In this article, we consider the following a class of Schrödinger-Poisson systems with $ p $-Laplacian in $ \mathbb{R}^{3} $ of the form:
$ \begin{equation*} \left\{ \begin{array}{lll} -\Delta_{p}u+(\lambda b(x)+1)|u|^{p-2}u+\phi|u|^{s-2}u = g(u) &\mbox{in}\ \mathbb{R}^{3}, \\ -\Delta\phi = |u|^{s} &\mbox{in}\ \mathbb{R}^{3}, \end{array} \right. \end{equation*} $
where $ 1 < p < 3 $, $ \frac{p}{2} < s < p $, $ \Delta_{p}u : = div(|\nabla u|^{p-2}\nabla u) $ is the $ p $-Laplacian operator, $ \lambda $ is a positive parameter. Assume that the nonnegative function $ b $ possesses a potential well int$ (b^{-1}(\{0\})) $, which is composed of $ k $ disjoint components $ \Omega_{1}, \Omega_{2}, \cdots, \Omega_{k} $ and consider the nonlinearity $ g $ with subcritical growth. Using the variational methods and Morse iteration technique, the existence of positive multi-bump solutions are obtained.
Citation: Jiaying Ma, Yueqiang Song. On multi-bump solutions for a class of Schrödinger-Poisson systems with $ p $-Laplacian in $ \mathbb{R}^{3} $[J]. AIMS Mathematics, 2024, 9(1): 1595-1621. doi: 10.3934/math.2024079
In this article, we consider the following a class of Schrödinger-Poisson systems with $ p $-Laplacian in $ \mathbb{R}^{3} $ of the form:
$ \begin{equation*} \left\{ \begin{array}{lll} -\Delta_{p}u+(\lambda b(x)+1)|u|^{p-2}u+\phi|u|^{s-2}u = g(u) &\mbox{in}\ \mathbb{R}^{3}, \\ -\Delta\phi = |u|^{s} &\mbox{in}\ \mathbb{R}^{3}, \end{array} \right. \end{equation*} $
where $ 1 < p < 3 $, $ \frac{p}{2} < s < p $, $ \Delta_{p}u : = div(|\nabla u|^{p-2}\nabla u) $ is the $ p $-Laplacian operator, $ \lambda $ is a positive parameter. Assume that the nonnegative function $ b $ possesses a potential well int$ (b^{-1}(\{0\})) $, which is composed of $ k $ disjoint components $ \Omega_{1}, \Omega_{2}, \cdots, \Omega_{k} $ and consider the nonlinearity $ g $ with subcritical growth. Using the variational methods and Morse iteration technique, the existence of positive multi-bump solutions are obtained.
[1] | V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Method. Nonl. An., 11 (1998), 283–293. https://doi.org/10.12775/TMNA.1998.019 doi: 10.12775/TMNA.1998.019 |
[2] | D. Qin, X. Tang, J. Zhang, Ground states for planar Hamiltonian elliptic systems with critical exponential growth, J. Differ. Equations, 308 (2022), 130–159. https://doi.org/10.1016/j.jde.2021.10.063 doi: 10.1016/j.jde.2021.10.063 |
[3] | Q. Li, J. Nie, W. Zhang, Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 33 (2023), 126. https://doi.org/10.1007/s12220-022-01171-z doi: 10.1007/s12220-022-01171-z |
[4] | Q. Shi, C. Peng, Wellposedness for semirelativistic Schrödinger equation with power-type nonlinearity, Nonlinear Anal., 178 (2019), 133–144. https://doi.org/10.1016/j.na.2018.07.012 doi: 10.1016/j.na.2018.07.012 |
[5] | Q. Shi, S. Wang, Klein-Gordon-Zakharov system in energy space: Blow-up profile and subsonic limit, Math. Method. Appl. Sci., 42 (2019), 3211–3221. https://doi.org/10.1002/mma.5579 doi: 10.1002/mma.5579 |
[6] | H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commum. Pur. Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405 |
[7] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Appl., 237 (2006), 655–674. https://doi.org/10.1016/j.jfa.2006.04.005 doi: 10.1016/j.jfa.2006.04.005 |
[8] | O. Sénchez, J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Stat. Phys., 114 (2004), 179–204. https://doi.org/10.1023/B:JOSS.0000003109.97208.53 doi: 10.1023/B:JOSS.0000003109.97208.53 |
[9] | J. Zhang, W. Zhang, Semiclassical states for coupled nonlinear Schrödinger system with competing potentials, J. Geom. Anal., 32 (2022), 153–184. https://doi.org/10.1007/s12220-022-00870-x doi: 10.1007/s12220-022-00870-x |
[10] | A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90–108. https://doi.org/10.1016/j.jmaa.2008.03.057 doi: 10.1016/j.jmaa.2008.03.057 |
[11] | G. Cerami, G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differ. Equations, 248 (2010), 521–543. https://doi.org/10.1016/j.jde.2009.06.017 doi: 10.1016/j.jde.2009.06.017 |
[12] | G. M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations, Commun. Appl. Anal., 7 (2003), 417–423. https://doi.org/10.4064/AP79-1-2 doi: 10.4064/AP79-1-2 |
[13] | T. D'Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, P. Roy. Soc. Edinb. A., 134 (2004), 893–906. https://doi.org/10.1017/S030821050000353X doi: 10.1017/S030821050000353X |
[14] | P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177–192. https://doi.org/10.1515/ans-2002-0205 doi: 10.1515/ans-2002-0205 |
[15] | I. Ianni, G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573–595. https://doi.org/10.1515/ans-2008-0305 doi: 10.1515/ans-2008-0305 |
[16] | H. Kikuchi, On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations, Nonlinear Anal.-Theor., 67 (2007), 1445–1456. https://doi.org/10.1016/j.na.2006.07.029 doi: 10.1016/j.na.2006.07.029 |
[17] | G. Siciliano, Multiple positive solutions for a Schrödinger-Poisson-Slater system, J. Math. Anal. Appl., 365 (2010), 288–299. https://doi.org/10.1016/j.jmaa.2009.10.061 doi: 10.1016/j.jmaa.2009.10.061 |
[18] | F. Zhao, L. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal.-Theor., 70 (2009), 2150–2164. https://doi.org/10.1016/j.na.2008.02.116 doi: 10.1016/j.na.2008.02.116 |
[19] | Y. H. Ding, K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscripta Math., 112 (2003), 109–135. https://doi.org/10.1007/s00229-003-0397-x doi: 10.1007/s00229-003-0397-x |
[20] | C. O. Alves, M. Yang, Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Cont. Dyn.-S., 36 (2016), 5881–5910. https://doi.org/10.48550/arXiv.1501.02930 doi: 10.48550/arXiv.1501.02930 |
[21] | C. O. Alves, G. M, Figueiredo, Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 5 (2016), 1–26. https://doi.org/10.1515/anona-2015-0101 doi: 10.1515/anona-2015-0101 |
[22] | S. Liang, S. Shi, Existence and multiplicity of multi-bump solutions for the double phase Kirchhoff problems with convolution term in $\mathbb{R}^{N}$, Asymptotic Anal., 134 (2023), 85–126. https://doi.org/10.3233/ASY-231827 doi: 10.3233/ASY-231827 |
[23] | Y. Du, J. Su, C. Wang, The Schrödinger-Poisson system with $p$-Laplacian, Appl. Math. Lett., 120 (2021), 107286. https://doi.org/10.1016/j.aml.2021.107286 doi: 10.1016/j.aml.2021.107286 |
[24] | Y. Du, J. Su, C. Wang, On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl., 505 (2022), 125446. https://doi.org/10.1016/j.jmaa.2021.125446 doi: 10.1016/j.jmaa.2021.125446 |
[25] | Y. Du, J. B. Su, C. Wang, On the critical Schrödinger-Poisson system with $p$-Laplacian, Commun. Pur. Appl. An., 21 (2022), 1329–1342. https://doi.org/10.3934/cpaa.2022020 doi: 10.3934/cpaa.2022020 |
[26] | L. Huang, J. Su, Multiple solutions for nonhomogeneous Schrödinger-Poisson system with $p$-Laplacian, Electron. J. Differ. Eq., 2023 (2023), 1–14. https://doi.org/10.58997/ejde.2023.28 doi: 10.58997/ejde.2023.28 |
[27] | M. Del Pino, P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var., 4 (1996), 121–137. https://doi.org/10.1007/BF01189950 doi: 10.1007/BF01189950 |
[28] | C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione. Mat. Ital., 3 (1940), 5–7. |
[29] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations, existence of a ground state, Arch. Ration. Mech. An., 82 (1983), 313–346. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555 |
[30] | C. O. Alves, Existence of multi-bump solutions for a class of quasilinear problems, Adv. Nonlinear Stud., 6 (2006), 491–509. https://doi.org/10.1515/ans-2006-0401 doi: 10.1515/ans-2006-0401 |
[31] | G. Li, Some properties of weak solutions of nonlinearscalar field equations, Ann. Fennici Math., 14 (1989), 27–36. https://doi.org/10.5186/AASFM.1990.1521 doi: 10.5186/AASFM.1990.1521 |
[32] | C. O. Alves, G. M. Figueiredo, Multiplicity of positive solutions for a quasilinear in $\mathbb{R}^{N}$ via penalization method, Adv. Nonlinear Stud., 5 (2005), 531–551. https://doi.org/10.1515/ans-2005-0405 doi: 10.1515/ans-2005-0405 |