This paper introduces a new method of estimation, empirical E-Bayesian estimation. In this method, we consider the hyperparameters of E-Bayesian estimation are unknown. We compute the E-Bayesian and empirical E-Bayesian estimates for the parameter of Poisson distribution based on a complete sample. For our purpose, we consider the case of the squared error loss function. The E-posterior risk and empirical E-posterior risk are computed. A comparison between E-Bayesian and empirical E- Bayesian methods with the corresponding maximum likelihood estimation is made using the Monte Carlo simulation. A relevant application is utilized to illustrate the applicability of multiple estimators.
Citation: Heba S. Mohammed. Empirical E-Bayesian estimation for the parameter of Poisson distribution[J]. AIMS Mathematics, 2021, 6(8): 8205-8220. doi: 10.3934/math.2021475
This paper introduces a new method of estimation, empirical E-Bayesian estimation. In this method, we consider the hyperparameters of E-Bayesian estimation are unknown. We compute the E-Bayesian and empirical E-Bayesian estimates for the parameter of Poisson distribution based on a complete sample. For our purpose, we consider the case of the squared error loss function. The E-posterior risk and empirical E-posterior risk are computed. A comparison between E-Bayesian and empirical E- Bayesian methods with the corresponding maximum likelihood estimation is made using the Monte Carlo simulation. A relevant application is utilized to illustrate the applicability of multiple estimators.
[1] | S. M. Sadooghi-Alvandi, Estimation of the parameter of a Poisson distribution using a Linex loss function, Aust. J. Stat., 32 (1990), 393–398. doi: 10.1111/j.1467-842X.1990.tb01033.x |
[2] | Y. Y. Zhang, Z. Y. Wang, Z. M. Duan, W. Mi, The empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior under Stein's loss function, J. Stat. Comput. Sim., 89 (2019), 3061–3074. doi: 10.1080/00949655.2019.1652606 |
[3] | C. P. Li, H. B. Hao, E-Bayesian estimation and hierarchical Bayesian estimation of Poisson distribution parameter under entropy loss function, IJAM, 49 (2019), 369–374. |
[4] | M. Han, E-Bayesian estimation and hierarchical Bayesian estimation of failure rate, Appl. Math. Model., 33 (2009), 1915–1922. doi: 10.1016/j.apm.2008.03.019 |
[5] | Z. F. Jaheen, H. M. Okasha, E-Bayesian estimation for the Burr type XII model based on type-2 censoring, Appl. Math. Model., 35 (2011), 4730–4737. doi: 10.1016/j.apm.2011.03.055 |
[6] | A. Karimnezhad, F. Moradi, Bayes, E-Bayes and robust Bayes prediction of a future observation under precautionary prediction loss functions with applications, Appl. Math. Model, 40 (2016), 7051–7061. doi: 10.1016/j.apm.2016.02.040 |
[7] | V. A. Gonzalez-Lopez, R. Gholizadeh, C. E. Galarza, E-Bayesian estimation for system reliability and availability analysis based on exponential distribution, Commun. Stat.-Simul. C., 46 (2017), 6221–6241. doi: 10.1080/03610918.2016.1202269 |
[8] | F. Yousefzadeh, E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function, Commun. Stat.-Theory M., 46 (2017), 1–8. doi: 10.1080/03610926.2014.968736 |
[9] | H. M. Okasha, J. H. Wang, E-Bayesian estimation for the geometric model based on record statistics, Appl. Math. Model., 40 (2016), 658–670. doi: 10.1016/j.apm.2015.05.004 |
[10] | M. Han, E-Bayesian estimation of the reliability derived from binomial distribution, Appl. Math. Model, 35 (2011), 2419–2424. doi: 10.1016/j.apm.2010.11.051 |
[11] | M. Han, The E-Bayesian and hierarchical Bayesian estimations of pareto distribution parameter under different loss functions, J. Stat. Comput. Sim., 87 (2017), 577–593. doi: 10.1080/00949655.2016.1221408 |
[12] | M. Han, E-Bayesian estimation of the exponentiated distribution family parameter under LINEX loss function, Commun. Stat.-Theory M., 48 (2019), 648–659. doi: 10.1080/03610926.2017.1417432 |
[13] | A. Kiapour, Bayes, E-Bayes and robust Bayes premium estimation and prediction under the squared log error loss function, JIRSS, 17 (2018), 33–47. doi: 10.29252/jirss.17.1.33 |
[14] | H. M. Okasha, E-Bayesian estimation for the Lomax distribution based on type-II censored data, JOEMS, 22 (2014), 489–495. |
[15] | H. M. Okasha, Estimation for the exponential model based on record Statistic, J. Stat. Theory Appl., 18 (2019), 236–243. |
[16] | H. Okasha, M. Nassar, S. A. Dobbah, E-Bayesian estimation of Burr Type XII model based on adaptive Type-II progressive hybrid censored data, AIMS Mathematics, 6 (2021), 4173–4196. doi: 10.3934/math.2021247 |
[17] | A. M. Basheer, H. M. Okasha, A. H. El-Baz, A. M. K. Tarabia, E-Bayesian and hierarchical Bayesianestimations for the inverse Weibull distribution, Ann. Data. Sci., 2021, DOI: 10.1007/s40745-020-00320-x. |
[18] | M. Nassar, H. Okasha, M. Albassam, E-Bayesian estimation and associated properties of simple step-stress model for exponential distribution based on type-II censoring, Qual. Reliab. Eng. Int., 37 (2021), 997–1016. doi: 10.1002/qre.2778 |
[19] | R. B. Athirakrishnan, E. I. Abdul-Sathar, E-Bayesian and hierarchical Bayesian estimation of inverse Rayleigh distribution, Am. J. Math. Manage. Sci., 2021, DOI: 10.1080/01966324.2021.1914250. |
[20] | H. Okasha, A. Mustafa, E-Bayesian estimation for the Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data, entropy, 22 (2020), 903. doi: 10.3390/e22080903 |
[21] | H. Robbins, An empirical bayes approach to statistics, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1 (1956), 157–163. |
[22] | H. Robbins, The empirical bayes approach to statistical decision problems, Ann. Math. Statist., 35 (1964), 1–20. doi: 10.1214/aoms/1177703729 |
[23] | H. Robbins, Some thoughts on empirical bayes estimation, Ann. Math. Statist., 11 (1983), 713–723. |
[24] | Y. Y. Zhang, T. Z. Rong, M. M. Li, The empirical Bayes estimators of themean and variance parameters of the normal distribution with a conjugate normal-inverse-gamma prior by themoment method and the MLE method, Commun. Stat.-Theory M., 48 (2019), 2286–2304. doi: 10.1080/03610926.2018.1465081 |
[25] | S. K. Mikulich-Gilbertson, B. D. Wagner, G. K. Grunwald, Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes. Stat. Methods Med. Res., 28 (2019), 1399–1411. |
[26] | R. Martin, R. Mess, S. G. Walker, Empirical Bayes posterior concentration in sparse highdimensional linear models, Bernoulli, 23 (2017), 1822–1847. |
[27] | A. M. Sarhan, Empirical Bayes estimates in exponential reliability model, Appl. Math. Comput., 135 (2003), 319–332. doi: 10.1016/S0096-3003(01)00334-4 |
[28] | S. C. Chang, T. F. Li, Empirical Bayes decision rule for classification on defective items in weibull distribution, Appl. Math. Comput., 182 (2006), 425–433. doi: 10.1016/j.amc.2006.04.001 |
[29] | H. C. van Houwelingen, The role of empirical bayes methodology as a leading principle in modern medical statistics, Biom. J., 56 (2014), 919–932. doi: 10.1002/bimj.201400073 |
[30] | Z. F. Jaheen, Empirical Bayes inference for generalized exponential distribution based on records, Commun. Stat.-Theory M., 33 (2004), 1851–1861. doi: 10.1081/STA-120037445 |
[31] | M. Han, E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples, Commun. Stat.-Theory M., 49 (2020), 1858–1872. doi: 10.1080/03610926.2019.1565837 |
[32] | L. Bortkewitsch, Das Gesetz der Kleinen Zahlen, Leipzig: G. Teubner, 1898. |
[33] | D. P. Padilla, A graphical approach for goodness-of-fit of Poisson model, UNLV Retrospective Theses and Dissertations, 2004. |