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Abstract: This article examines the space-time fractional phi-four (PF) model which is an
improvement of the Klein-Fock-Gordon (KFG) model that is relevant in quantum mechanics,
transmission of ultra-short pulses in optical fibers, de Broglie wave duality, and compound particles in
spinless relativistic systems. New solitary wave solutions of the fractional phi-four equation were found
with the help of the Riccati-Bernoulli sub-ODE method together with the Bäcklund transformation.
The conformable fractional derivative played the role of improving the modeling of the complex
dynamical systems. The obtained solutions, which were illustrated by giving 2D, 3D MATLAB plots
and contour illustrations, were s eful in nuclear, particle physics and fluid mechanics. Thus, the
current work demonstrates the applicability of the proposed approach in handling the fractional order
deviations and contributes to the investigation of the dynamic behavior of the PF model.
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1. Introduction

Over the past decade or so, there has been an increasing interest among scientists in the study of a
specific type of PDE known as nonlinear partial differential equations (NLPDEs). These equations are
used to model many phenomena like fluid dynamics, operation of optical fibers, biological networks,
nonlinear optics, superconductivity, and plasmas, amongst other things. Theoretical studies have
concentrated on elaborate procedures to find soliton solutions for nonlinear wave equations that are
critical for the analysis of these model systems [1–3]. To address such nonlinear issues, researchers
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have developed a number of complex mathematical tools during the last few decades to provide both
qualitative and quantitative approaches. The numerical techniques are within those in the analytical
techniques. Among the emergent techniques, some of them are the Hamiltonian method [4], He’s
variational iteration technique [5], the generalized exponential rational function technique [6], the
direct algebraic technique [7]. Furthermore, relatively complex methods, like the Jacobi elliptic
function method, have been employed to analyze the structure of the nonlinear systems, and uncover
some exact solutions [8–10].

It has been seen that in recent years the research community has shown much fascination toward the
application of sophisticated mathematical tools associated with the fundamentals of fractional-order
differential equations because of their usefulness in modeling the practical problems across divers
areas spanning from quantum mechanics to fluid mechanics and optical fibers [11–13]. It is important
to note that there are several numerical techniques for addressing inverse problems, namely the
homotopy method, the multigrid method, the multigrid-homotopy method, and the wavelet multiscale
method [14–16]. On this basis, the present work is devoted to the analysis of the space-time fractional
phi-four (PF) model and plays a significant role in quantum mechanics, ultrashort pulse transmission
in optical fibers, and the wave-particle problem. In this work, the technique of the Riccati-Bernoulli
sub-ODE method and Bäcklund transformation are employed, and new solitary wave solutions of
the space-time fractional PF model are derived. These solutions, employing conformable fractional
derivatives, provide fresh perspectives on fractional-order variations that are beneficial in nuclear and
particle physics and fluid mechanics [17–19]. It should be pointed out that the proposed methodology
reveals a genuine advantage of fractional-order analysis as a PF model, which is illustrated by the
graphs. This work benefited from progressing with the recent techniques while showing new views on
the modeling and analysis of fractional-order dynamics [20–22].

In the latest stages, the fractional calculus has become a central aspect of the fractional-order
systems within a broad range of disciplines related to, for instance, physics, chemistry, biology,
engineering, nonlinear optics, and fractional dynamics [23–25]. Its application is widespread in the
fields of control theory, ecology, signal processing, systems identification, and fluid mechanics [26–30].
Fractional calculus provides a better understanding of other complex physical processes through an
extended modeling of memory and hereditary effects that are present in numerous natural systems.
It has therefore become mandatory to investigate exact solutions of different FDEs in the course
of developing the applied science. As it has been pointed out that fractional models are gaining
importance in the representation of different phenomena, a number of analytical and numerical
techniques have been established to solve the FDEs. These techniques include the tanh-sech
method [31], first integral method [32], (G′/G)-expansion method [33], and the newly developed
modified Kudryashov method [34]. These methods are useful for some of the elaborate behaviors
of fractional systems and assist researchers in solving a host of new real-world problems with a higher
degree of accuracy and precision.

This article considers the nonlinear fractional phi-four model that has been discussed in [35]:

D2α
t ( f ) − D2α

x ( f ) + λ2 ( f ) + σ ( f )3 = 0, 0 < α ≤ 1, (1.1)

where (α) is the order of the conformable fractional derivative, and (σ) and (λ) stand for the linear and
nonlinear parts, respectively. The phi-four model is one of the variations of the Klein-Fock-Gordon
model, which reflects core processes in nuclear and partical physics, the interaction of kink and anti-
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kink solitary waves in particular. The KFG model is deeply connected with the Schrödinger equation
and was introduced by Oskar Klein and Walter Gordon. This model has been used in numerous scopes
of applied research. The ability to simulate solitonic wave characteristics entails its application in a
classical and quantum viewpoint of wave phenomena from quantum field theory to condensed matter
physics. This model has a fractional extensions, which is more general, that enables the study of
systems with memory and nonlocal interactions.

In recent years, the more complex nonlinear space-time fractional phi-four equation has been solved
by numerous methods to obtain solitary wave solutions. All these methods provide sound approaches
to investigate the interactions within this system. Some of them include the exp(−φ) method and
the modified Kudryashov technique [36], and the generalized Kudryashov method [37]. Furthermore,
the new extended direct algebraic scheme [38], Weierstrass elliptic function method [39], mapping
technique [40], and unified method [41] have been utilized. Some other refined methods, including
the modified simple equation method [42] and the tanh function method [43], also help to evaluate the
exact solutions for the fractional phi-four model, which shows the increasing complexity in solving
fractional nonlinear equations.

The main objective of this current work is to obtain some additional closed-form wave solutions of
the space-time fractional phi-four equation, with the help of the Riccati-Bernoulli sub-ODE method in
association with the Bäcklund transformation. These results are then compared to the results derived
using the generalized (G′/G)-expansion method [33]. In this regard, we also capture the influence
of fractional derivate order in wave solutions. Thus, the obtained solutions will be discussed in
view of some specific parameter values relevant in physical applications. In contrast to the current
studies, our research presents a wider range of more accurate solutions to the indicated fractional
order for explaining various aspects of wave behavior while giving stronger versatility to describe
other nonlinear physical phenomena in the framework of the fractional phi-four equation. The Riccati-
Bernoulli sub-ODE method is an efficient method for the analysis of nonlinear PDEs for fractional
order systems. One of its strengths is that it is capable of producing exacting analytical solutions, which
are trigonometric, hyperbolic, and rational forms, and it helps to understand the physical processes
modeled by the equations. Unlike other numerical methods, such as the homotopy perturbation
method or multigrid method, which may need operational settings or boundary conditions, the Riccati-
Bernoulli is quite easy and time effective. Also, it can be used for a vast class of nonlinear equations,
which allows broadening of the understanding of wave properties, including lump-type kink solutions,
under integer as well as fractional conditions. These are the characteristics of this package that make
it a powerful tool for analysing the behavior of space-time fractional models as presented in this study.

In addition, the operator integrating α-derivatives of powers agrees exactly with the idea of
conformable fractional derivatives [44].

Dα
φW(φ) = lim

i→0

W(i(φ)i−α −W(φ))
i

, 0 < α ≤ 1. (1.2)


Dα
φφ

p = pφp−α,

Dα
φ (p1η(φ) ± p2t(φ)) = p1Dα

φ(η(φ)) ± m2Dα
φ(t(φ)),

Dα
φ

[
f ◦ g

]
= φ1−αg (φ) Dα

φ f (g(φ)) .

(1.3)
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2. Methodology

In this section, we focus on studying the given nonlinear fractional partial differential equation with
the help of the systematic Riccati-Bernoulli sub-ODE method [45–47]. The proposed methodology
elaborates on the information based on the principles produced from the Riccati equation dφ

dξ = %+φ(ψ)2

and is optimal for the fractional-order systems. The approach is applied to the generalized form of a
nonlinear fractional PDE, structured as follows:

U
(
u,Dα

t u,Dα
x u,D2α

t u,D2α
x u, . . .

)
= 0. (2.1)

First, a change of variable of the form u (t, r1, r2, r3, . . . , rs) = F(ψ) is set where the character (ψ) can
have different meanings depending on the context. This transformation simplifies Eq (2.1), converting
it into the following nonlinear ordinary differential equation (NODE):

V
(
u,

du
dψ

,
d2u
dψ2 ,

d3u
dψ3 , . . .

)
= 0. (2.2)

After this, we use the series expansion to rewrite the solution of the equation given by Eq (2.2),

f (x, t) = F(ψ) =

m∑
i=−m

yiT (ψ)i. (2.3)

This approach presents the solution in the form of a series and can be in the form of a power series
or any other form of representation depending on the problem at hand. By substituting this expansion
into Eq (2.2), a system of algebraic equations is obtained. The systematic numerical solving of these
equations establishes the coefficients of the series and essentially transforms the original nonlinear
equation. The solution of these algebraic systems yields a precise or an approximate solution that
may give clearer information regarding the dynamic behavior of the system governed by the equation
of interest.

In this case, a function T (ψ) =
−%R2+R1φ(ψ)

R1+R2φ(ψ) is derived through the use of Bäcklund transformation.
The next crucial step includes the presenting of a φ(ψ) formula, where (ψ) is obtained from the traveling
wave transformation. It can also be seen that φ(ψ) must satisfy the Riccati equation so that the given
transformation as well as the structure of the solution fit well within the context of the nonlinear
framework, where (%), (R1), and (R2) are the constants to be determined. The positive integer (m)
is a balance so that the coefficient of the highest order of the derivative equals the coefficient of the
nonlinear terms in Eq (2.2). Substituting Eq (2.3) into Eq (2.2) and equating the coefficients of φ(ψ) to
zero, we get a set of algebraic equations. Solving this system gives the exact values of the constants
in the linear equation known as (yi), (%), (a), and (b). Also the Ricatti equation has different types
of solutions [48], which give possibilities to define different types of wave solutions derived by this
method.

φ(ψ) =

−
√
−% tanh(

√
−%ψ), as % < 0,

−
√
−% coth(

√
−%ψ), as % < 0,

φ(ψ) = −
1
ψ
, as % = 0,

φ(ψ) =


√
% tan(

√
%ψ), as % > 0,

−
√
% cot(

√
%ψ), as % > 0.

(2.4)
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3. Execution of the problem

The phi-four model may be considered as a particular case of the special relativistic Klein-
Fock-Gordon (KFG) equation derived by Oskar and Walter Gordon. This equation is based on the
Schrödinger equation and includes relativities. Therefore, it is crucial in quantum mechanics. This
model is one of the main models in condensate matter physics and is successfully applied for phase
transmutations and spontaneous symmetry breakdown. Moreover, it is widely used as a probe for
studying quantum effects in the field of particle and nuclear physics, wave-corpuscle dualism, and the
formation of solitons in collisionless plasma. These applications demonstrate the ability of the model
to handle field behavioral profiles that are both traditional and quantum in physical systems. Thus using
the wave transformation f (x, t) = F(ψ) = a xα

α
− b tα

α
transforms Eq (1.1) into the following expression:

(
b2 − a2

) d2F
dψ2 + λ2F (ψ) + σ ( f (ψ))3 = 0. (3.1)

If the balancing procedure is made between d2F
dψ2 and (F3), then (m = 1) is obtained. By substituting

Eqs (2.3) and (2.2) into Eq (3.1), and then equating the coefficients of various powers of φ(ψ) to be
zero, a set of algebraic equations results. It helps to reach a conclusion of the most suitable unknown
parameters for a given system, which provides the exact solutions for the same. The equations obtained
in the course of this procedure form a system of algebraic equations which can be easily solved by the
means of Maple, Mathematica, MATLAB, or other analogous programs. This enables the identification
of multiple distinct solution cases, outlined as follows:

φ0 : −σ y−1
3R2

6 + 2 a2y−1R2
6%2 − 2 b2y−1R2

6%2 = 0,
φ1 : 3σ y−1

2R2
6y0% = 0,

φ2 : −2 b2y−1R2
6%3 + 2 a2y−1R2

6%3 − λ2y−1R2
6%2 − 3σ y−1R2

6y0
2%2 − 3σ y−1

2R2
6y1%

2 = 0,
φ3 : 6σ y−1R2

6y0y1%
3 + λ2y0%

3R2
6 + σ y0

3%3R2
6 = 0,

φ4 : −λ2y1%
4R2

6 − 2 b2y1R2
6%5 + 2 a2y1R2

6%5 − 3σ y0
2y1%

4R2
6 − 3σ y−1R2

6y1
2%4 = 0,

φ5 : 3σ y0y1
2%5R2

6 = 0,
φ6 : −2 b2y1R2

6%6 + 2 a2y1R2
6%6 − σ y1

3%6R2
6 = 0.

(3.2)

Case 1.

y0 = 0, y1 = 0, y−1 =

√(
2σ a2 − 2σ b2)−1λ2, a = a, b = b, % = 1/2

λ2

(a − b) (a + b)
. (3.3)

Case 2.

y0 = 0, y1 = −1/4
λ2

σ y−1
, y−1 = y−1, a = 1/8

√
−
−2 λ4 − 64σ y−1

2b2

σ
y−1
−1, b = b, % = 4

σ y−1
2

λ2 . (3.4)

In this connection, we have the above two cases that were developed from the algebraic system stated in
one of the previous sections. From these cases, we expect to find the families of solutions relevant to (%)
in order to provide the various behaviors of the solution in various scenarios as the conclusion. These
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families of solutions will provide the detail regarding the time evolution of the system and physical
realization of a system, which will possibly exhibit rich behavior for the variation in the values of (%).

Here also, we provide the solutions for Case 1 given particular values of (%) and illustrate how such
decisions give various solution sets of Eq (1.1). These solutions explain the probability distribution
of the system outputs given certain inputs, because every choice of (%) configuration yields a clearly
defined solution meeting the equation and condition imposed earlier.
Solutions set 1. (% < 0).

f1(x, t) =

√(
2σ a2 − 2σ b2)−1λ2

(
R1 − 1/2 R2

√
−2 λ2

(a−b)(a+b) tanh
(
1/2

√
−2 λ2

(a−b)(a+b)

(
axα
α
− btα

α

)))
(
−1/2 λ2R2

(a−b)(a+b) − 1/2 R1

√
−2 λ2

(a−b)(a+b) tanh
(
1/2

√
−2 λ2

(a−b)(a+b)

(
axα
α
− btα

α

))) ,

(3.5)

or

f2(x, t) =
λ2

(
R1 −

1
2R2

√
−2λ2/ ((a − b)(a + b)) coth

(
1
2

√
−2λ2/ ((a − b)(a + b))

(
axα
α
− btα

α

)))
−1

2
λ2R2

(a−b)(a+b) −
1
2R1

√
−2λ2/ ((a − b)(a + b)) coth

(
1
2

√
−2λ2/ ((a − b)(a + b))

(
axα
α
− btα

α

)) .
(3.6)

Solutions set 2.

f3(x, t) =

λ2
(
R1 + 1

2R2
√

2
√

λ2

(a−b)(a+b) tan
(

1
2

√
2
√

λ2

(a−b)(a+b)

(
axα
α
− btα

α

)))
−1

2
λ2R2

(a−b)(a+b) + 1
2R1
√

2
√

λ2

(a−b)(a+b) tan
(

1
2

√
2
√

λ2

(a−b)(a+b)

(
axα
α
− btα

α

)) , (3.7)

or

f4(x, t) =

√
1

2σa2−2σb2 · λ
2
(
R1 −

1
2R2
√

2
√

λ2

(a−b)(a+b) cot
(

1
2

√
2
√

λ2

(a−b)(a+b)

(
axα
α
− btα

α

)))
−1

2
λ2R2

(a−b)(a+b) −
1
2R1
√

2
√

λ2

(a−b)(a+b) cot
(

1
2

√
2
√

λ2

(a−b)(a+b)

(
axα
α
− btα

α

)) . (3.8)

Solutions set 3. (% = 0).

f5(x, t) =

√
2σa2 − 2σb2 · λ2

(
R1 − R2

(
axα
α
− btα

α

)−1
)

−1
2

λ2R2
(a−b)(a+b) − R1

(
axα
α
− btα

α

)−1 . (3.9)

Here we show associated solutions for Case 2 values of (%), illustrating how each selection yields
unique solution sets for Eq (1.1).

Solutions set 4. (% < 0), a = 1/8
√
−
−2 λ4−64σ y−12b2

σ
y−1
−1 and ψ = axα

α
− btα

α
.

f6(x, t) = y−1

(
R1 − 2R2

√
−
σy2
−1
λ2 tanh

(
2
√
−
σy2
−1
λ2 ψ

))
(
−4σy2

−1R2

λ2 − 2R1

√
−
σy2
−1
λ2 tanh

(
2
√
−
σy2
−1
λ2 ψ

)) − λ2

4

(
−4σy2

−1R2

λ2 − 2R1

√
−
σy2
−1
λ2 tanh

(
2
√
−
σy2
−1
λ2 ψ

))
σy−1

(
R1 − 2R2

√
−
σy2
−1
λ2 tanh

(
2
√
−
σy2
−1
λ2 ψ

)) ,
(3.10)
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or

f7(x, t) = y−1

(
R1 − 2R2

√
−
σy2
−1
λ2 coth

(
2
√
−
σy2
−1
λ2 ψ

))
(
−4σy2

−1R2

λ2 − 2R1

√
−
σy2
−1
λ2 coth

(
2
√
−
σy2
−1
λ2 ψ

)) − λ2

4

(
−4σy2

−1R2

λ2 − 2R1

√
−
σy2
−1
λ2 coth

(
2
√
−
σy2
−1
λ2 ψ

))
σy−1

(
R1 − 2R2

√
−
σy2
−1
λ2 coth

(
2
√
−
σy2
−1
λ2 ψ

)) .
(3.11)

Solutions set 5. (% < 0).

f8(x, t) = y−1

(
R1 + 2R2

√
σy2
−1
λ2 tan

(
2
√

σy2
−1
λ2 ψ

))
(
−4σy2

−1R2

λ2 + 2R1

√
σy2
−1
λ2 tan

(
2
√

σy2
−1
λ2 ψ

)) − λ2

4

(
−4σy2

−1R2

λ2 + 2R1

√
σy2
−1
λ2 tan

(
2
√

σy2
−1
λ2 ψ

))
σy−1

(
R1 + 2R2

√
σy2
−1
λ2 tan

(
2
√

σy2
−1
λ2 ψ

)) ,
(3.12)

or

f9(x, t) = y−1

(
R1 − 2R2

√
σy2
−1
λ2 cot

(
2
√

σy2
−1
λ2 ψ

))
(
−4σy2

−1R2

λ2 − 2R1

√
σy2
−1
λ2 cot

(
2
√

σy2
−1
λ2 ψ

)) − λ2

4

(
−4σy2

−1R2

λ2 − 2R1

√
σy2
−1
λ2 cot

(
2
√

σy2
−1
λ2 ψ

))
σy−1

(
R1 − 2R2

√
σy2
−1
λ2 cot

(
2
√

σy2
−1
λ2 ψ

)) .
(3.13)

Solutions set 6. (% = 0).

f10(x, t) =
y−1

(
R1 −

R2
ψ

)
(
−4σy2

−1R2

λ2 −
R1
ψ

) − λ2

4
·

(
−4σy2

−1R2

λ2 −
R1
ψ

)
σy−1

(
R1 −

R2
ψ

) . (3.14)

The comparison table (Table 1) emphasizes more on the proposed Riccati-Bernoulli sub-ODE method
coupled with Bäcklund transformation than the (G′/G)-expansion method for solving, more efficiently
the space-time fractional phi-four model. The merits of the present method include its flexibility of
obtaining valid solutions for every case including the critical cases where % = 0 obviously missing in
the (G′/G)-expansion method. When % < 0, the constructed method yields complex solutions with
hyperbolic functions and tracks a richer variety of behavior compared to the offered simpler forms
according to the alternative method. Likewise, the present method provides explicitly trigonometric
representations with % > 0, and more general relationships between the parameters. In light of this
work, the (G′/G)-expansion method yields solutions with restricted, fewer imaginary elements. The
flexibility and detail of the present method underscore its advantage to capture those rich dynamics of
wave and fractional order system modeling.
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Table 1. Comparison of the current approach with the alternative approach, specifically the
(G′/G)-expansion method [33].

Case I: % < 0 Present method

f2(x, t) =
λ2

(
R1−

1
2 R2

√
−2λ2/((a−b)(a+b)) coth

(
1
2

√
−2λ2/((a−b)(a+b))

(
axα
α −

btα
α

)))
− 1

2
λ2R2

(a−b)(a+b)−
1
2 R1

√
−2λ2/((a−b)(a+b)) coth

(
1
2

√
−2λ2/((a−b)(a+b))( axα

α −
btα
α )

) .
Case I: b < 0 (G′/G)-expansion method

u1 = ±
√

ρ

Q2+4Sψ tanh
( √

ρ

2ψ ξ
)
,

u2 = ±
√

ρ

Q2+4Sψ coth
( √

ρ

2ψ ξ
)
.

Case II: % > 0 Present method

f4(x, t) =

√
1

2σa2−2σb2 ·λ
2
(
R1−

1
2 R2
√

2
√

λ2
(a−b)(a+b) cot

(
1
2

√
2
√

λ2
(a−b)(a+b)

(
axα
α −

btα
α

)))
− 1

2
λ2R2

(a−b)(a+b)−
1
2 R1
√

2
√

λ2
(a−b)(a+b) cot

(
1
2

√
2
√

λ2
(a−b)(a+b) ( axα

α −
btα
α )

) .

Case II: % > 0 (G′/G)-expansion method

u3 = ∓i
√

ρ

Q2+4Sψ tan
( √
−ρ

2ψ ξ
)
,

u4 = ±i
√

ρ

Q2+4Sψ cot
( √
−ρ

2ψ ξ
)
.

Case III: % = 0 Present method

f5(x, t) =

√
2σa2−2σb2·λ2

(
R1−R2

(
axα
α −

btα
α

)−1
)

− 1
2

λ2R2
(a−b)(a+b)−R1( axα

α −
btα
α )−1 .

Case III: b = 0 (G′/G)-expansion method
There are no solutions corresponding to % = 0 in this method.

4. Results and discussion

The goal in this paper is to introduce an effective analytical technique for future studies of essential
nuclear and particle physics and fluid dynamics problems employing exact solutions of nonlinear
PDEs. With the help of the Bäcklund transformation, these PDEs are effectively reduced to the
ODEs which makes the derivation of the solutions easier when compared with other transformations.
The Riccati-Bernoulli sub-ODE system is essential for the determination of the coefficients of the
series and for providing more understanding on the integrated forms of the systems. In this way,
we found out the different types of hyperbolic, rational, and trigonometric solutions, each of the
which are associated with a particular structural configuration of the system. The hyperbolic solutions
are associated with solitary wave solutions, characterizing stable, non-dispersive waves, which are
typical for significant nonlinear structures and proportions where the balance is traceable between the
dispersion and nonlinearity. These solutions are important for simulating localized energy transport
in schemes as quantum fields or fiber optics. The rational solutions, algebraically decaying at large
as lump-type structures, reflect localized processes such as rogue waves or peak-like structures to
illustrate their engagements with other waves or fields. The trigonometric solutions depict periodic
wave forms; they are oscillatory or periodic in nature in the system that is associated with wave
particle duality and ultra-short pulse generation. Each kind of solution gives an understanding of
the characteristic dynamics of the configurations of the space-time fractional phi-four model, which

AIMS Mathematics Volume 9, Issue 12, 34372–34386.



34380

is enriched with fractional-order information. Surprisingly, it yields the opportunity to construct the
analytical solutions with the required accuracy, and it can expand the existing paradigms of nuclear
physics, particle physics, fluid dynamics, and many other fields. In particular, this framework is
helpful for describing and analyzing such objects as lump-type kink solitons, which play important
roles in the theory of topological solitons in particle physics and dislocations in material science. By
associating these solutions with such real-world phenomena, this work demonstrates how the proposed
framework can be applied to solve actual problems in these disciplines, including the nature of high-
energy particles and behavior of fluid systems.

The plot in Figure 1 is a lump-type kink solution, which is the most significant soliton structure
concerning the physically important application. The lump-type kink solution, with increasing
amplitude as the fractional parameter (α), has been shown for the proposed fractional system, which
manifests the improved stability and energy confinement of the system. This is especially advantageous
for numerical solutions to real-life applications in nuclear physics, particle interactions, and fluid
dynamics in which such solutions can represent high energy processes, durable solitons, and wave
behaviors. The usage of a fractional order therefore brings additional freedom in the management of
the character of such systems, which in turn enables the researchers to model and study more exciting
and energetic phenomena in different physical fields.

(a) (b) (c)

Figure 1. Figure showing 3D, contour, and 2D fractional-order variations of the function
f1(x, t).

Figure 2 depicts a typical kink solution with increasing the fractional order (α), where the waveform
oscillations are observed. Practical consequences of such behavior are found in wave phenomena,
turbulence, particle-particle and particle-matrix interactions, and material defects. The perturbations
can represent real physical systems, in which instabilities or oscillations are essential, and provide
fresh perspectives and solution methodologies for high-dimensional problems in areas such as fluid
dynamics, plasma and solid state physics, and quantum field theory. With the help of the given
fractional order, it is possible to investigate and control a certain degree of perturbation, which makes
this model highly effective with nonlinear dynamics at both the stable and unstable states.
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(a) (b) (c)

Figure 2. Figure showing 3D, contour, and 2D fractional-order variations of the function
f2(x, t).

Figure 3 presents a lump-type kink solution, and it is seen that a greater fractional order results
in higher stability and less oscillations as compared to the perturbations observed in Figure 2. This
behavior has application in wave mechanics, particle physics, fluid dynamics, and material science
because the stability and integrity of soliton structures is valuable. With an increase of the fractional
order, systems are capable of sustaining solitonic solutions immune to perturbations which in turn
makes this particular model essential in situations where predictable and stable waveforms or field
solutions are desirable across a range of arenas in the physical sciences.

(a) (b) (c)

Figure 3. Figure showing 3D, contour, and 2D fractional-order variations of the function
f8(x, t).

A prominent kink solution that sharpens as the fractional parameter increases is shown in Figure 4.
This behavior appears especially convenient for all those applications that need cut-off and localized or
concentrated signals, waves, or energy densities, as for instance in particle physics, nonlinear optics,
fluids mechanics, or solid state physics. By changing the parameter (α), the model offers an excellent
tool for tuning the localization. It also describes with high accuracy the localized solitons, shocks, or
any topological field configurations in the different physical systems.
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(a) (b) (c)

Figure 4. Figure showing 3D, contour, and 2D fractional-order variations of the function
f9(x, t).

For this study, we have obtained the analytic solutions to the optical fractional differential equations
for wave phenomena and it is worth mentioning that despite handling the theoretical formulas, there
are practical applications of the concepts. This means that the approaches are based on solutions
exhibiting different waves features, including solitons and kink waves, and can be used in conditions
described in fluid dynamics, material science, and nonlinear wave excitation. Future work will indeed
involve the attempt to compare these theoretical results with experimental data or observed behaviors
in such systems for additional confirmation and to ascertain their utility. This integration of theory
and experiment will further reduce the distance between mathematical modeling and physical reality,
making the value of our discoveries more apparent in application. On this regard, though this research
is informative in modeling the analytical solutions of fractional differential equations, there are certain
constraints that need to be considered. First, our approach is mainly based on exact solutions, which
implies a lot of theoretical heuristics being very useful in obtaining exact analytical solutions, but it is
not devoid of much realism, as numerical simulations and experimental data are critically important
for heuristics being very useful in complicated real-world processes. As well, it is noteworthy that
the applicability of the derived solutions to definite physical processes may need further validation by
experimental methods or comparison with experimental evidence, which is outside the present work.

5. Conclusions

Thus, the present investigation accurately implemented the Ricatti-Bernoulli sub-ODE method
with the help of Bäcklund transformation to obtain the lump-type kink and anti-kink solutions for
the fractional nonlinear wave equation. We also illustrated how fractional-order variations produce
localized or expanded wave behaviors compared to integer-order solutions depicted in 3D and 2D
diagrams. Extending from the prior findings, we went further to analyze influences of fractional
derivatives on the localization of waves and transitions. Such implications are especially important for
the modeling of various dynamical systems in hydrodynamics, plasma physics, and nonlinear optics,
where the control of the wave behavior and wave-wave interaction is especially important.

Moreover, the Riccati-Bernoulli sub-ODE approach, which yields the exact solutions of the
polynomial nonlinear ODEs, can be not very robust when applied to more complicated, higher-order
nonlinear equations or to the multi-dimensional systems. These aspects will form subjects of future
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researches. Future work is to apply the present method for other nonlinear fractional differential
equations with other forms of boundary conditions or in multi-dimensions. Also, the comparing of
the analytical solutions with numerical simulations will allow the evaluation of the effectiveness and
computational cost of the obtained solutions. The experimental verification of the given solutions,
especially in some applied sciences like fluid dynamics or wave propagation, will be a worthy direction
for further studies.
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