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1. Introduction

The mathematical study of g-calculus has been a subject of top importance for researchers due to its
huge applications in unique fields. Few recognized work at the application of g-calculus firstly added
through Jackson [4]. Later, g-analysis with geometrical interpretation become diagnosed. Currently,
g-calculus has attained the attention researchers due to its massive applications in mathematics and
physics. The in-intensity evaluation of g-calculus changed into first of all noted with the aid of
Jackson [4, 5], wherein he defined g-derivative and g-integral in a totally systematic way. Recently,
authors are utilizing the g-integral and g-derivative to study some new sub-families of univalent
functions and obtain certain new results, see for example Nadeem et al. [8], Obad et al. [11] and
reference therein.

Assume that f € C. Furthermore, f is normalized analytic, if f along f(0) = 0, £ (0) = 1 and
characterized as .

f(z)=z+zajzf. (1.1)

Jj=2
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We denote by A, the family of all such functions. Let f € A be presented as (1.1). Furthermore,

fisunivalent = & # &, = f(&) # f(£,), Y &.,& €86

We present by S the family of all univalent functions. Let p € C be analytic. Furthermore, p € P, iff
R(P(z)) > 0, along p(0) = 1 and presented as follows:

o) =1 +chzj. (1.2)
=1

Broadening the idea of P, the family P(e,), 0 < @, < 1 defined by
(1_ao)pl+C¥0:p(z)<:>pep(ao)’ p1 EP,

for further details one can see [2].

Assume that C, K and S signify the common sub-classes of A, which contains convex, close-to-
convex and star-like functions in €. Furthermore, by S (@,), we meant the class of starlike functions
of order ,, 0 < ¢, < 1, for details, see [1,2] and references therein. Main motivation behind this
research work is to extend the concept of Kurki and Owa [6] into g-calculus.

The structure of this paper is organized as follows. For convenience, Section 2 give some material
which will be used in upcoming sections along side some recent developments in g-calculus. In
Section 3, we will introduce our main classes C, (¢,.f,) and S’ (a,,8,). In Section 4, we will
discuss our main result which include, inclusion relations, g-limits on real parts and integral invariant
properties. At the end, we conclude our work.

2. Materials and methods

The concept of Hadamard product (convolution) is critical in GFT and it emerged from

@ (Pe") = (g4 ) (") = 5- f T o) £ (reat, 1<,
0
and .
H@) = fo @) dE, el < 1

is integral convolution. Let f be presented as in (1.1), the convolution (f * g) is characterize as

(o)

Fr) Q) =¢+ ) abl), (€&,
j=2
where N
g =L+bl + =0+ Y b, 2.1)
=2

for details, see [2].
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Let &, and h, be two functions. Then, #; < h, & 3, @ analytic such that @(0) = 0, |@(z)| < 1,
with i (z) = (hy o @) (z). It can be found in [1] that, if 4, € S, then

h,(0) = h,(0) and h,(E) C h,(E) & h, < h,,

for more information, see [7].
Assume that g € (0, 1). Furthermore, g-number is characterized as follows:

1-q"

T ifveC,
[v] =1 ‘ 2.2
! Sg=1+qg+¢+..+¢", ifv=jeN. (22)
k=0

Utilizing the g-number defined by (2.2), we define the shifted g-factorial as the following:
Assume that g € (0, 1). Furthermore, the shifted g-factorial is denoted and given by

1 ifj=0,
Lol
L, knl [ ifjeN.

Let f € C. Then, utilizing (2.2), the g-derivative of the function f is denoted and defined in [4] as

F(D-1(qd) .
D Ayl o HEED, 23
provided that f” (0) exists.
That is ) @)
tim ZO 2T _ iy (b )0 = 1 0.

—1 (-9 g—1
If f € A defined by (1.1), then,

(D)@ =1+ Z [j] aif’, (€& (2.4)
=2

Also, the g-integral of f € C is defined by

4 IS}
f fdi=:0-q) ) 4'f(42). 2.5)
0 i=0

provided that the series converges, see [5].
The g-gamma function is defined by the following recurrence relation:

I+ =[,T,@ and T,(1)=1.

In recent years, researcher are utilizing the g-derivative defined by (2.3), in various branches
of mathematics very effectively, especially in Geometric Function Theory (GFT). For further
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developments and discussion about g-derivative defined by (2.3), we can obtain excellent articles
produced by famous mathematician like [3, 8—10, 12—-14] and many more.
Ismail et al. [3] investigated and study the class C, as

D, (zD,/)
D, f(z)

Cq—{feﬂ:iR }>O, 0<g<l, zea}.

If g — 1 ,then C,=cC.
Later, Ramachandran et al. [12] discussed the class C («@,), 0 < ¢, < 1, given by

D, (zD,f(2))

C, (a,) = {f €eA:R D.JQ

]>a/0, O0<g<l, zea}.

Fora, =0,C (a,) =C,.

2.1. Onthe classes C (. B,) and S’ (a,,f,)

Now, extending the idea of [13] and by utilizing the g-derivative defined by (2.3), we define the
families C, (a,,$,) and S (a,,B,) as follows:

Definition 2.1. Let f € Aand ,,B, € R such that 0 < o, < 1 < S,. Then,

D,(zD,f (2))

7@ ] <B, z€&. (2.6)

fecC,(@.p) = q, <9%[

It is obvious that if ¢ — 1, then C, (,,,) — C(«,,,), see [13]. This means that
C, (@,.8,) c C(ay.B,) c C.

Definition 2.2. Let o, 3, € R such that 0 < o, < 1 <, and f € A defined by (1.1). Then,

D
feS(a,,B,) = qa, <ER(Z "f(Z)) <B,, z€&. 2.7)
’ f @
Or equivalently, we can write
fecC, (a,B,) & zD f € SZ (@,,B8,), z€&. (2.8)

Remark 2.1. From Definitions 2.1 and 2.2, it follows that f € C (,,f3,) or f € S:(a/o,,BO) iff f fulfills

D2 f(2) 1-(2a, - 1)z
+ < s
D, f () 1-gz
D2 f(2) 1-8,- 1)z
+ < ,
D, f(2) l1-gz
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or
zD, f (2) - 1-Qe,-1)z
f@ l-qz
zD,f (2) - 1-(26,- 1)
f@ l-qz ~
forall z € &.

We now consider g-analogue of the function p defined by [13] as

1 - qezm(ﬁi)oi’oo)z]

p@=1+ ﬁ"_—%ilog{
T

(2.9)
1-gz
Firstly, we fined the series form of (2.9).
Consider
27l l_ﬁ)
— 1- (ﬁ -,
p@) = 1470 aoilog[ © Z] (2.10)
T 1 -gz
— [ 1-¢,
=1 +Mi[log(1 —qezm(%“%)z)—log(l —qz)]. (2.11)
Vi3
2m'(ﬂ)
If we let w = ge™ \fo~0/z, then,
[ 1=« *© J
log (1 - qez’”(%-fgo)z) =log(l —w) = -w- Z W—
=
This implies that
[ 1-« ]
1 1 00 (6162”1(’50‘90 )Z)
{ "% i ~%
log (1 - qezm(%’”o )z) = - (qe2 (”0’”0 )Z) - Z e ——
= J
and
0 j
—log(1 —gz) =qz+ Z (qz') .
=/
Utilizing these, Eq (2.11) can be written as
p,@=1+) o=y (1 =l )) Z. (2.12)
jr

J=1

This shows that the p_ € P.
Motivated by this work and other aforementioned articles, the aim in this paper is to keep with the
research of a few interesting properties of C, (a,,5,) and S’ (¢, 8,)-
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3. Results and discussion
Utilizing the meaning of subordination, we can acquire the accompanying Lemma, which sum up
the known results in [6].

Lemma 3.1. Let f € A be defined by (1.1),0 <, <1 <, and 0 < g < 1. Then,

1-a,

qf())<1+ﬁ0 aoilog( ge ° >

)
7@ 1= , z€&. 3.1

res; (s = |

Proof. Assume that F be characterized as

27t 1mop

_ 1 - (,8 o

F(z) =1 +ﬁ—0 aoilog[ e 0>
T

Z], 0<a,<1<p,.

At that point it can without much of a stretch seen that function F ia simple and analytic along F(0) = 1
in &. Furthermore, note

:80 - Q,. 1- qezm(ﬁlo_’a‘go )Z]
Fz) = 1+ ilog
T 1- qz
= 1 B, — 1 Eem(ﬂlo__(?()) ie_”i(ﬂ 10__(?0) - C[ieﬂi(ﬁlt)_‘(y‘i)o )Z
= + . t1og ; - .

Therefore,

o~

[ — . i l:{? . i lj?
Foy = 148°%; log(em(ﬁ;ﬂ%))‘logi +ﬁ0ﬂa°ilogl’e (55 - giels o)z]

[ i 0 . i A%
= 1P, m'(l_“" _(”_i) PP g |2 (55) - gielas),
L ﬁo_a/o 2 T l—qz

. 1—00

a. + -« ie_m(ﬁo“’o) — iem(ﬁt)_‘a’?o)
th B ' i1og q 2l

2 T 1-gz

A simple calculation leads us to conclude that F maps & onto the domain €2 defined by
Q={w:q, <RW) <B,}. (3.2)
Therefore, it follows from the definition of subordination that the inequalities (2.7) and (3.1) are

equivalent. This proves the assertion of Lemma 3.1. O
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Lemma 3.2. Let f € Aand 0 < a, <1 < B,. Then,

D, (quf(z))] B [1 B qezni(&)z]
T

1eC,@b) = |37 T

and if p presented as in (2.9) has the structure

p, @ =1+ Big)x, (3.3)
=1
then,
- . il =%
Bi(q) = uiqf (1 . (50“90 )), JEN. (3.4)
jm
Proof. Proof directly follows by utilizing (2.8), (2.12) and Lemma 3.1. m|

Example 3.1. Let f be defined as

p 27ri(71__00 )
— 1 1 _ B — t
£@) = zexp {Mi f 1 log[qe—”]dq,}, (3.5)
n t 1 —gqgt

0

This implies that

=1+
f@ n 1-gz

According to the proof of Lemma 3.1, it can be observed that f given by (3.5) satisfies (2.7), which
means that f € S” (@,,,)- Similarly, it can be seen by utilizing Lemma 3.2 that

z u 27ri(]_#)
- 1 1- Fo=a0 )¢
flz) = fzexp{ﬁo aoif—log[qe—oo]d t}d u, (3.6)
n t 1—gqt N

0 0

zD f(z _ 1 - il i)
"f()—l Py a”ilog[ a¢ OOZ, z€E&.

belongs to the class C, (., ,).

Inclusion relations:

In this segment, we study some inclusion relations and furthermore acquire some proved results
as special cases. For this, we need below mentioned lemma which is the g-analogue of known result
in [7].

Lemma 3.3. Let u,v € C, such that uw # 0 and what’s more, h € H such that R [uhi(z) + v] > O.
Assume that ¢ € P, fulfill

D, p(z)
@)+ ——— <h(z) = pr) <h(z), ze€&.
up(zx) +v

Theorem 3.1. For0 <o, <1 <pB,and0 < g <1,

Cq (Q/O’ﬂ()) - S: (aovﬂo) , z€&.
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Proof. Let f € C, (a,,p,). Consider

D, f(2)
f@

Differentiating g-logarithamically furthermore, after some simplifications, we get

e P.

p(z) =

(1 )

zD,p(z) D, (quf (Z)) B, -, | - qezm( o )z
p2  D,f(2 R ilog 1= , z€&.

p(2) +

Note that by utilizing Lemma 3.3 with u = 1 and v = 0, we have

. 1—(70

1- qezm(ﬂo”o)z]’ €&

p(z)<1+ﬁ°_—%ilog[
T 1-gz

Consequently,
fesi(a.p). z€&.

This completes the proof. O

Note for distinct values of parameters in Theorem 3.1, we obtain some notable results, see [2,6,13].

Corollary 3.1. Forq — 1,0 < a, < 1 <f,, we have
C(amﬁo) c§S (alo’ﬁo) , Z€ E.
Corollary 3.2. Forq — 1, a, = 0and 8, > 1, we have

C(ﬂo)CS*(ﬂ1)’ ZGS,

1
B =@ - D+ 4 —45,+9|.
g-limits on real parts:

In this section, we discuss some g-bounds on real parts for the function f in C, («,,3,) and following
lemma will be utilize which is the g-analogue of known result of [7].

where

Lemma 3.4. Let U c C x C and let ¢ € C along R(b) > 0. Assume that U : C* x E — C fulfills

U Y¢ U, Vp,0 €R < b~ ipl”
10,0:2 s , O s g s — .
P P QR(b))

Ifp(2) =c+ciz+ 2 + ... is in P along
U(P(z),qup(Z);Z) eU = R(pR)>0, ze€&.
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Lemma 3.5. Let p(z) = ), C jzj and assume that p(E) is a convex domain. Furthermore, let q(z) =

=1
>, A7l is analytic and if g < p in E. Then,
=1
Al <icil, =12,
Theorem 3.2. Suppose f € A, 0< e, <1 and

D, (2D,f )
D, f(2)

(0. @)> 2—1a , ze&.

0

]>a/0, z€é&.

Then,

Proof. Lety = ﬁ and for 0 < @, < 1 implies 1 <y < 1. Let
0

VP f@=0-Np@+y, peP.

Differentiating g-logrithmically, we obtain

(2D, f @) L 20=9Dp@

"Df@ - pp@+y

Let us construct the functional O such that

2(1=y)s

O@(r,s;20)=1+ ,
(I=yr-vy

Utilizing (3.7), we can write

[U(p@.:D,pR):ze &)} cweC:RW) >a,) = Q.

0

2
Now, p,6 € R with ¢ < —@, we have

. 3 2(1-y)¢
R (U (ip,d)) = 1 + Tl +r

This implies that

R (U (ip, 6;2)) =‘.R(1 + 2d =70 )

(1 =9)*p? + 92

(l+p2)

Utilizing 6 < ——;

, We can write

Yy =y)(1+p?)

RO (p,0;2) <1- )
O lp.0:) 1=~ o

r=p@, s=zDp().

(3.7)

(3.8)

(3.9)
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Let )
1+p
g(p) = :
(1-y)’p*+7?
Then, g (—p) = g (p), which shows that g is even continuous function. Thus,
2], 2y = Dp

D, (g(p) = ;
i [ =202 +22][(1 =9 20> + 7]

and D, (g(0)) = 0. Also, it can be seen that g is increasing function on (0, o). Since % <vy <,
therefore,

% <glp) < pER. (3.10)

Y
Now by utilizing (3.9) and (3.10), we have

_
(1-y)?

1
RO Gp,6:2) < 1-y(1-v)gp) <2 - ;= %

This means that % (U (ip, 6;2)) ¢ Q, forall p,6 € R with 6 < —@. Thus, by utilizing Lemma 3.4,
we conclude that Rp(z) > 0, Vz € &. O

Theorem 3.3. Suppose f € A be defined by (1.1)and 1 < 3, < 2,

D, (qu f (z)) p s
—|<B,, z€&.
D, f(2) ’
Then, .
%(YD.f@)> 3= zc&
q 2 _ﬂo
Proof. Continuing as in Theorem 3.2, we have the result. O

Combining Theorems 3.2 and 3.3, we obtain the following result.

Theorem 3.4. Suppose f € A, 0<a,<1<p, <2and

D, (zD,f(2))
D, f(2)

2_1% <ER{,/qu(z)}< 2—1,80’ z€é&.

Theorem 3.5. Let f € A be defined by (1.1) and a, 3, € R suchthat0 < o, < 1 <B. If f € C («,,,),

@, <

J<,80, z€&.

then,
1y =2
| < -2
where |By| is given by
Big) = 4Bz ) g 1~ @) G.11)
Ve ﬁo - q,

AIMS Mathematics Volume 8, Issue 4, 9385-9399.
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Proof. Assume that

(%_Q&Qﬂw
=", 10

Then, by definition of C, (,,83,), we obtain

), qgeP, zeb.

q@)<p,@), z€&.
Let p, be defined by (3.3) and B,(q) is given as in (3.4). If
9@ =1+ A9,
=2

by (3.12), we have
D,(:D,f @) =q @D, (f ).

Note that by utilizing (1.1), (2.4) and (3.14), one can obtain

j=2 j=1 J

Comparing the coefficient of of z/~! on both sides, we have

[ Li- 1], a;

j-1
Aji(@) + L], a5+ )" TK), @A ji(q)
k=2

1+ i [, [ =1],a2" = [1 + iAj(Q)Zj] (1 + Z /]

(3.12)

(3.13)

(3.14)

-1
o

=A@+ 1] a, + 2], A p(g) + 3], wA (@ + -+ [ - 1], ajmAi). (3.15)

This implies that by utilizing Lemma 3.5 with (3.13), we can write
4@ < 1Bi(@)l, for j=1,2,3,---

Now by utilizing (3.16) in (3.15) and after some simplifications, we have

lo)| < m%%%i;m 1, lacl,
o 0 )
-0
Furthermore, for j = 2, 3,4,
la)l < |B[12(f)|,
m|s[%%1nﬂam

AIMS Mathematics
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1Bi1(g)| |B1(g)|
lasl < 41, 3, [(1+|31(Q)|)(1+ 2], )]

By utilizing mathematical induction for g-calculus, it can be observed that

j-2
|aj|< IBl(Q)l 1—[( |B1(6])I)

J_lqkzl

which is required. O

Remark 3.1. Note that by taking ¢ — 1 in Theorems 3.2-3.4, we attain remarkable results in
ordinary calculus discussed in [6].

Integral invariant properties:
In this portion, we show that the family C, («,,8,) is invariant under the g-Bernardi integral operator
defined and discussed in [9] is given by

B, (f(2)) = Feo(2) = £ f(dt, 0<g<1, ceN (3.17)

Making use of (1.1) and (2.5), we can write

[1+ c]
F (2)=B, (f(2)

-0 >4 ()" £ (=)
i=0
C (-9 Y ¢ Y la
=0 j=1

= i[l +el, i(l —q)q’“”)} a;7

J=1 j=0
— N l-¢ j
= JZ:; [1+cl, (1 _qj+c)ajz .
Finally, we obtain
< ([1+ c]q ,
F. (2) =B, (f(z))=Z+;[[j+c]q]ajZ’- (3.13)

For ¢ = 1, we obtain

Fl,q(z)

|
NMS o

( J

AIMS Mathematics Volume 8, Issue 4, 9385-9399.
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It is well known [9] that the radius of convergence R of
i ([1 +c], ] . i( ]
= [ +c] A\ [J+ 1

is g and the function given by

2 ([1+c] ) .
¢,(2) = —= |2/, (3.19)
’ ; [j+cl,
belong to the class C, of g-convex function introduced by [3].

Theorem 3.6. Let f € A If f € C, (,.B,), then F, € C (a,.p,), where F,  is defined by (3.17).
Proof. Let f € C, (a,,$,) and set

Dq (ZDchq(Z)
D,F (2)

q cq

p@@)= peP. (3.20)

g-differentiation of (3.17) yields
zD,F, (2) +cF, (2) = [1 + ], f(2).
Again g-differentiating and utilizing (3.20), we obtain

[1+cl,D,f(2) = D,F,(2)(c+ p).

9" cq

Now, logarithmic g-differentiation of this yields

D,p@) D,(2D,/)

P(Z)+C+p(z): D@ ze&

By utilizing the definition of the class C, (a,,,), we have

D,pk) D, (D, f2)

(2) + = <p, ).
PO~ D P
Therefore,
(2) + Lp@ <p), z€&
pZ ctp @ pq 2), 2 .
Consequently, utilizing Lemma 3.3, we have
p@)<p @), z€&
The proof is complete. O

Remark 3.2. Letting g —> 1, in Theorem 3.6, we obtain a known result from [13].

AIMS Mathematics Volume 8, Issue 4, 9385-9399.
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Corollary 3.3. Let f € A. If f € C(«,,,), then F_ € C(a,,3,), where F_ is Bernardi integral operator
defined in [1].

Also, forg — 1, @, = 0 and B, = 0, we obtain the well known result proved by [1]. It is well
known [9] that for 0 < @, <1 <f,,0 < g < 1and ¢ € N, the function (3.19) belong to the class C,.
Utilizing this, we can prove

f € ClanB). ¢,€C, = (f+9,)€C,(,.8).
f e S.B). ¢,€C = (f*0,) S (a,.5,).

Remark 3.3. As an example consider the function f € C,(a,,,) defined by (3.6) and ¢, € C, given
by (3.19), implies (f + ¢,) € C, (e,. 3,).

4. Conclusions

In this article, we mainly focused on g-calculus and utilized this is to study new generalized
sub-classes C, (@,,/,) and S (,,B,) of g-convex and g-star-like functions. We discussed and study
some fundamental properties, for example, inclusion relation, g-coeflicient limits on real part, integral
preserving properties. We have utilized traditional strategies alongside convolution and differential
subordination to demonstrate main results. This work can be extended in post quantum calculus. The
path is open for researchers to investigate more on this discipline and associated regions.
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