Using Whitham modulation theory, this paper examined periodic solutions and the problem of discontinuous initial values for the higher-order good Jaulent-Miodek (JM) equation. The physical significance of the JM equations was discussed by considering the reduction of Euler's equation. Next, the zero- and one-phase periodic solutions of the JM equation, along with the associated Whitham equations, were derived. The analysis included the degeneration of the one-phase periodic solution and the genus-one Whitham equation by examining the limits of the modulus $ m $ of the Jacobi elliptic functions. Additionally, analytical and graphical representations of rarefaction wave solutions and periodic wave patterns were provided, and a solution for discontinuous initial values in the JM equation was presented. The results of this study offer a theoretical foundation for analyzing discontinuous initial values in nonlinear dispersion equations.
Citation: Wenzhen Xiong, Yaqing Liu. Physical significance and periodic solutions of the high-order good Jaulent-Miodek model in fluid dynamics[J]. AIMS Mathematics, 2024, 9(11): 31848-31867. doi: 10.3934/math.20241530
Using Whitham modulation theory, this paper examined periodic solutions and the problem of discontinuous initial values for the higher-order good Jaulent-Miodek (JM) equation. The physical significance of the JM equations was discussed by considering the reduction of Euler's equation. Next, the zero- and one-phase periodic solutions of the JM equation, along with the associated Whitham equations, were derived. The analysis included the degeneration of the one-phase periodic solution and the genus-one Whitham equation by examining the limits of the modulus $ m $ of the Jacobi elliptic functions. Additionally, analytical and graphical representations of rarefaction wave solutions and periodic wave patterns were provided, and a solution for discontinuous initial values in the JM equation was presented. The results of this study offer a theoretical foundation for analyzing discontinuous initial values in nonlinear dispersion equations.
[1] | S. Kumar, H. Almusawa, I. Hamild, M. A. Abdou, Abundant closed-form solutions and solitonic structures to an integrable fifth-order generalized nonlinear evolution equation in plasma physics, Results Phys., 26 (2021), 104453. https://doi.org/10.1016/j.rinp.2021.104453 doi: 10.1016/j.rinp.2021.104453 |
[2] | X. Y. Gao, In plasma physics and fluid dynamics: Symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system, Appl. Math. Lett., 159 (2025), 109262. https://doi.org/10.1016/j.aml.2024.109262 doi: 10.1016/j.aml.2024.109262 |
[3] | G. X. Zhang, P. Huang, B. F. Feng, C. F. Wu, Rogue waves and their patterns in the vector nonlinear Schrödinger equation, J. Nonlinear Sci., 33 (2023), 116. https://doi.org/10.1007/s00332-023-09971-5 doi: 10.1007/s00332-023-09971-5 |
[4] | B. F. Feng, C. Y. Shi, G. X. Wu, C. F. Wu, Higher-order rogue wave solutions of the Sasa-Satsuma equation, J. Phys. A, 55 (2022), 235701. https://doi.org/10.1088/1751-8121/ac6917 doi: 10.1088/1751-8121/ac6917 |
[5] | M. A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Soliton. Fract., 13 (2002), 1917–1929. https://doi.org/10.1016/S0960-0779(01)00189-8 doi: 10.1016/S0960-0779(01)00189-8 |
[6] | X. Y. Gao, Auto-Bäcklund transformation with the solitons and similarity reductions for a generalized nonlinear shallow water wave equation, Qual. Theor. Dyn. Syst., 23 (2024), 181. https://doi.org/10.1007/s12346-024-01034-8 doi: 10.1007/s12346-024-01034-8 |
[7] | X. Y. Gao, Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system, Phys. Fluids, 35 (2023), 127106. https://doi.org/10.1063/5.0170506 doi: 10.1063/5.0170506 |
[8] | L. C. Zhao, C. Liu, Z. Y. Yang, The rogue waves with quintic nonlinearity and nonlineardispersion effects in nonlinear optical fibers, Commun. Nonlinear Sci., 20 (2015), 9–14. https://doi.org/10.1016/j.cnsns.2014.04.002 doi: 10.1016/j.cnsns.2014.04.002 |
[9] | M. Tlidi, K. Panajotov, Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics, Chaos, 27 (2017), 013119. https://doi.org/10.1063/1.4974852 doi: 10.1063/1.4974852 |
[10] | X. Y. Gao, Symbolic computation on a (2+1)-dimensional generalized nonlinear evolution system in fluid dynamics, plasma physics, nonlinear optics and quantum mechanics, Qual. Theor. Dyn. Syst., 23 (2024), 202. https://doi.org/10.1007/s12346-024-01045-5 doi: 10.1007/s12346-024-01045-5 |
[11] | Y. Shen, B. Tian, T. Y. Zhou, C. D. Cheng, Multi-pole solitons in an inhomogeneous multi-component nonlinear optical medium, Chaos Soliton. Fract., 171 (2023), 113497. https://doi.org/10.1016/j.chaos.2023.113497 doi: 10.1016/j.chaos.2023.113497 |
[12] | S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, Dark solitons in Bose-Einstein codensates, Phys. Rev. Lett., 83 (1999), 5198–5201. https://doi.org/10.1103/PhysRevLett.83.5198 doi: 10.1103/PhysRevLett.83.5198 |
[13] | V. E. Zakharov, S. V. Nazarenko, Dynamics of the Bose-Einstein condensation, Physica D, 201 (2005), 203–211. https://doi.org/10.1016/j.physd.2004.11.017 doi: 10.1016/j.physd.2004.11.017 |
[14] | M. Jaulent, I. Miodek, Nonlinear evolution equations associated with energy-dependent schrödinger potentials, Lett. Math. Phys., 1 (1976), 243–250. https://doi.org/10.1007/BF00417611 doi: 10.1007/BF00417611 |
[15] | G. A. El, R. H. J. Grimshaw, M. V. Pavlov, Integrable shallow-water equations and undular bores, Stud. Appl. Math., 106 (2001), 157–186. https://doi.org/10.1111/1467-9590.00163 doi: 10.1111/1467-9590.00163 |
[16] | G. B. Whitham, Linear and nonlinear waves, New York: John Wiley and Sons, 1974. |
[17] | A. M. Kamchatnov, Whitham equation in the AKNS scheme, Phys. Lett. A, 186 (1994), 387–390. https://doi.org/10.1016/0375-9601(94)90699-8 doi: 10.1016/0375-9601(94)90699-8 |
[18] | G. A. El, V. V. Geogjaev, A. V. Gurevich, A. L. Krylov, Decay of an initial discontinuity in the defocusing NLS hydrodynamics, Physica D, 87 (1995), 186–192. https://doi.org/10.1016/0167-2789(95)00147-V doi: 10.1016/0167-2789(95)00147-V |
[19] | Y. J. Kodama, V. U. Pierce, F. R. Tian, On the Whitham equations for the defocusing complex modified KdV equation, SIAM J. Math. Anal., 40 (2008), 1750–1782. https://doi.org/10.1137/070705131 doi: 10.1137/070705131 |
[20] | S. K. Ivanov, Riemann problem for the light pulses in optical fibers for the generalized Chen-Lee-Liu equation, Phys. Rev. A, 101 (2020), 053827. https://doi.org/10.1103/PhysRevA.101.053827 doi: 10.1103/PhysRevA.101.053827 |
[21] | T. J. Bridges, D. J. Ratliff, Nonlinear theory for coalescing characteristics in multiphase Whitham modulation theory, J. Nonlinear Sci., 31 (2021), 7. https://doi.org/10.1007/s00332-020-09669-y doi: 10.1007/s00332-020-09669-y |
[22] | Y. Q. Liu, D. S. Wang, Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory, Stud. Appl. Math., 149 (2022), 588–630. https://doi.org/10.1111/sapm.12513 doi: 10.1111/sapm.12513 |
[23] | A. Abeya, G. Biondini, M. A Hoefer, Whitham modulation theory for the defocusing nonlinear Schrödinger equation in two and three spatial dimensions, J. Phys. A, 56 (2023), 025701. https://doi.org/10.1088/1751-8121/acb117 doi: 10.1088/1751-8121/acb117 |
[24] | Y. Q. Liu, S. J. Zeng, Discontinuous initial value and Whitham modulation for the generalized Gerdjikov-Ivanov equation, Wave Motion, 127 (2024), 103276. https://doi.org/10.1016/j.wavemoti.2024.103276 doi: 10.1016/j.wavemoti.2024.103276 |
[25] | J. B. Chen, Quasi-periodic solutions of the negative-order Jaulent-Miodek hierarchy, Rev. Math. Phys., 32 (2020), 2050007. https://doi.org/10.1142/S0129055X20500075 doi: 10.1142/S0129055X20500075 |
[26] | Y. Matsuno, Reduction of dispersionless coupled Korteweg-de Vries equations to the Euler-Darboux equation, J. Math. Phys., 42 (2001), 1744–1760. https://doi.org/10.1063/1.1345500 doi: 10.1063/1.1345500 |
[27] | R. G. Zhou, The finite-band solution of the Jaulent-Miodek equation, J. Math. Phys., 38 (1997), 2535–2546. https://doi.org/10.1063/1.531993 doi: 10.1063/1.531993 |
[28] | E. G. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos Soliton. Fract., 13 (2003), 819–839. https://doi.org/10.1016/S0960-0779(02)00472-1 doi: 10.1016/S0960-0779(02)00472-1 |
[29] | A. M. Wazwaz, The tanh-coth and the sech methods for exact solutions of the Jaulent-Miodek equation, Phys. Lett. A, 366 (2007), 85–90. https://doi.org/10.1016/j.physleta.2007.02.011 doi: 10.1016/j.physleta.2007.02.011 |
[30] | M. S. Iqbal, A. R. Seadawy, M. Z. Baber, M. Qasim, Application of modified exponential rational method to Jaulent-Miodek system leading to exact classical solutions, Chaos Soliton. Fract., 164 (2022), 112600. https://doi.org/10.1016/j.chaos.2022.112600 doi: 10.1016/j.chaos.2022.112600 |
[31] | H. Wang, T. C. Xia, Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources, Front. Math. China, 9 (2014), 1367–1379. https://doi.org/10.1007/s11464-014-0419-x doi: 10.1007/s11464-014-0419-x |
[32] | S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140 |
[33] | R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389–396. https://doi.org/10.1016/j.wavemoti.2009.06.012 doi: 10.1016/j.wavemoti.2009.06.012 |
[34] | D. Duthkh, Effects of vorticity on the travelling waves of some shallow water two-component systems, Discrete Contin. Dyn. Syst., 39 (2019), 5521–5541. https://doi.org/10.3934/dcds.2019225 doi: 10.3934/dcds.2019225 |
[35] | H. Flaschka, M. G. Forest, D. W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation, Pure Appl. Math., 33 (1980), 739–784. https://doi.org/10.1002/cpa.3160330605 doi: 10.1002/cpa.3160330605 |
[36] | A. B. Monnel, I. Egorova, The Toda lattice with step-like initial data. Soliton asymptotics, Inverse Probl., 16 (2000), 955–977. https://doi.org/10.1088/0266-5611/16/4/306 doi: 10.1088/0266-5611/16/4/306 |
[37] | Z. Y. Wang, K. Xu, E. G. Fan, The complex MKDV equation with step-like initial data: Large time asymptotic analysis, J. Math. Phys., 64 (2023), 103504. https://doi.org/10.1063/5.0131306 doi: 10.1063/5.0131306 |
[38] | L. Lei, S. F. Tian, Y. Q. Wu, Multi-soliton solutions for the nonlocal Kundu-nonlinear Schrödinger equation with step-like initial data, J. Nonlinear Math. Phys., 30 (2023), 1661–1679. https://doi.org/10.1007/s44198-023-00149-x doi: 10.1007/s44198-023-00149-x |
[39] | A. S. Alshehry, H. Yasmin, R. Shah, A. Ali, I. Khan, Fractional-order view analysis of Fisher's and foam drainage equations within Aboodh transform, Eng. Computation., 41 (2024), 489–515. https://doi.org/10.1108/EC-08-2023-0475 doi: 10.1108/EC-08-2023-0475 |
[40] | H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Bäcklund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576 |
[41] | A. S. Alshehry, H. Yasmin, M. A. Shah, R. Shah, Analyzing fuzzy fractional Degasperis-Procesi and Camassa-Holm equations with the Atangana-Baleanu operator, Open Phys., 22 (2024), 20230191. https://doi.org/10.1515/phys-2023-0191 doi: 10.1515/phys-2023-0191 |