Generalized Bayesian (GB) is a Bayesian approach based on the learning rate parameter (LRP) ($ 0 < \eta < 1 $) as a fraction of the power of the likelihood function. In this paper, we consider the GB method to perform inference studies for a class of exponential distributions. Generalized Bayesian estimators (GBE) and generalized empirical Bayesian estimators (GEBE) for the parameters of the considered distributions are obtained based on the censored type Ⅱ samples. In addition, generalized Bayesian prediction (GBP) and generalized empirical Bayesian prediction (GEBP) are considered using a one-sample prediction scheme. Monte Carlo simulations and illustrative example are performed for one parameter models to compare the performance of the GBE and GEBE estimation results and the GBP and GEBP prediction results for different values of the LRP.
Citation: Yahia Abdel-Aty, Mohamed Kayid, Ghadah Alomani. Generalized Bayesian inference study based on type-Ⅱ censored data from the class of exponential models[J]. AIMS Mathematics, 2024, 9(11): 31868-31881. doi: 10.3934/math.20241531
Generalized Bayesian (GB) is a Bayesian approach based on the learning rate parameter (LRP) ($ 0 < \eta < 1 $) as a fraction of the power of the likelihood function. In this paper, we consider the GB method to perform inference studies for a class of exponential distributions. Generalized Bayesian estimators (GBE) and generalized empirical Bayesian estimators (GEBE) for the parameters of the considered distributions are obtained based on the censored type Ⅱ samples. In addition, generalized Bayesian prediction (GBP) and generalized empirical Bayesian prediction (GEBP) are considered using a one-sample prediction scheme. Monte Carlo simulations and illustrative example are performed for one parameter models to compare the performance of the GBE and GEBE estimation results and the GBP and GEBP prediction results for different values of the LRP.
[1] | J. W. Miller, D. B. Dunson, Robust Bayesian inference via coarsening, J. Amer. Statist. Assoc., 114 (2019), 1113–1125. https://doi.org/10.1080/01621459.2018.1469995 doi: 10.1080/01621459.2018.1469995 |
[2] | P. Grünwald, The safe Bayesian: Learning the learning rate via the mixability gap, In: Algorithmic learning theory, Heidelberg: Springer, 7568 (2012), 169–183. https://doi.org/10.1007/978-3-642-34106-9_16 |
[3] | P. Grünwald, T. Van Ommen, Inconsistency of Bayesian inference for misspacified linear models, and a proposal for repairing it, Bayesian Anal., 12 (2017), 1069–1103. https://doi.org/10.1214/17-BA1085 doi: 10.1214/17-BA1085 |
[4] | P. Grünwald, Safe probability, J. Statist. Plann. Inference, 195 (2018), 47–63. https://doi.org/10.1016/j.jspi.2017.09.014 doi: 10.1016/j.jspi.2017.09.014 |
[5] | R. Heide, A. Kirichenko, P. Grünwald, N. Mehta, Safe-Bayesian generalized linear regression, In: Proceedings of the twenty third international conference on artificial intelligence and statistics, 108 (2020), 2623–2633. |
[6] | C. C. Holmes, S. G. Walker, Assigning a value to a power likelihood in a general Bayesian model, Biometrika, 104 (2017), 497–503. https://doi.org/10.1093/biomet/asx010 doi: 10.1093/biomet/asx010 |
[7] | S. P. Lyddon, C. C. Holmes, S. G. Walker, General Bayesian updating and the loss-likelihood bootstrap, Biometrika, 106 (2019), 465–478. https://doi.org/10.1093/biomet/asz006 doi: 10.1093/biomet/asz006 |
[8] | R. Martin, Invited comment on the article by van der Pas, Szabó, and van der Vaart, Bayesian Anal., 12 (2017), 1254–1258. |
[9] | R. Martin, B. Ning, Empirical priors and coverage of posterior credible sets in a sparse normal mean model, Sankhyā A, 82 (2020), 477–498. https://doi.org/10.1007/s13171-019-00189-w doi: 10.1007/s13171-019-00189-w |
[10] | P. S. Wu, R. Martin, A comparison of learning rate selection methods in generalized Bayesian inference, Bayesian Anal., 18 (2023), 105–132. https://doi.org/10.1214/21-BA1302 doi: 10.1214/21-BA1302 |
[11] | Y. Abdel-Aty, M. Kayid, G. Alomani, Generalized Bayes estimation based on a joint type-Ⅱ censored sample from k-exponential populations, Mathematics, 11 (2023), 2190. https://doi.org/10.3390/math11092190 doi: 10.3390/math11092190 |
[12] | Y. Abdel-Aty, M. Kayid, G. Alomani, Generalized Bayes prediction study based on joint type-Ⅱ censoring, Axioms, 12 (2023), 716. https://doi.org/10.3390/axioms12070716 doi: 10.3390/axioms12070716 |
[13] | Y. Abdel-Aty, M. Kayid, G. Alomani, Selection effect of learning rate parameter on estimators of k exponential populations under the joint hybrid censoring, Heliyon, 10 (2024), e34087. https://doi.org/10.1016/j.heliyon.2024.e34087 doi: 10.1016/j.heliyon.2024.e34087 |
[14] | A. R. Shafay, N. Balakrishnan, Y. Abdel-Aty, Bayesian inference based on a jointly type-Ⅱ censored sample from two exponential populations, J. Stat. Comput. Simul., 84 (2014), 2427–2440. https://doi.org/10.1080/00949655.2013.813025 doi: 10.1080/00949655.2013.813025 |
[15] | Y. Abdel-Aty, J. Franz, M. A. W. Mahmoud, Bayesian prediction based on generalized order statistics using multiply type-Ⅱ censoring, Statistics, 41 (2007), 495–504. https://doi.org/10.1080/02331880701223357 doi: 10.1080/02331880701223357 |
[16] | A. R. Shafay, M. M. Mohie El-Din, Y. Abdel-Aty, Bayesian inference based on multiply type-Ⅱ censored sample from a general class of distributions, J. Stat. Theory Appl., 17 (2018), 146–157. https://doi.org/10.2991/jsta.2018.17.1.11 doi: 10.2991/jsta.2018.17.1.11 |
[17] | M. M. Mohie El-Din, H. Okasha, B. Al-Zahrani, Empirical Bayes estimators of reliability performances using progressive type-Ⅱ censoring from Lomax model, J. Adv. Res. Appl. Math., 5 (2013), 74–83. |
[18] | M. Kumar, S. K. Singh, U. Singh, A. Pathak, Empirical Bayes estimator of parameter, reliability and hazard rate for Kumaraswamy distribution, Life Cycle Reliab. Saf. Eng., 8 (2019), 243–256. https://doi.org/10.1007/s41872-019-00085-0 doi: 10.1007/s41872-019-00085-0 |
[19] | M. Al-Ameen, Y. Abdel-Aty, Empirical Bayes inference for Rayleigh distribution, J. Stat. Appl. Pro., 11 (2022), 695–708. http://dx.doi.org/10.18576/jsap/110226 doi: 10.18576/jsap/110226 |
[20] | W. Nelson, Applied life data analysis, New York: Wiley, 1982. https://doi.org/10.1002/0471725234 |