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1. Introduction

In nonlinear science, integrable nonlinear evolution equations have garnered significant attention
due to their ability to describe various nonlinear phenomena in natural sciences. Soliton theory and
integrable systems, being key areas of study, find numerous applications across diverse research fields,
including plasma physics [1–3], fluid dynamics [4–7], nonlinear optics [8–11], and Bose-Einstein
condensates [12, 13]. In 1976, Jaulent and Miodek [14] introduced a two-component integrable
hierarchy by examining the one-dimensional Schrödinger equation with an energy-dependent potential,
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leading to a series of Jaulent-Miodek equations. The first non-trivial member of JM hierarchy (JM1) is

σ2rt = σqx −
3
2

rrx,

σ2qt =
1
4

rxxx − qrx −
1
2

qxr,
(1.1)

which can be obtained by certain transformations from the Kaup-Boussinesq system [15]. The second
non-trivial member of JM hierarchy (JM2) is

σ3qt = σ
1
4

qxxx − σ
3
2

qqx −
9
8

rxrxx −
3
8

rrxxx +
3
2

qrrx +
3
8

qxr2,

σ3rt = σ
1
4

rxxx − σ(
3
2

qxr +
3
2

qrx) +
15
8

rxr2,

(1.2)

where σ is a real constant. When σ = −1, the JM models represent good JM equations, whereas when
σ = 1, the JM models are considered bad. It is important to note that the good and bad JM equations
cannot be transformed into each other through similarity transformations, as they exhibit distinct
oscillation patterns and linear stability. Specifically, for the one-phase periodic solution discussed
in Section 3, the good JM equation features two oscillating regions [ζ4, ζ3] and [ζ2, ζ1] leading to two
periodic solutions. In contrast, the bad JM equation has a single oscillating region [ζ3, ζ2] resulting in
just one periodic solution with a different structure.

Periodic solutions depend on the specific parameters of the equation or the initial conditions of the
system, and in some systems, the behavior of the dispersive shock wave may lead to the formation
of periodic solutions. Studying these periodic solutions is crucial in nonlinear dispersion equations
because it helps to understand and describe complex phenomena such as dispersion shock waves.
An in-depth study of these solutions not only reveals the basic mechanism of the wave phenomenon,
but also provides important information for practical applications such as fiber optic communications
and fluid dynamics. The discontinuous initial value problem involves initial values made up of
distinct constant states on either side of a jump discontinuity. Such solutions can feature two types
of elementary waves: Rarefaction waves (RW) and dispersive shock waves (DSW). RWs represent
smooth solutions to the flow equation, while DSWs are characterized by discontinuities. In the
absence of modulation in the form of periodic propagation, due to the fact that the dispersion effect
of the wave is also propagated at different speeds, the results in the change and sharpening of the
waveform, resulting in the formation of shock waves. DSW is a wave phenomenon propagating in a
nonlinear medium, which has important applications in optical fiber communication, laser technology,
gas dynamics, and so on. In optical fiber communication, DSWs can be used for signal processing and
enhance transmission efficiency, helping to reduce the effect of dispersion on signal quality. Whitham
modulation theory, introduced by Whitham [16] in 1994 for analyzing wave motions in the Korteweg-
de Vries (KdV) equation, is an effective approach for mathematically describing DSWs. It is assumed
that the DSW can be asymptotically described as a slowly modulated periodic wave solution of the
nonlinear dispersive equation with modulations of the amplitude, wavelength, and mean of the waves
on a spatio-temporal scale that is much greater than the wavelength and period of the traveling wave.
Subsequently, Kamchatnov [17] derived the generating function for the Whitham equations within
the Korteweg-de Vries (AKNS) hierarchy and its various reductions, laying a theoretical foundation
for analyzing the Riemann problem associated with the nonlinear Schrödinger (NLS) and modified
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KdV (mKdV) equations. El et al. [18] conducted a comprehensive classification of discontinuous
initial value problems in the context of defocusing NLS hydrodynamics. Kodama et al. [19] explored
the Whitham equations pertaining to the defocusing complex modified KdV equation. Ivanov [20]
classified the potential waveforms that evolve from initially discontinuous profiles for the generalized
Chen-Lee-Liu equation and demonstrated a strong agreement between the numerical results and
theoretical predictions. These important results lay an important theoretical foundation for the
subsequent study of the discontinuous initial value problem of nonlinear dispersion equations [21–24].

Motivated by the above work, we consider the various solutions of the high-order good Jaulent-
Miodek (JM) equation [14, 25]:

qt = −
1
4

qxxx +
3
2

qqx −
9
8

rxrxx −
3
8

rrxxx +
3
2

qrrx +
3
8

qxr2,

rt = −
1
4

rxxx +
3
2

qxr +
3
2

qrx +
15
8

rxr2,

(1.3)

which is obtained by the scale transformation t → −t from the good JM equation (1.2) with σ = −1.
Equation (1.3) is relevant across various domains in physics. It finds applications in the control theory
of dynamic systems, anomalous transport phenomena, image and signal processing, condensed matter
physics, fluid dynamics, optics, and plasma physics, so it is very meaningful to study the physical
characteristics of JM equations. The relation between JM Eq (1.3) and the Euler-Darboux equation
are constructed by Matsuno [26] through the hodograph transformation combined with Riemann’s
method of characteristics. A kind of finite-band solution for the simplified version of Eq (1.3) was
constructed by applying the JM spectral problem [27]. Some exact solutions are obtained by the
traveling wave method, sech method, and generalized exponential rational function method [28–30].
As a practical application of the JM system, Wang and Xia studied its super-Hamiltonian structure
using Lie super algebras and the super trace identity [31]. Recently, the approximate analytical
solution of the fractional JM equation performed with the coupled fractional variational iteration
transformation technique and the Adomian decomposition transformation technique [32]. Because
the JM equation has definite physical meaning, strong nonlinearity, and comes with energy-dependent
Schrödinger potential, it has attracted much attention. The main aim of this paper is to investigate
rarefaction waves, periodic solutions, and the step-like initial value problem associated with the good
JM Eq (1.3) using the traveling wave method and Whitham modulation theory. We seek to explore
the relationship between modulated and unmodulated waves, as well as to analyze the mathematical
principles underlying waveform structure in intermittent initial value problems.

The structure of this paper is organized as follows. Section 2 illustrates the physical derivation of
the JM system, which describes a motion of a shallow water with constant density over a flat bottom.
In Section 3, the rarefaction wave solution, the periodic wave solutions, and the Whitham modulation
equation of the high-order JM equation are obtained, and one solution of the high-order JM equation
with step-like initial data is presented based on the traveling wave technique and a similar-self solution.
The conclusions of this paper are stated in the last section.
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2. The physical significance of the Jaulent-Miodek system

The Jaulent-Miodek system characterizes the dynamics of inviscid shallow water flowing over a
level bed while accounting for shear effects, which can be derived from Euler’s equations:

∂V
∂t

+ (V · ∇)V = −
1
ρ
∇P + g,

∇ · V = 0.
(2.1)

In this context, V(x, y, z, t) represents the fluid velocity at the spatial coordinates (x, y, z) and time t, ρ
denotes the constant density of the fluid, P(x, y, z, t) is the pressure within the fluid, and g = (0, 0,−g)
signifies the constant acceleration due to Earth’s gravity [33, 34].

Set up a coordinate system, see Figure 1, where the flat bottom is positioned at z = 0, the flow
occurs in the x-direction, and the physical variables are independent of y. Given that h represents the
mean water level, η(x, t) describes the water surface shape, and L is the typical wavelength, at the
surface z = h + η, the pressure P equals PA, so the pressure difference p is given by p = ηρg. With the
velocity field V = (u, 0,w), at the bottom z = 0, we have w = 0. On the surface z = h +η, the kinematic
boundary condition is w = ηt + uηx. The continuity and momentum equations and boundary conditions
can be expressed as follows:

ux + wz = 0,

ut + uux + wuz +
1
ρ

px = 0,

wt + uwx + wwz +
1
ρ

pz = 0,

w = ηt + uηx on z = h + η,

w = 0 on z = 0.

(2.2)

( , )z h x th= +

g

h

x
O

L

z

Figure 1. Sketch of the shallow water wave.

We define dimensionless parameters as ε = λ/h and δ = h/L, with λ representing the characteristic
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wave amplitude, and use these to express physical quantities in a non-dimensional form:

η→ aη, x→ Lx, z→ zh, t →
L√
gh

t,

p→ ερgh, u→
√

gh
(
Ũ(z) + εu

)
, w→ εδ

√
ghw,

(2.3)

where u = Ũ(z) (0 ≤ z ≤ h), w = 0, η = 0, and p = 0 constitutes an exact solution to Eq (2.2), and the
system of dimensionless variables is

ut + Ũux + wŨ′ + ε(uux + wuz) + px = 0, (2.4)

δ2(wt + Ũwx + ε(uwx + wwz)
)

+ pz = 0, (2.5)

ux + wz = 0, (2.6)

w = ηt + (Ũ + εu)ηx on z = 1 + εη, (2.7)

w = 0 on z = 0. (2.8)

We examine a linear shear defined by Ũ(z) = Az, where A is a constant and 0 ≤ z ≤ 1. When A > 0,
the flow is advancing in the positive x-direction with associated vorticity

ω − A = ε(uz − δ
2wx). (2.9)

We seek a solution where the vorticity is constant, specifically ω = A. Therefore

uz = δ2wx. (2.10)

This assumption essentially involves examining approximate wave solutions that result from
interactions between an underlying shear flow and an irrotational disturbance of that flow. With
Eqs (2.6), (2.8), and (2.10), it follows that

u = u0 −
1
6
εcu2

0 −
1
2
δ2z2u0,xx + O(ε2, δ4, εδ2), (2.11)

w = −zu0,x +
1
3
εcu0u0,x +

1
6
δ2z3u0,xxx + O(ε2, δ4, εδ2), (2.12)

where u0(x, t) represents the leading-order approximation for u. It is important to note that u0 is
independent of z because, as shown in (2.10), uz approaches zero as δ→ 0.

From (2.7), (2.11), and (2.12), we derive

ηt + Aηx +
[
(1 + εη)u0 + ε

A
2
η2

]
x
−

1
3
εcu0u0,x −

1
6
δ2u0,xxx = 0, (2.13)

where the terms of order O(ε2, δ4, εδ2) have been ignored. From the Eqs (2.5), (2.7), (2.11), and (2.12),
we have
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p = η − δ2
(1 − z2

2
u0,xt +

1 − z3

3
Au0,xx

)
. (2.14)

Then the Eq (2.4) gives(
u0 −

1
6
εcu2

0 −
1
2
δ2u0,xx

)
t
+ εu0u0,x + ηx −

1
3
δ2Au0,xxx = 0. (2.15)

Letting ε→ 0 and δ→ 0, the following system of linear equations is derived from (2.13) and (2.15) as

u0,t + ηx = 0, (2.16)
ηt + Aηx + u0,x = 0, (2.17)

which gives

ηtt + Aηtx − ηxx = 0, (2.18)

whose traveling wave solution of the form η = η(x − ct), where c is the wave velocity, satisfies

c2 − Ac = 1. (2.19)

Making use of Eq (2.19) and introducing

r = u0 −
1
6
εcu2

0 − δ
2(

1
2
−

A
3c

)u0,xx = u0 −
1
6
εcu2

0 − δ
2(

1
6

+
1

3c2 )u0,xx. (2.20)

Equation (2.15) can be expressed as

rt + εrrx + ηx = 0. (2.21)

Furthermore, Eq (2.13) with a shift of η→ q − 1
ε

becomes

qt + ε
(
1 +

Ac
2

)
(qu0)x −

1
3
εcu0u0,x −

1
6
δ2u0,xxx = 0, (2.22)

or

qt + ε
1 + c2

2
(qW)x −

1
3
εqxW −

1
6
δ2Wxxx = 0. (2.23)

Letting c2 = 1
3 and δ2 = ±3

2 , and taking the scaling transform in (2.21) and (2.23), lead to the first
member of the JM hierarchy:

rt +
3
2

rrx + qx = 0,

qt + qrx +
1
2

qxr ∓
1
4

rxxx = 0,
(2.24)

which corresponds to the good JM (δ2 = 3
2 ) and bad JM (δ2 = −3

2 ) system. The first member of the JM
hierarchy is integrable and has a corresponding Lax pair

ψx = Uψ, ψt = Vψ, (2.25)
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with

U =

(
0 1

σζ2 + ζr − σq 0

)
,

V =

( 1
4rx σζ − r

2
ζ3 + 1

2σζ
2r − 1

2ζr2 − ζq + 1
4rxx + 1

2σqr −1
4rx

)
,

(2.26)

where ζ is the spectral parameter, and σ = −1 and σ = 1 correspond to the Lax pair of the good JM
system and bad JM system, respectively.

Taking the space part of the Lax pair (2.25) and formulating the time part, we can obtain the second
member of the JM hierarchy. To be specific, if σ = −1 in Eq (1.2), the high-order good JM equation
can be obtained. In the present work, we are focusing on the RW solution, periodic solution, and the
initial discontinuity problem of the high-order good JM Eq (1.3).

3. The Lax pair and solutions of the high-order good JM equation

The high-order good Jaulent-Miodek Eq (1.3) has a Lax pair of matrix form as in (2.25), but with

U =

(
0 1

−ζ2 + ζr + q 0

)
,

V =

(
−1

4ζrx −
1
4qx −

3
8rrx ζ2 + 1

2rζ + 1
2q + 3

8r2

V21
1
4ζrx + 1

4qx + 3
8rrx

)
,

(3.1)

where V21 = −ζ4 + 1
2ζ

3r + ( 1
2q + r2

8 )ζ2 + (−1
4rxx + 3

8r3 + rq)ζ − 3
8rrxx −

1
4qxx −

3
8r2

x + 3
8qr2 +

q2

2 . By
compatibility conditions (ψx)t = (ψt)x for any ζ, the good Jaulent-Miodek Eq (1.3) is reproduced. The
Lax pair of operator form of (1.3) is

ψxx = Aψ, ψt = −
1
2
Bxψ + Bψx, (3.2)

whereA = −ζ2 + ζr + q and B = ζ2 + 1
2rζ + 1

2q + 3
8r2. The spatial linear differential Eq (3.2) is second

order, which has two independent solutions ψ+(x, t) and ψ−(x, t). Their product, g = ψ+ψ−, is a squared
basis function that satisfies the third-order differential equation

gxxx − 2Axg − 4Agx = 0. (3.3)

Equation (3.3) multiplied by g, and integrated with respect with x once gives

1
2

ggxx −
1
4

g2
x −Ag2 = P(ζ), (3.4)

where P(ζ) is the integration constant that depends solely on ζ. The time dependence of g(x, t) is
governed by the differential equation

gt = Bgx − Bxg, (3.5)

which can be expressed as a conservation law

∂

∂t

(1
g

)
=

∂

∂x

(B
g

)
. (3.6)

Next, we apply the Flaschka-Forest-McLaughlin (FFM) method [35] to study the rarefaction waves
and periodic waves of Eq (1.3).
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3.1. Rarefaction wave solution

Consider the step-like initial data:

r(x, t = 0) =

 rL for x < 0,
rR for x > 0,

q(x, t = 0) =

 qL for x < 0,
qR for x > 0.

(3.7)

The initial conditions are discontinuous at some point, and it is usually necessary to divide the problem
into multiple regions within each region where the initial conditions are continuous. We introduce
weak solutions to deal with discontinuities. Commonly used methods to deal with step-like initial
value problems include the Riemann-Hilbert (RH) method, Whitham modulation theory method, and
numerical calculation method. The RH method [36–38] is suitable for situations where analytical
solutions are required, while the Whitham method is more suitable for analyzing the dynamic evolution
of strong nonlinear phenomena.

By choosing the simplest constant form of g, we get the rarefaction wave solution of the Eq (1.3).
Taking

g = 1, P(ζ) = (ζ − ζ1)(ζ − ζ2) = ζ2 − s1ζ + s2, (3.8)

and substituting (3.8) into Eq (3.4), we obtain

r = s1 = ζ1 + ζ2, q = −s2 = −ζ1ζ2, (3.9)

which can be solved for ζ1 and ζ2 as follows:

ζ1 =
1
2

(r +
√

r2 + 4q), ζ2 =
1
2

(r −
√

r2 + 4q). (3.10)

By introducing scaling transform g→ g/
√

P(ζ), and from (3.6) and (3.8)1, the conservation law is

∂

∂t
(
√

P(ζ)) −
∂

∂x

[
(ζ2 +

1
2

rζ +
1
2

q +
3
8

r2)
√

P(ζ)
]

= 0. (3.11)

Expanding the partial derivative in Eq (3.11), we have

∂ζ

∂t
−

[
ζ2 +

1
2

(ζ1 + ζ2)ζ −
1
2
ζ1ζ2 +

3
8

(ζ1 + ζ2)2
]∂ζ
∂x

= 0, (3.12)

and taking ζ = ζ1 and ζ = ζ2, we obtain the zero-phase Whitham modulation equations

∂ζ1

∂t
− (

15
8
ζ2

1 +
3
4
ζ1ζ2 +

3
8
ζ2

2 )
∂ζ1

∂x
= 0,

∂ζ2

∂t
− (

15
8
ζ2

2 +
3
4
ζ1ζ2 +

3
8
ζ2

1 )
∂ζ2

∂x
= 0.

(3.13)

By introducing similar variable ξ = x/t, we have

∂ζ1,2

∂ξ
(υ1,2 − ξ) = 0, υ1,2 = −

3
8

(5ζ2
1,2 +

3
4
ζ1ζ2 + ζ2

2,1). (3.14)

AIMS Mathematics Volume 9, Issue 11, 31848–31867.



31856

Corresponding to the initial conditions (3.7), the initial value of ζ1,2 is also discontinuous. For
Eq (3.14), there are several forms of the solution:

(i)

 ζ1 = const,
ζ2 = const,

(ii)

 ζ1 = const,
υ2 = ξ,

(iii)

 ζ2 = const,
υ1 = ξ,

(iv)

 ζ1 = ζ2 = ζ,

ζ = ±
√

3
3

√
−ξ,

(v)

 ζ1 = −ζ2 = ζ, ζ > 0,
ζ =

√
6

3

√
−ξ.

(3.15)

For case (i), the solutions for r and q are constants, and we refer to this as the plateau (PL). Obviously,
the system of Eqs (3.14) has constant solutions. Other solutions are rarefaction waves (RWs), which are
stable, localized waves whose shape remains unchanged during propagation and are able to propagate
without energy loss. Choosing some special initial values, the structures of the corresponding solutions
r and q for cases (ii)–(iv) are shown in the middle region of Figure 2 with MATLAB software. In the
general case, this type of wave can connect uniform flows with equal values of the corresponding
Riemann invariants. For case (v), from (3.9), the solution for r is 0. As a special solution, RWs can
occur in many physical systems, such as Bose-Einstein condensates, superfluids, water waves, light
waves, and plasmas. Understanding these fluctuations helps to further the study of phase transitions
and critical phenomena.

−5 −4 −3 −2 −1 0 1

0

0.2

0.4

0.6

0.8

(a)

r

−5 −4 −3 −2 −1 0 1
1

1.5

2

2.5

 ξ

q

−5 −4 −3 −2 −1 0
−2.6

−2.4

−2.2

−2

−1.8

(b)

r

−5 −4 −3 −2 −1 0

−1.5

−1

−0.5

 ξ

q

−15 −10 −5 0 5
0

1

2

3

4

(c)

r RW

−15 −10 −5 0 5
−4

−3

−2

−1

0

1

q

RW

q

RW

 ξ

Figure 2. The profiles of RW solutions. The parameters are (a) ζL
1 = ζR

1 = 1.5, ζL
2 =

−1.5, ζR
2 = −0.8; (b) ζL

1 = −1, ζR
1 = −0.5, ζL

2 = ζR
2 = 1.5; (c) ζL

1 = 2, ζR
1 = 1, ζL

2 = 1.5, ζR
2 = 0.

3.2. Periodic wave solution

Now, we are interested in the one-phase periodic solutions of Eq (1.3). They are distinguished by
the condition that P(ζ) in (3.4) is a fourth-degree polynomial of the form:

P(ζ) =

4∏
i=1

(ζ − ζi) = ζ4 − s1ζ
3 + s2ζ

2 − s3ζ + s4, (3.16)

where
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s1 = ζ1 + ζ2 + ζ3 + ζ4,

s2 = ζ1ζ2 + ζ1ζ3 + ζ1ζ4 + ζ2ζ3 + ζ2ζ4 + ζ3ζ4,

s3 = ζ1ζ2ζ3 + ζ1ζ2ζ4 + ζ1ζ3ζ4 + ζ2ζ3ζ4,

s4 = ζ1ζ2ζ3ζ4.

(3.17)

Let the polynomial P(ζ) have zeros ζi (for i = 1, 2, 3, 4). For definiteness, we choose to order the zeros
ζi according to

ζ1 ≥ ζ2 ≥ ζ3 ≥ ζ4. (3.18)

We find that g(x, t) is a first-degree polynomial in ζ of the form:

g(x, t) = φ(ζ − µ(x, t)), (3.19)

where φ = 1, and µ is related to q(x, t) and r(x, t) through the following relations:

r(x, t) = s1 − 2µ(x, t),
q(x, t) = 2s1µ(x, t) − s2 − 3µ2(x, t),

(3.20)

which result from comparing the coefficients of different powers of ζ on both sides of Eq (3.4). With
ζ = µ substituted into Eq (3.4), we obtain

µx = 2
√
−P(µ), (3.21)

while a similar substitution into Eq (3.5) gives

µt = (µ2 +
3
8

r2 +
1
2

rµ +
1
2

q)µx = −
1
2

(s2 −
3
4

s2
1)µx. (3.22)

Equations (3.21) and (3.22) are the Dubrovin form in the one-phase case. Hence, µ(x, t), q(x, t), and
r(x, t) depend on

θ = x − Vt, (3.23)

where

V = −
3
8

(ζ2
1 + ζ2

2 + ζ2
3 + ζ2

4 ) −
1
4
ζ1(ζ2 + ζ3 + ζ4) −

1
4
ζ2(ζ3 + ζ4) −

1
4
ζ3ζ4 (3.24)

is the phase velocity.
The function µ satisfies the equation

µθ = 2
√
−P(µ). (3.25)

It can be inferred from Eq (3.19) that the µ must be real. For the fourth-degree polynomial in (3.16),
the real solution of Eq (3.25) corresponds to µ oscillating within one of the two possible intervals,

ζ4 ≤ µ ≤ ζ3 or ζ2 ≤ µ ≤ ζ1, (3.26)
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within which P(µ) is positive. It is well established that the solution to Eq (3.25), given the initial
condition in (3.26), can be expressed using elliptic functions.

For the case

ζ4 ≤ µ ≤ ζ3, (3.27)

the periodic wave solution (Figure 3) of Eq (3.25) with the initial condition µ(0) = ζ4 is given by

µ(θ) = ζ3 −
(ζ3 − ζ4)cn2(W,m)

1 +
ζ3−ζ4
ζ1−ζ3

sn2(W,m)
, (3.28)

where

∆s j = ζs − ζ j, W =
√

∆13∆24θ, m =
∆12∆34

∆13∆24
(3.29)

is the modulus of the Jacobi elliptic functions sn and cn. The wavelength is given by

L =

∮
dµ√
−P(µ)

= 2
∫ ζ3

ζ4

dµ√
−P(µ)

=
2K(m)
√

∆31∆42
, (3.30)

where K(m) is the complete elliptic integral of the first kind. Substituting (3.28) into (3.20), one can
obtain the one-phase periodic wave solutions r(x, t) and q(x, t) to Eq (1.3). A periodic wave is a wave
phenomenon that occurs repeatedly in a certain time and space.

Figure 3. The periodic wave solution (3.28) with parameters ζ1 = 3, ζ2 = 1, ζ3 = 0, and
ζ4 = −1. (a) and (b) are the r profiles, and (c) and (d) are the q profiles.
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In the soliton limit ζ2 → ζ3, we form (3.29)3 and then ∆12 → ∆13 and ∆24 → ∆34 yield m → 1.
Then, the wavelength tends to infinity and the solution (3.28) reduced to a soliton

µ(θ) = ζ3 −
∆34

cosh2($) + ∆34
∆13

sinh2($)
, $ =

√
∆13∆34θ. (3.31)

Figure 4(a),(b) shows the soliton solution (3.31) with the help of Maple software, where (a) is a bell-
type soliton, and (b) is an anti-bell-type soliton. The small amplitude limit m → 0 can be reached in
two ways: ζ3 → ζ4 and ζ2 → ζ1. If ζ3 → ζ4, the periodic wave solution (3.28) reduces to constant ζ4.
If ζ2 → ζ1, we obtain

µ(θ) = ζ3 −
∆34 cos2(ω)

1 + ∆34
∆13

sin2(ω)
, ω =

√
∆13∆14θ, (3.32)

which is a trigonometric solution (see Figure 4(c),(d)). ζ3 → ζ1, we obtain the algebraic soliton
solution:

µ(θ) = ζ1 −
∆14

1 + (∆14)2θ2 . (3.33)

Figure 5 is the plot of an algebraic soliton.

Figure 4. (a) and (b) are the soliton solution (3.31) with parameters ζ1 = 3, ζ2 = ζ3 = 0,
and ζ4 = −1 and (c) and (d) are the trigonometric solutions (3.32) with parameters ζ1 = ζ2 =

1, ζ3 = 0, and ζ4 = −1.
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Figure 5. An algebraic soliton solution (ζ1 = 2, ζ4 = 0). (a) is the r profile, and (b) is the q
profile.

In a similar way, for the case

ζ2 ≤ µ ≤ ζ1, (3.34)

the periodic wave solution (Figure 6) is of the form (µ(0) = ζ1)

µ(θ) = ζ2 +
∆12cn2(W,m)

1 + ∆12
∆24

sn2(W,m)
, (3.35)

with the same definitions for W and m as in (3.29), where the wavelength is given by

L =

∮
dµ√
−P(µ)

= 2
∫ ζ1

ζ2

dµ√
−P(µ)

=
2K(m)
√

∆13∆24
, (3.36)

which equals the wavelength in the interval [ζ4, ζ3]. So, in the following, the wavelength is uniformly
represented by

∮
dµ√
−P(µ)

. Substituting (3.35) into (3.20), the periodic wave solution r(x, t) and q(x, t) to

Eq (1.3) in interval [ζ2, ζ1] can be obtained. In the limit ζ3 → ζ4(m→ 0), we have

µ(θ) = ζ2 +
∆12 cos2(ω)

1 +
ζ1−ζ2
ζ2−ζ4

sin2(ω)
, ω =

√
∆14∆24θ, (3.37)

which is another trigonometric solution (see Figure 7(a),(b)), and the profile of q has a bimodal
structure (see Figure 8). In the soliton limit ζ2 → ζ3, the periodic wave solution (3.35) reduces to

µ(θ) = ζ3 +
∆13

cosh2($) + ∆13
∆34

sinh2($)
. (3.38)
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Figure 6. The periodic wave solution (3.35) with parameters ζ1 = 3, ζ2 = 1, ζ3 = 0, and
ζ4 = −1. (a) and (b) are the r profiles, and (c) and (d) are the q profiles.

ζ2 → ζ4, we obtain the algebraic soliton solution (3.33) (see Figure 7(c),(d)). For another small
amplitude limit ζ1 → ζ2, the periodic wave solution (3.35) reduces to the constant solution ζ2.

For conservation law (3.6), introducing the scaling transform g/
√

P(ζ), and averaging the space
variable x over one wavelength L, we obtain the one-phase Whitham-JM modulation equations
as follows:

∂ζi

∂t
+ υi

∂ζi

∂x
= 0, i = 1, 2, 3, 4, (3.39)

where the Whitham velocities υi can be written as

υi(ζ1, ζ2, ζ3, ζ4) = (1 −
L
∂ζi L

∂ζi)V, (3.40)

and ζi (i = 1, . . . , 4) are Riemann invariants. For initial data (3.7), the initial data of Riemann
invariants are

ζ−(x, 0) =

 ζL
− for x < 0,
ζR
− for x > 0,

ζ+(x, 0) =

 ζL
+ for x < 0,
ζR

+ for x > 0.
(3.41)
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Figure 7. (a) and (b) are the trigonometric solution (3.37) with parameters ζ1 = 3, ζ2 = 1, and
ζ3 = ζ4 = 0, (c) and (d) are the soliton solutions (3.38) with parameters ζ1 = 3, ζ2 = ζ3 = 1,
and ζ4 = −1.
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Figure 8. A trigonometric solution (ζ1 = 3, ζ2 = 1, ζ3 = ζ4 = 0). (a) is the r profile, and (b)
is the q profile.

Without loss of generality, we choose ζL
+ = 3.5, ζL

− = 0, ζR
+ = 2.5, ζR

− = 2, and the distribution of
the Riemman invariants ζi are shown in Figure 9(a) at t = 1. The wave profiles of solutions r and q
are Figure 9(b),(c). When waves move fast enough into a riverbed or narrow channel, a similar wave
structure forms near a tidal front. From left to right, the first, third, and fifth regions are plateaus, the
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second region is a rarefaction wave, and the fourth region is a dispersion shock wave, i.e., a periodic
wave region. The left and right boundary points of the middle three regions have continuity. The left
and right boundary velocities of RW are

υL
RW = −

3
8

[5(ζL
+)2 +

4
3
ζL

+ζ
L
− + (ζL

−)2], υR
RW = −

3
8

[5(ζR
+)2 +

4
3
ζR

+ζ
L
− + (ζL

−)2]. (3.42)

The left and right boundary velocities of DSW are

υL
DS W = −

{3
8

(ζR
+)2 +

1
2
ζR

+ζ
R
− +

1
4
ζR

+ζ
L
− +

3
8

(ζL
−)2 +

1
2
ζR
−ζ

L
− + (ζR

−)2
}
,

υR
DS W = −3(ζL

−)2 −
3
8

(ζR
+ − ζ

R
−)2(ζR

+ + ζR
− + 2ζL

−)
ζR

+ + ζR
− − 2ζL

−

.
(3.43)

It is worth noting that ζL
+ > ζL

− and ζR
+ > ζR

− , and the initial value data of different-size relations
correspond to different wave structures of Eq (1.3).
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Figure 9. (a) shows the profiles of Riemann invariants, and (b) and (c) are the profiles of r
and q for step-like initial data ζL

+ = 3.5, ζL
− = 0, ζR

+ = 2.5, and ζR
− = 2.

4. Conclusions

In conclusion, this study explores the physical significance of the Jaulent-Miodek model based
on Euler’s equation, presenting both rarefaction wave and periodic solutions using the traveling
wave technique and similar transforms. The findings illustrate that the Jaulent-Miodek model
effectively describes shallow water wave motion (see Figure 1), and Eq (1.3) exhibits Lax
integrability. By introducing zero-phase and one-phase squared basis functions g, the Whitham-JM
equations (Eqs (3.13) and (3.39)) are derived. Analyzing step-like initial data reveals the structural
profiles of RW and DSW solutions through Riemann invariants. The dynamic behaviors are visually
depicted in Figures 2 and 9. Additionally, cn wave solutions (3.28) and (3.35), including periodic
waves, solitons, trigonometric solutions, and algebraic soliton solutions (Figures 3–8), are explored.
These results contribute significantly to understanding discontinuous initial value problems through
Whitham modulation theory (Figure 9). It is worth noting that the periodic wave of the equation is
obtained by the FFM method, which is suitable for the model of a quasi-linear hyperbolic system after
ignoring the dispersion term, such as the KdV equation, NLS equation, Kaup-Boussinesq equation,
etc. In summary, this research underscores the importance of periodic wave solutions and provides a
foundational basis for future studies in addressing discontinuous initial value problems.
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There are many types of discontinuous initial values, and this paper mainly focuses on step-like
initial values. The research group will later study the initial values for the infinite square well and
finite square barrier. The infinite square well and finite square barrier are fundamental models for
understanding and applying quantum mechanics. They hold significant importance in theoretical
research, experimental design, and practical engineering applications. In addition, fractional-order
differential equations have rich physical applications [39–41]. The dynamical behavior of fractional-
order differential equations is studied by analytical and numerical methods for further exploration and
application in various ways scientific and engineering disciplines with great significance.
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