterization of cubic symmetric bi-Cayley graphs on nonabelian simple groups, Discrete Math., in press. |
[22] | C. W. Parker, Semisymmetric cubic graphs of twice odd order, Europ. J. Combin., 28 (2007), 572–591. https://doi.org/10.1016/j.ejc.2005.06.007 doi: 10.1016/j.ejc.2005.06.007 |
[23] | I. Schur, Untersuchen über die Darstellung der endlichen Gruppen durch gebrochenen linearen Substitutionen, J. Reine Angew. Math., 132 (1907), 85–137. https://doi.org/10.1515/crll.1907.132.85 doi: 10.1515/crll.1907.132.85 |
[24] | W. T. Tutte, Connectivity in graphs, Toronto: Toronto Univ. Press, 1966. https://doi.org/10.3138/9781487584863 |
[25] | S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, On cubic $s$-arc-transitive Cayley graphs on finite simple groups, Europ. J. Combin., 26 (2005), 133–143. https://doi.org/10.1016/j.ejc.2003.10.015 doi: 10.1016/j.ejc.2003.10.015 |
[26] | S. J. Xu, X. G. Fang, J. Wang, M. Y. Xu, 5-arc-transitive cubic graphs on finite simple groups, Europ. J. Combin., 28 (2007), 1023–1036. https://doi.org/10.1016/j.ejc.2005.07.020 doi: 10.1016/j.ejc.2005.07.020 |
[27] | F. G. Yin, Y. Q. Feng, Symmetric graphs of valency 4 having a quasi-semiregular automorphism, Applied Math. Comput., 399 (2021), 126014. https://doi.org/10.1016/j.amc.2021.126014 doi: 10.1016/j.amc.2021.126014 |
[28] | F. G. Yin, Y. Q. Feng, J. X. Zhou, S. S. Chen, Arc-transitive Cayley graphs on nonabelian simple groups with prime valency, J. Combin. Theory Ser. A, 177 (2021), 105303. https://doi.org/10.1016/j.jcta.2020.105303 doi: 10.1016/j.jcta.2020.105303 |
[29] | J. X. Zhou, Y. Q. Feng, The automorphisms of bi-Cayley graphs, J. Combin. Theory Ser. B, 116 (2016), 504–532. |