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Abstract: Generalized Bayesian (GB) is a Bayesian approach based on the learning rate parameter 

(LRP) (0 < 𝜂 < 1) as a fraction of the power of the likelihood function. In this paper, we consider the 

GB method to perform inference studies for a class of exponential distributions. Generalized Bayesian 

estimators (GBE) and generalized empirical Bayesian estimators (GEBE) for the parameters of the 

considered distributions are obtained based on the censored type II samples. In addition, generalized 

Bayesian prediction (GBP) and generalized empirical Bayesian prediction (GEBP) are considered 

using a one-sample prediction scheme. Monte Carlo simulations and illustrative example are 

performed for one parameter models to compare the performance of the GBE and GEBE estimation 

results and the GBP and GEBP prediction results for different values of the LRP. 
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Abbreviations 

GB Generalized Bayesian  

LRP  Learning rate parameter 

GBE Generalized Bayesian estimator 

GEBE Generalized empirical Bayesian estimator 

GBP Generalized Bayesian prediction 

GEBP Generalized empirical Bayesian prediction 
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MLE Maximum likelihood estimator 

EB Empirical Bayes  

EBE Empirical Bayes estimator 

EBP Empirical Bayes prediction 

1. Introduction 

In the Bayesian inference techniques, GB analysis was introduced and studied based on the 

learning rate parameter (0 < 𝜂 < 1). The traditional Bayesian framework for 𝜂 = 1 is a fraction of the 

power of the likelihood function 𝐿(𝜃) ≡ 𝐿(𝜃;  𝑑𝑎𝑡𝑎) for the parameter 𝜃 ∈ Θ. This means that if the 

prior distribution of the parameter 𝜃 is 𝜋(𝜃), then the GB posterior distribution for 𝜃 is 

𝜋∗(𝜃 | 𝑑𝑎𝑡𝑎) ∝ 𝐿𝜂(𝜃)𝜋(𝜃), 𝜃 ∈ Θ, 0 < 𝜂 < 1.     (1) 

In this study, the GBE, GEBE, GBP, and GEBP distributions from the class of exponential 

distributions are examined using type II censored samples. Thus, the aim of this study is to examine all 

GB and GEB results for different LRP values, including 𝜂 = 1, which describe the traditional Bayes. 

For more information on the GB approach and how to select the value for the rate parameter, see [1–13]. 

Specifically, the choice of the learning rate was studied in [3–6] using the Safe Bayes algorithm based 

on the minimization of a sequential risk measure. In [7] and [8], another learning rate selection method 

was proposed, which included two different information adaptation strategies. The authors in [11] 

investigated GBE based on a joint type-II censored sample from multiple exponential populations, 

using various values of the learning rate parameter. The same study was presented in [13] but was 

based on joint hybrid censoring. In [11,13] a range of values for the learning rate parameter have been 

chosen to obtain the best estimators for the parameters of the corresponding distributions, then GB 

results were compared with the traditional Bayesian results. Here we conduct our study based on 

different values of LRP to find out the effect of different values of LRP on the estimation and prediction 

results. 

A one-sample prediction scheme is a Bayesian prediction method that determines the point 

predictor or prediction interval for unknown future values in the same sample based on the currently 

available observations. A two-sample prediction scheme or a multiple-sample prediction scheme are 

two other ways in which Bayesian prediction can utilize currently available observations to predict one 

or more future samples. Numerous authors have addressed the prediction of future failures or samples 

using different censoring techniques in the context of different prediction methods. We highlight some 

points that are relevant to our research. For instance, [12] investigated the GBP using a combined type-

II censored sample drawn from multiple exponential populations. A study using a joint type-II 

censored sample from two exponential populations for Bayes estimation and prediction was published 

in [14]. Based on a generalized order statistic and multiple type II censoring, a Bayesian prediction for 

the future values of distributions from the class of exponential distributions was constructed in [15,16]. 

In the Bayesian study, the parameter of the distribution under investigation is a random variable, 

i.e., this unknown parameter is distributed according to the prior distribution. Empirical Bayes (EB) is 

a Bayesian study in which the parameters of the prior distribution (hyperparameters) are also unknown. 

By combining the density function of the distribution and the prior distributions, we obtain the 

marginal density function of the hyperparameters, which is used to estimate the hyperparameters. 

Therefore, the data of the original distribution are used to find the maximum likelihood estimators 

(MLEs) of these hyperparameters. EB has been introduced by many authors; for example, [17] studied 

the empirical Bayes estimator (EBE) of reliability performances with progressive type-II censoring of 

the Lomax model. The reliability and hazard function of the Kumaraswamy distribution were 
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determined by [18] using progressive censored type II samples to estimate the EBE of the parameters. 

The Rayleigh distribution was studied in [19] to determine EBE and empirical Bayes prediction (EBP). 

The rest of this article is organized as follows: Section 2 introduces the class of exponential 

models and then describes the problem of GB, GEB, GBP, and GEBP for this class. Section 3 applies 

the investigation from Section 2 to the exponential and Rayleigh models, which are given as examples 

of the one parameter exponential class. In Section 4, we present simulation study besides an illustrative 

example based on real data for the exponential and Rayleigh models to obtain the GBE, GEBE, GBP 

and GEBP for different LRP values and compare the results. Finally, Section 5 discusses the results 

and concludes the paper. 

2. Estimation and prediction 

In this section, we introduce the exponential class of models and examine the problems of the GB, 

GEB, GBP, and GEBP for this class. 

2.1. The model 

Let 𝜽  be the vector of parameters, define a function 𝑔(𝑥; 𝜽) ≡ 𝑔(𝑥) , and its derivative 𝑔′(𝑥) 

where lim
𝑥→∞

𝑔(𝑥) = ∞, lim
𝑥→0+

𝑔(𝑥) = 0.  The probability density function (pdf), the cumulative 

probability density function (cdf) and the survival function (sf) of the exponential class are each given 

by: 

𝑓(𝑥; 𝜽) = 𝑔′(𝑥) exp[−𝑔(𝑥)] , 𝑥 > 0, 𝜽 > 0;     (2) 

𝐹(𝑥; 𝜽) = 1 − exp[−𝑔(𝑥)],         (3) 

and 

𝐹(𝑥; 𝜽) = exp[−𝑔(𝑥)].        (4) 

The likelihood function under type-II censored data from the class is given by, 

𝐿(𝑥; 𝜽) = 𝑐 𝐹(𝑥𝑟; 𝜽)𝑛−𝑟 ∏𝑟
𝑖=1 𝑓(𝑥𝑖; 𝜽)  

∝ 𝐴(𝑥; 𝜽) exp[−𝐵(𝑥; 𝜽)],        (5) 

where, 𝑐 =
𝑛!

(𝑛−𝑟)!
, 𝐴(𝑥; 𝜽) = ∏𝑟

𝑖=1 𝑔′(𝑥𝑖), 𝐵(𝑥; 𝜽) = ∑𝑟
𝑖=1 𝑔(𝑥𝑖) + (𝑛 − 𝑟)𝑔(𝑥𝑟), 𝑥 = (𝑥1, … , 𝑥𝑟). 

Consider the prior distribution of 𝜽 in the following general form: 

𝜋(𝜽; 𝜹) = 𝐼𝜹
−1𝐶(𝜽; 𝜹) exp[−𝐷(𝜽; 𝜹)],      (6) 

where, 𝐼𝜹 = ∫ 𝐶(𝜽; 𝜹) exp[−𝐷(𝜽; 𝜹)] 𝑑𝜽
𝜽

,  𝜹 is a vector of hyperparameters. 

Combining (5) and (6), after raising (5) to the fractional power 𝜂, the GB posterior distribution of 

𝜽 is given by, 

𝜋𝐺
∗ (𝜽; 𝜹, 𝑥) = 𝐼𝜹

∗−1
𝐿𝜂(𝑥; 𝜽)𝜋(𝜽; 𝜹)  

= 𝐼𝜹
∗−1

 𝐺(𝜽; 𝜹, 𝑥) exp[−𝐻(𝜽; 𝜹, 𝑥)],    (7) 

where 𝐺𝜹 = 𝐴𝜂(𝑥; 𝜽)𝐶(𝜽; 𝜹), 𝐻𝜹 =  𝜂𝐵(𝑥; 𝜽) + 𝐷(𝜽; 𝜹), and 𝐼𝜹
∗ = ∫ 𝐺𝜹 exp[−𝐻𝜹] 𝑑𝜽

𝜽
. 

Under the squared error loss function, then GBE is given by, 

𝜽̂𝐺𝐵 = 𝐸(𝜽) = ∫ 𝜽 𝜋𝐺
∗ (𝜽; 𝜹, 𝑥) 𝑑𝜽.

𝜽
      (8) 
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2.2. Generalized empirical Bayesian estimation 

Combining (1) and (6), to obtain the marginal pdf 𝑓(𝑥; 𝜹) as follows: 

𝑓(𝑥; 𝜹) = ∫ 𝜋(𝜽; 𝜹) 𝑓(𝑥; 𝜽)𝑑𝜽
𝜽

  

= 𝐼𝜹
−1  ∫ 𝐶(𝜽; 𝜹)𝑔′(𝑥) exp[−{𝐷(𝜽; 𝜹) + 𝑔(𝑥)}] 𝑑𝜽.

𝜽
 (9) 

From pdf in (9) we obtain the cdf 𝐹(𝑥; 𝜹), then the likelihood function under type-II censored data is 

given by, 

𝐿𝐸(𝑥; 𝜹) = 𝑐 𝐹(𝑥𝑟; 𝜹)𝑛−𝑟 ∏𝑟
𝑖=1 𝑓(𝑥𝑖; 𝜹).      (10) 

Using the loglikelihood function ℒ𝐸(𝑥; 𝜹) = log 𝐿𝐸(𝑥; 𝜹), to find the maximum likelihood estimator 

(MLE) 𝜹̂ as follows: 

𝜹̂ = argmax
𝜹

ℒ𝐸(𝑥; 𝜹).        (11) 

By solving the following equation, 

𝜕ℒ𝐸(𝑥;𝜹)

𝜕𝜹
= 0.         (12) 

Substituting by 𝛿̂ in (7), we obtain the posterior GE as follows: 

𝜋𝐺𝐸
∗ (𝜽; 𝜹̂, 𝑥) = 𝐼𝜹̂

∗−1
 𝐺𝜹̂ exp[−𝐻𝜹̂].       (13) 

Under the squared error loss function, GEBE is given by 

𝜽̂𝐺𝐸 = 𝐸(𝜽) = ∫ 𝜽 𝜋𝐺𝐸
∗ (𝜽; 𝜹̂, 𝑥) 𝑑𝜽.

𝜽
      (14) 

2.3. One sample prediction scheme 

To determine the GBP and GEBP intervals using a one-sample prediction scheme under the type-

II censored sample from the class, the first 𝑟 ordered statistics 𝑥 are observed from a random sample 

of size 𝑛;  𝑟 < 𝑛.  A one-sample prediction scheme is considered to predict the rest of unobserved 

values 𝑥𝑠, 𝑠 = 𝑟 + 1, … , 𝑛. The conditional density function of 𝑥𝑠 given 𝑥 is given by 

𝑓(𝑥𝑠|𝑥) =
(𝑛−𝑟)!

(𝑠−𝑟−1)!(𝑛−𝑠)!
 [𝐹(𝑥𝑟) − 𝐹(𝑥𝑠)]

𝑠−𝑟−1
 𝐹(𝑥𝑠)𝑛−𝑠 𝐹(𝑥𝑟)−(𝑛−𝑟)𝑓(𝑥𝑠).  (15) 

Substituting by (2), (4) in (15), the conditional density function of 𝑥𝑠 given 𝑥 is, 

𝑓(𝑥𝑠|𝑥) = ∑ 𝑐𝑗
𝑠−𝑟−1
𝑗=0 𝑔′(𝑥𝑠) exp[−𝑛𝑗{𝑔(𝑥𝑠) − 𝑔(𝑥𝑟)}] ,    (16) 

where, 𝑐𝑗 =
(−1)𝑠−𝑟−𝑗−1 (𝑛−𝑟)!

𝑗!(𝑠−𝑟−𝑗−1)!(𝑛−𝑠)!
, 𝑛𝑗 = 𝑛 − 𝑟 − 𝑗. 

Combining (7) and (16), then integrating with respect to 𝜽, the GB predictive density function is 

given by, 

𝑓𝐺
∗(𝑥𝑠|𝑥) = 𝐼𝜹

∗−1 ∑ 𝑐𝑗
𝑠−𝑟−1
𝑗=0 ∫ 𝑔′(𝑥𝑠)𝐺𝜹 exp[−{𝑛𝑗(𝑔(𝑥𝑠) − 𝑔(𝑥𝑟)) + 𝐻𝜹}]

 𝜽
𝑑𝜽. (17) 

The predictive reliability function of 𝑥𝑠, 𝑠 = 𝑟 + 1, … , 𝑛 is given by: 

𝐹𝜹(𝑡|𝑥) = 𝐼𝜹
∗−1 ∑

𝑐𝑗

𝑛𝑗

𝑠−𝑟−1
𝑗=0 ∫ 𝐺𝜹 exp[−{𝑛𝑗(𝑔(𝑡) − 𝑔(𝑥𝑟)) + 𝐻𝜹}]

 𝜽
𝑑𝜽.  (18) 
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Equation (18) to 
1+𝛼

2
 and 

1−𝛼

2
, respectively, we obtain (1 − 𝛼)% GBP bounds (𝐿𝜹, 𝑈𝜹). GEBP bounds 

(𝐿𝛿̂ , 𝑈𝛿̂), can be obtained by substituting by 𝛿̂ in (18) then equating to 
1+𝛼

2
 and 

1−𝛼

2
. 

3. Applications 

In this section, we apply the results in the previous section to one parameter models; therefore, 

the models that are discussed here are exponential Exp(𝜃)  and Rayliegh Ray(𝜃) . For these two 

distributions, the parameter 𝜃  assumed to be unknown, we may consider the conjugate prior 

distribution of 𝜃 as a gamma prior distribution, 𝜃 ∼ 𝐺𝑎𝑚(𝛿1, 𝛿2), hence, 

𝐶(𝜃; 𝜹) = 𝜃𝛿1−1, 𝐷(𝜃; 𝜹) = 𝛿2𝜃; 𝐼𝜹
−1 =

𝛿2
𝛿1

Γ(𝛿1)
, 𝛿1, 𝛿2 > 0.   (19) 

3.1. Exponential model 

Here we give the essential functions and important forms derived in Section 2 and Eq (19) for the 

exponential model as follows: 

𝑔(𝑥) = 𝜃𝑥, 𝑥 > 0.        (20) 

For the likelihood function, we have 

𝐴(𝑥; 𝜃) = 𝜃𝑟, 𝑇𝐸 = ∑𝑟
𝑖=1 𝑥𝑖 + (𝑛 − 𝑟)𝑥𝑟 and 𝐵(𝑥; 𝜃) = 𝜃𝑇𝐸. 

Generalized posterior function can be formed from the following: 

𝐺𝜹 = 𝜃𝜂𝑟+𝛿1−1, 𝐻𝜹 =  𝜃(𝜂𝑇𝐸 + 𝛿2) and 𝐼𝜹
∗ =

Γ(𝜂𝑟+𝛿1)

(𝜂𝑇𝐸+𝛿2)𝜂𝑟+𝛿1
. 

The GBE of the parameter 𝜃 is given by, 

𝜃𝐺𝐵 =
𝜂𝑟+𝛿1 

𝜂𝑇𝐸+𝛿2
.         (21) 

The predictive reliability function of 𝑥𝑠 is given by, 

𝐹𝜹(𝑡|𝑥) = ∑
𝑐𝑗

𝑛𝑗

𝑠−𝑟−1
𝑗=0 [1 +

𝑛𝑗(𝑡−𝑥𝑟)

𝜂𝑇𝐸+𝛿2
]−(𝜂𝑟+𝛿1).      (22) 

Equating (22) to  
1+𝛼

2
 and 

1−𝛼

2
, respectively, we obtain (1 − 𝛼)% GBP bounds (𝐿𝜹, 𝑈𝜹). 

The functions and forms under GEB study can be illustrated as follows: 

The marginal pdf 𝑓(𝑥; 𝜹) is given in the following form, 

𝑓(𝑥; 𝜹) =
𝛿1𝛿2

𝛿1

(𝑥+𝛿2)(𝛿1+1).        (23) 

Using pdf 𝑓(𝑥; 𝜹) and cdf 𝐹(𝑥; 𝜹), we obtain the likelihood function based on type-II censored data, 

as follows: 

𝐿𝑬(𝒙; 𝜹) ∝
(𝛿1𝛿2

𝛿1)
𝑟

∏ (𝑥𝑖+𝛿2)−(𝛿1+1)𝑟
𝑖=1

(1+
𝑥𝑟
𝛿2

)
(𝑛−𝑟)𝛿1

.       (24) 

By differentiating the loglikelihood function ℒ𝐸(𝑥; 𝜹)  w. r. to 𝛿1 and 𝛿2  and equating each 

equation to zero, then solving them numerically, we obtain the estimators 𝛿̂1 and 𝛿̂2. 

The GEBE of the parameter 𝜃 is given by, 
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𝜃𝐺𝐸 =
𝜂𝑟+𝛿̂1

𝜂𝑇𝐸+𝛿̂2
.         (25) 

The predictive reliability function of 𝑥𝑠 is given by, 

𝐹𝜹̂(𝑡|𝑥) = ∑
𝑐𝑗

𝑛𝑗

𝑠−𝑟−1
𝑗=0  [1 +

𝑛𝑗(𝑡−𝑥𝑟)

𝜂𝑇𝐸+𝛿̂2
]

−(𝜂𝑟+𝛿̂1)

.      (26) 

Equating (26) to (1 + 𝛼)/2 and (1 − 𝛼)/2, respectively, we obtain (1 − 𝛼)% GEBP bounds (𝐿𝛿̂ , 𝑈𝛿̂). 

3.2. Rayleigh model 

The essential functions and important forms derived in Section 2 and Eq (19) for Rayliegh 

distribution are derived as follows: 

𝑔(𝑥) =
𝜃𝑥2

2
, 𝑥 > 0.        (27) 

For the likelihood function we have 

𝐴(𝑥; 𝜃) = 𝜃𝑟 ∏𝑟
𝑖=1 𝑥𝑖, 𝑇𝑅 = ∑𝑟

𝑖=1 𝑥𝑖
2/2 + (𝑛 − 𝑟)𝑥𝑟

2/2 and 𝐵(𝑥; 𝜃) = 𝜃𝑇𝑅. 

Generalized posterior function, can be formed from the following: 

𝐺𝜹 = 𝜃𝜂𝑟+𝛿1−1(∏𝑟
𝑖=1 𝑥𝑖)𝜂 , 𝐻𝜹 = 𝜃(𝜂𝑇𝑅 + 𝛿2) and 𝐼𝜹

∗ =
(∏𝑟

𝑖=1 𝑥𝑖)
𝜂

 Γ(𝜂𝑟+𝛿1)

(𝜂𝑇𝑅+𝛿2)𝜂𝑟+𝛿1
. 

The GBE of the parameter 𝜃 is given by, 

𝜃𝐺𝐵 =
𝜂𝑟+𝛿1 

𝜂𝑇𝑅+𝛿2
.          (28) 

The predictive reliability function of 𝑥𝑠 is given by, 

𝐹𝜹(𝑡|𝑥) = ∑
𝑐𝑗

𝑛𝑗

𝑠−𝑟−1
𝑗=0 [1 +

𝑛𝑗(𝑡2−𝑥𝑟
2)/2

𝜂𝑇𝑅+𝛿2
]−(𝜂𝑟+𝛿1).      (29) 

Equating (29) to  
1+𝛼

2
 and 

1−𝛼

2
, respectively, we obtain (1 − 𝛼)% GBP bounds (𝐿𝜹, 𝑈𝜹). 

The marginal pdf 𝑓(𝑥; 𝜹) is given in the following form: 

𝑓(𝑥; 𝜹) =
𝛿1𝛿2

𝛿1

(𝑥+𝛿2)(𝛿1+1).        (30) 

Using pdf 𝑓(𝑥; 𝜹) and cdf 𝐹(𝑥; 𝜹) we obtain the likelihood function based on type-II censored data, 

as follows: 

𝐿𝑬(𝒙; 𝜹) ∝
(𝛿1𝛿2

𝛿1)𝑟 ∏ (𝑥𝑖+𝛿2)−(𝛿1+1)𝑟
𝑖=1

(1+𝑥𝑟/𝛿2)(𝑛−𝑟)𝛿1
.      (31) 

By differentiating the loglikelihood function ℒ𝐸(𝑥; 𝜹)  with respect to 𝛿1 and 𝛿2  and equating each 

equation to zero, then solving them numerically, we obtain the estimators 𝛿̂1 and 𝛿̂2. 

The GEBE of the parameter 𝜃 is given by, 

𝜃𝐺𝐸 =
𝜂𝑟+𝛿̂1

𝜂𝑇𝐸+𝛿̂2
.         (32) 

The predictive reliability function of 𝑥𝑠 is given by, 

𝐹𝜹̂(𝑡|𝑥) = ∑
𝑐𝑗

𝑛𝑗

𝑠−𝑟−1
𝑗=0 [1 +

𝑛𝑗(𝑡2−𝑥𝑟
2)/2

𝜂𝑇𝑅+𝛿̂2
]−(𝜂𝑟+𝛿̂1).     (33) 

Equating (32) to 
1+𝛼

2
 and 

1−𝛼

2
, respectively, we obtain (1 − 𝛼)% GEBP bounds (𝐿𝛿̂ , 𝑈𝛿̂). 

https://en.wikipedia.org/wiki/Numerical_analysis
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4. Numerical analysis 

In this section, a simulation study for the exponential and Rayleigh distributions is presented to 

obtain the GBE, GEBE, GBP, and GEBP for different LRP values and compare the results. An example 

based on real data for exponential and Rayleigh distributions is given to illustrate the results. 

4.1.  Simulation study 

In this subsection, the results of the Monte Carlo simulation are presented to evaluate the 

performance of the inference methods derived in the previous sections. The simulation study is 

designed and carried out for the two models as follows: 

• Generate one sample from each distribution with size 𝑛 = 50 and choosing 𝑟 = 30, 40, 50. 

• Based on the chosen values of the hyperparameters (𝛿1, 𝛿2) = (4, 2), the suggested value for 

the parameter is 𝜃 = 2, where 𝜃 is obtained as the mean of gamma distribution in (18). 

• For EB, we use MLE (𝛿̂1, 𝛿̂2) to compute 𝜃𝐺𝐸, where the results of MLE (𝛿̂1, 𝛿̂2) based on 

exponential and Rayliegh distributions are shown in Table 1. 

Table 1. The MLEs of the hyperparameters 𝛿̂1, 𝛿̂2  under different data from the two 

distributions. 

 𝑬𝒙𝒑(𝜽)  𝑹𝒂𝒚(𝜽) 

(𝒏, 𝒓) (𝛿1, 𝛿2) 

(20, 15) 

(50, 30) 

(50, 40) 

(50, 50) 

(10.497, 4.1)   (10.95,4.625) 

(11.31, 4.926)  (11, 4.4252) 

(10.9, 5.218)  (10.995, 5.1456) 

(10.3, 5.289)  (10.5, 5.2727) 

• For the Monte Carlo simulations, we use 𝑀 = 10,000 replicates; therefore, the estimator 𝜃 =

∑ 𝜃̂𝑖
𝑀
𝑖=1

𝑀
, and the estimated risk, 𝐸𝑅 = √∑ (𝜃i−𝜃̂i)2𝑀

𝑖=1

𝑀
. 

• Using (21), (25), (28) and (32), the estimation results are obtained and expressed by the 

estimator 𝜃 and ER for different values of LRP, where 𝜂 = 0.1, 0.5, and 1. 

• The results of GBE and GEBE for exponential and Rayliegh distributions are shown in Tables 2 

and 4. 

• Prediction results are based on one sample from each distribution with size 𝑛 = 20, the 

number of observations is 𝑟 = 15. We then compute the GBP, GEBP bounds, and their lengths at 

𝛼 = 0.05, for the future values with 𝑠 = 16, 18, 20 using (22), (26), (29), and (33). 

• The results of GBP and GEBP for exponential and Rayliegh distributions are shown in Tables 3 

and 5. 

From Table 2. According to 𝜃 and ER, GBE becomes better for small values of LRP but for large 

values of 𝒓 , which means getting the best result at 𝜂 = 0.1  and 𝒓 = 50  (complete sample). GEBE 

becomes better for large values of LRP and for large values of 𝒓, which means getting the best result 

at 𝜂 = 1 and 𝒓 = 50. In general, the result of GBE is better than that of GEBE. 

From Table 3. According to the length of the interval, GBP and GEBP become better for large 

values of LRP, which means getting the best result at 𝜂 = 1 and 𝑠 = 16. In general, the result of GEBP 

is better than that of GBP. 

  

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
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Table 2. GBE and GEBE for the parameter of exponential distribution. 

𝒓 𝜼 𝜽̂𝑮𝑩 𝑬𝑹𝑮𝑩 𝜽̂𝑮𝑬 𝑬𝑹𝑮𝑬 

30 

40 

50 

0.1 

2.0491 0.0033 2.2308 0.0070 

2.0436 0.0027 2.0687 0.0064 

2.0295 0.0023 1.9677 0.0067 

30 

40 

50 

0.5 

2.0611 0.0078 2.1430 0.0058 

2.0461 0.0052 2.0526 0.0053 

2.0401 0.0046 2.0052 0.0047 

30 

40 

50 

1 

2.0655 0.0127 2.1119 0.0051 

2.0495 0.0111 2.0495 0.0046 

2.0414 0.0078 2.0187 0.0035 

Table 3. GBP and GEBP bound for exponential future values. 

s 𝜼 (𝑳, 𝑼)𝑮𝑩 length (𝑳, 𝑼)𝑮𝑬 length 

16 

18 

20 

0.1 

(0.6596, 1.1826) 0.5230 (0.6591, 1.0062) 0.3471 

(0.7282, 2.1919) 1.4637 (0.7178, 1.6180) 0.9002 

(0.9338, 4.9415) 4.0077 (0.8992, 3.3181) 2.4189 

16 

18 

20 

0.5 

(0.6597, 1.0920) 0.4323 (0.6592, 1.0142) 0.3550 

(0.7321,1.8567) 1.1246 (0.7237, 1.6225) 0.8988 

(0.9557, 3.9800) 3.0243 (0.9251, 3.3245) 2.3994 

16 

18 

20 

1 

(0.6596, 1.0642) 0.4046 (0.6593, 1.0181) 0.3588 

(0.7337, 1.7554) 1.0217 (0.7273, 1.6225) 0.8952 

(0.9653, 3.6914) 2.7261 (0.9411, 3.3220) 2.3809 

From Table 4. GBE becomes better for small values of LRP but for large values of 𝒓, which means 

getting the best result at 𝜂 = 0.1  and 𝒓 = 50  (complete sample). GEBE becomes better for large 

values of LRP and for large values of 𝒓, except for the complete sample, the result becomes better for 

small values of LRP which means getting the best result at 𝜂 = 0.1 and 𝒓 = 50. The result of GBE is 

better than that of GEBE at 𝒓 = 30, 40, but GEBE is better than GBE for the complete sample. 

From Table 5. According to the length of the interval, GBP and GEBP become better for large 

values of LRP, which means getting the best result at 𝜂 = 1 and 𝑠 = 16. In general, the result of GEBP 

is better than that of GBP. 
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Table 4. GBE and GEE for the parameter of Rayleigh distribution. 

r 𝜼 𝜽̂𝑮𝑩 𝑬𝑹𝑮𝑩 𝜽̂𝑮𝑬 𝑬𝑹𝑮𝑬 

30 

40 

50 

0.1 

2.0131 0.0028 2.3676 0.0129 

2.0124 0.0023 2.1026 0.0082 

2.0122 0.0013 1.9992 0.0013 

30 

40 

50 

0.5 

2.0415 0.0060 2.2088 0.0095 

2.0321 0.0026 2.0677 0.0048 

2.0311 0.0024 2.0166 0.0015 

30 

40 

50 

1 

2.0514 0.0075 2.1532 0.0074 

2.0436 0.0059 2.0603 0.0020 

2.0349 0.0041 2.0260 0.0018 

Table 5. GBP and GEBP bound for Rayleigh future values. 

s 𝜼 (𝑳, 𝑼)𝑮𝑩 length (𝑳, 𝑼)𝑮𝑬 length 

16 

18 

20 

0.1 

(1.1379, 1.5297) 0.3918 (1.1376, 1.4252) 0.2876 

(1.1967, 2.0880) 0.8913 (1.1914, 1.8238) 0.6324 

(1.3577, 3.1400) 1.7823 (1.3448, 2.6322) 1.2874 

16 

18 

20 

0.5 

(1.1379, 1.4695) 0.3316 (1.1377, 1.4253) 0.2876 

(1.2000, 1.9209) 0.7209 (1.1954, 1.8145) 0.6191 

(1.3738, 2.8175) 1.4437 (1.3597, 2.6121) 1.2524 

16 

18 

20 

1 

(1.1379, 1.4507) 0.3128 (1.1378, 1.4251) 0.2873 

(1.2013, 1.8674) 0.6661 (1.976, 1.8084) 0.6108 

(1.3807, 2.7132) 1.3325 (1.3689, 2.5993) 1.2304 

4.2. Illustrative example  

To illustrate the results, two examples based on real data are given for exponential and Rayleigh 

distributions, respectively. For the GB study, there is no information about the prior, and 

noninformative prior should be used; therefore, we suggest the hyperparameters as (𝛿1, 𝛿2) =
(0.0001, 0.0001), which results in the MLE for the parameter, which means there is no effect for the 

LRP in the case of noninformative prior. 

The data in Table 6, contains times to breakdown of an insulating fluid between electrodes recorded 

at 34kv (see, [20]). Table 7 provide the MLEs of 𝛿̂1, 𝛿̂2 under breakdown data from the two distributions. 

Table 6. Breakdown time data (𝑛 = 19). 

0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 

33.91, 36.71, 72.89 
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Table 7. The MLEs of 𝛿̂1, 𝛿̂2 under breakdown data from the two distributions. 

 𝑬𝒙𝒑(𝜽)  𝑹𝒂𝒚(𝜽) 

(𝒏, 𝒓) (𝛿1, 𝛿2) 

(19, 10) 

(19, 15) 

(19, 19) 

(7.427, 1.1)  (7.211, 0.64) 

(6.658, 1)  (5.767, 0.55) 

(5.794, 0.95)  (4.685, 0.5) 

From Table 8, the results of GBE are nearly the MLE for the parameter in the case of noninformative 

prior, as we see there is no effect for the LRP in both distributions, and the best result for exponential 

distribution is 𝜃̂𝐺𝐵 = 0.0696 , while the best result for Rayliegh distribution is 𝜃̂𝐺𝐵 = 0.0036 . GEBE 

becomes better for large values of LRP and for large values of 𝒓, which means the best result for the 

exponential distribution is 𝜃̂𝐺𝐸 = 0.0905 , while the best result for the Rayliegh distribution is 𝜃̂𝐺𝐸 =

0.0045. Because of using noninformative prior, the result of GEBE is better than that of GBE. 

Table 8. GBE and GEBE for the parameters of the two distributions. 

  𝑬𝒙𝒑(𝜽) 𝑹𝒂𝒚(𝜽) 

𝑟 𝜂 𝜃̂𝐺𝐵 𝜃̂𝐺𝐸 𝜃̂𝐺𝐵 𝜃̂𝐺𝐸 

10 

15 

19 

0.1 

0.1138 0.8525 0.0395 0.31651 

0.0670 0.3489 0.0054 0.0263 

0.0696 0.2725 0.0036 0.0127 

10 

15 

19 

0.5 

0.1138 0.2760 0.0395 0.0960 

0.0670 0.1254 0.0054 0.0096 

0.0696 0.1113 0.0036 0.0055 

10 

15 

19 

1 

0.1138 0.1959 0.0395 0.0678 

0.0670 0.0963 0.0054 0.0075 

0.0696 0.0905 0.0036 0.0045 

From Tables 9 and 10, according to the length of the interval, GBP becomes better for large values 

of LRP, which means getting the best result at 𝜂 = 1 and 𝑠 = 16, but GEBP becomes better for small 

value of LRP, that means getting the best result at 𝜂 = 0.1 and 𝑠 = 16. In general, the result of GEBP 

is better than that of GBP. 

Table 9. GBP and GEBP bound for exponential future values. 

s 𝜼 (𝑳, 𝑼)𝑮𝑩 length (𝑳, 𝑼)𝑮𝑬 length 

16 

19 
0.1 

(31.845, 91.575) 59.723 (31.768, 35.092) 3.324 

(36.975, 488.5) 451.525 (33.067, 51.565) 18.498 

16 

19 
0.5 

(31.845, 49.523) 17.678 (31.85, 40.151) 8.301 

(38.56, 137.8) 99.240 (35.561, 80.011) 44.450 

16 

19 
1 

(31.845, 47.349) 15.504 (31.816, 42.185) 10.369 

(38.9, 121.15) 82.250 (36.807, 90.784) 53.977 
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Table 10. GBP and GEBP bound for Rayliegh future values. 

s 𝜼 (𝑳, 𝑼)𝑮𝑩 length (𝑳, 𝑼)𝑮𝑬 length 

16 

19 
0.1 

(31.787, 49.785) 17.998 (31.758, 33.154) 1.396 

(33.711, 110.561) 76.85 (32.289,39.415) 7.126 

16 

19 
0.5 

(31.787, 38.009) 6.222 (31.771,35.048) 3.277 

(34.285, 60.122) 25.837 (33.269, 47.731) 14.462 

16 

19 
1 

(31.786, 37.30) 5.514 (31.776,35.712) 3.936 

(34.406, 56.605) 22.199 (33.718,50.222) 16.504 

5. Discussion and conclusions 

In this study, one-parameter models belonging to the class of exponential models are considered. 

Two well-known models, 𝐸𝑥𝑝(𝜃) and 𝑅𝑎𝑦(𝜃), are examined based on a censored type-II sample. GB, 

GEB, GBP, and GEBP are discussed for the two distributions with different values of LRP 𝜂. In the 

following subsections, we discuss simulation and illustrative example results. 

5.1. Simulation results 

From the results in Table 2 to Table 5, we can summarize the results of the two distributions as 

follows: 

5.1.1. The result of exponential model 

• GBE becomes better for small values of LRP but for large values of 𝒓, which means getting 

the best result at 𝜂 = 0.1 and 𝒓 = 50. GEBE becomes better for large values of LRP and for large 

values of 𝒓, which means getting the best result at 𝜂 = 1 and 𝒓 = 50. 

• GBP and GEBP become better for large values of 𝒓 and  LRP, which means getting the best 

result at 𝜂 = 1 and 𝒓 = 50. 

• The result of GBE is better than that of GEBE, but the result of GEBP is better than that of 

GBP. 

• Small values of LRP give the best result for GBE but vice versa for GEBP. 

5.1.2. The result of Rayleigh model 

• GBE becomes better for small values of LRP but for large values of 𝒓, which means getting 

the best result at 𝜂 = 0.1 and 𝒓 = 50. GEBE becomes better for large values of LRP and for large 

values of 𝒓, except for the complete sample, the result becomes better for small values of LRP, which 

means getting the best result at 𝜂 = 0.1 and 𝒓 = 50. The result of GBE is better than that of GEBE at 

𝒓 = 30, 40, but GEBE is better than GBE for the complete sample. 

• GBP and GEBP become better for large values of 𝒓 and LRP, which means getting the best 

result at 𝜂 = 1 and 𝒓 = 50. 

• The result of GBE is better than that of GEBE, but the result of GEBP is better than that of 

GBP. 

• Small values of LRP for the complete sample give the best result for GBE but vice versa for GEBP. 
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5.2.  Illustrative example 

In this subsection, because of using noninformative prior, we can say that GBE is MLE. From the 

results in Table 6 to Table 10, we can summarize the results of estimation and prediction for the two 

distributions as follows: 

5.2.1. The result of estimation 

• There is no effect for the LRP on the results of GBE in the case of noninformative prior. 

• The best result of GBE for exponential distribution is 𝜃̂𝐺𝐵 = 0.0696. 

• The best result of GEBE for exponential distribution is 𝜃̂𝐺𝐸 = 0.0905. 
• The best result of GBE for Rayliegh distribution is 𝜃̂𝐺𝐵 = 0.0036. 

• The best result of GEBE for Rayliegh distribution is 𝜃̂𝐺𝐵 = 0.0045. 
• In both distributions, GEBE becomes better for large values of LRP and for large values of 𝒓, 

which means getting the best result for the complete sample at 𝜂 = 1. 

• Because of using the noninformative prior, the result of GEBE is better than that of GBE 

(MLE). 

5.2.2. The result of prediction 

• According to the length of the interval, GBP becomes better for large values of LRP, which 

means getting the best result at 𝜂 = 1 and 𝑠 = 16. 

• GEBP becomes better for small values of LRP, which means getting the best result at 𝜂 = 0.1 

and 𝑠 = 16.  

• The result of GEBP is better than that of GBP (because of using noninformative prior). 

Generally, we can conclude that the result of GBE is better than that of GEBE, but the result of 

GEBP is better than GBP. Small values of LRP for the complete sample mostly give the best result for 

GBE and GEBE but LRP differ for the best result of GBP and GEBP. 

The study here is based on one-parameter models; in future work, the study can be extended to 

two or more parameters. 
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