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Abstract: In this article, we evaluated the approximate solutions of one-dimensional variable-
order space-fractional diffusion equations (sFDEs) by using a collocation method. This method
depends on operational matrices for fractional derivatives and the integration of generalized Fibonacci
polynomials. In this method, a Caputo fractional derivative of variable order is applied. Some
properties of these polynomials (using boundary conditions) are presented to simplify and transform
sFDEs into a system of equations with the expansion coefficients of the solution. Also, we discuss
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obtained results with those obtained via the other methods.
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1. Introduction

As is known, the fractional order is a special case of ordinary and partial derivatives. Fractional
diffusion equations (FDEs) (with linear and nonlinear forms) have attracted many scientists. They
describe life phenomena by using the fractional order of differentiation and integration. There exist
applications in different fields such as mathematics, chemistry, physics, biology, fluids, engineering
and mechanics; all of them are described by ordinary and partial fractional differential equations.
Fractional calculus investigates the rules and properties of the non-integer orders for the derivatives and
integrals. Many researchers use numerical methods such as Adomain decomposition method (see [1–
3]), variational iteration method (see [4–6]), the Haar wavelet method (see [7, 8]), finite difference
method (see [9,10]), finite element method (see [11,12]), the homotopy analysis method (see [13,14])
and the homotopy perturbation method (see [15, 16]).

Recently, spectral methods have been used to evaluate the approximate solutions of fractional
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differential equations. These methods are distinguishable from the previous methods with a small
error and small number of unknowns. The Chebyshev method is used for solving a class of linear
and nonlinear Lane-Emden type equations (see [17]), but the second-order two-point boundary value
problems are solved by using the Chebyshev wavelets method (see [18]). The methods Jacobi and
shifted Jacobi are applied to solve second-and fourth-order fractional diffusion wave equations and
fractional wave equations with damping, as well as linear multi-order fractional differential equations
(see [19, 20]). The system of high-order linear differential equations and multi-term fractional
differential equations were solved by using Lucas and generalized Lucas methods (see [21–23]).
Fibonacci and generalized Fibonacci methods are used to solve multi-term fractional differential
equations (see [24, 25]).

The most common spectral methods are Galerkin, collocation and tau methods. Lane-Emden
singular-type equations use a Galerkin operational matrix (see [26]); however, the third-and fifth-
order differential equations use Petrov-Galerkin methods (see [27]). Tau methods are applied to solve
multi-order fractional differential equations and variable coefficients fractional differential equations
(see [28, 29]). The fractional differential equations with constant and variable orders mandate the use
of a collocation method (see [30, 31]).

In this article, we solve FDEs with a variable-order and apply the generalized Fibonacci collocation
(GFC) method. We obtain a system of nonlinear algebraic equations with unknown expansion
coefficients; this system is studied by using Newton’s method with the help of Mathematica. The
obtained results are compared with the forward- substitution (FS) method and the fast divide and
conquer (FDAC) method (see [32]). We show that our results are more efficient and yield higher
accuracy.

The outline of this paper is as follows. In Section 2, the necessary definitions, properties of
fractional calculus and generalized Fibonacci polynomials, which are used in the following sections,
are introduced. In Section 3 the algorithm of this method is explored in details for a variable-order
space-fractional diffusion equation (sFDE) with homogeneous boundary conditions. In Section 4 we
investigate the convergence and error analysis of the proposed generalized Fibonacci expansion. We
give examples, their numerical solutions and comparisons in Section 5 to prove the efficiency of the
method. In the last section we present our conclusions.

2. Basic properties

In this section, we introduce the definition of a fractional derivative with variable order (see [33–
35]). Then the important relations and the derivatives of the generalized Fibonacci polynomials, which
are used in the following sections, are stated.

2.1. Important definition for fractional calculus

Definition 1. The Caputo fractional derivative with variable order γ(z) is [32, 36]

C
0 Dγ(z)

z g(z) =
1

Γ(` − γ(z))

z∫
0

(z − t)`−1−γ(z) g(`)(t) dt, (2.1)

where ` − 1 < γmin ≤ γ(z) ≤ γmax < `, ` ∈ N.
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2.2. Overview and relations of generalized Fibonacci polynomials

If α and β are non zero real numbers, the recurrence relation for the generalized Fibonacci
polynomials is [37]

Υ
α,β
j (z) = αz Υ

α,β
j−1 (z) + β Υ

α,β
j−2 (z) , j ≥ 2, (2.2)

with the following initial values:

Υ
α,β
0 (z) = 1, Υ

α,β
1 (z) = αz.

Its Binet form is

Υ
α,β
j (z) =

(
αz +

√
α2z2 + 4β

) j
−

(
αz −

√
α2z2 + 4β

) j

2 j
√
α2z2 + 4β

, j ≥ 0 (2.3)

when there are no zeros in the denominator. The power form is:

Υ
α,β
j (z) =

j∑
i=0

αi β
j−i
2 ζ j+i

( j+i
2

j−i
2

)
zi, (2.4)

where

ζ j =

{
1 j even
0 j odd

.

2.3. Integer derivatives of Fibonacci polynomial

If
Φ(z) =

[
Υ
α,β
0 (z) ,Υα,β

1 (z) , ...,Υα,β
N (z)

]T
,

the first derivative of Φ(z) can be written as (see, [37])

d(Φ)(z)
dz

= χ(1) (Φ)(z),

where χ(1) =
(
κ(1)

nm

)
is the (M + 1) × (M + 1) matrix of derivatives.

κ(1)
nm =

{
(−1)

n−m−1
2 (m + 1) α β

n−m−1
2 , n > m, (n + m)odd

0 otherwise

Also, the integer derivatives of (Φ)(z) can be easily written in the form (see [37])

dι(Φ)(z)
dzι

= χ(ι) (Φ)(z) = (χ(1))ι(Φ)(z).

2.4. Fractional derivatives of Fibonacci polynomial

If λ is not an integer, then the fractional derivative of (Φ)(z) takes the form (see [37])

Dλ(Φ)(z) = z−λχ(λ) (Φ)(z),
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where χ(λ) =
(
κλnm

)
is the (M + 1) × (M + 1) Fibonacci operational matrix of fractional derivatives of

order λ, which has the form

χ(λ) =



0 0 0 · · · 0
...

...
...

...

θλ (dλe , 0) θλ (dλe , 1) 0 · · · 0
...

...
...

...

θλ (i, 0) · · · θλ (i, i) · · · 0
...

...
...

...

θλ (M, 0) θλ (M, 1) θλ (M, 2) · · · θλ (M,M)


.

κλnm can be written in the form

κλnm =

{
θλ (n,m) , n ≥ dλe , n ≥ m
0 otherwise

,

where

θλ (n,m) = m ξm

n∑
l=dλe

(−1)
1+l−m

2 (β)
n−m

2 l!
(

n+l−1
2

)
!(

n−l−1
2

)
!
(

1+l−m
2

)
!
(

1+m+l
2

)
!Γ (1 + l − λ)

,

ξk =

{ 1
2 , k = 0,
1, otherwise

.

So the fractional derivative has the relation

Dλ(Φ)n(z) = z−λ
n∑

m=0

θλ (n,m) (Φ)m(z).

3. A variable-order sFDE and the algorithm for the method

In this section, we explain the method for solving a variable-order sFDE with homogeneous
boundary conditions by using generalized Fibonacci polynomials.

Suppose that the function W(z) expanded in terms of generalized Fibonacci polynomials:

W(z) =

∞∑
j=0

c j Υ
α,β
j (z) .

If we approximate this function as:

W(z) ≈ WN(z) =

N∑
j=0

c j Υ
α,β
j (z) = CT Φ(z), (3.1)

where
CT = [c0, c1, ..., cN] , (3.2)

Φ(z) =
[
Υ
α,β
0 (z) ,Υα,β

1 (z) , ...,Υα,β
N (z)

]T
. (3.3)
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The variable-order sFDE is given by [32]

−W ′′(z) − f (z) C
0 Dγ(z)

z W(z) = g(z), (3.4)

with the boundary conditions
W(0) = W(1) = 0, (3.5)

and where f (z) and g(z) are continuous functions. Substituting Eq (2.1) with ` = 2 into Eq (3.4), we
have

−W ′′(z) −
f (z)

Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z) W ′′(t) dt = g(z).

Suppose that υ(z) = W ′′(z); then,

− υ(z) −
f (z)

Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z) υ(t) dt = g(z). (3.6)

Substituting the expansion of Eq (3.1) into Eq (3.6), we have

−

 N∑
j=0

c j Υ
α,β
j (z)

 − f (z)
Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z)

 N∑
j=0

c j Υ
α,β
j (t)

 dt

= g(z). (3.7)

Let

h j(z) = −Υ
α,β
j (z) −

f (z)
Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z) Υ
α,β
j (t) dt.

So Eq (3.7) can be written as:
N∑

j=0

c j h j(z) = g(z).

Collocating this equation at the generalized Fibonacci roots, we obtain the following system of
equations

N∑
j=0

c j h j(zi) = g(zi). (3.8)

The matrix form for this equation is:
HTC = G.

So
C =

(
HT

)−1
G,

where H =
(
h j(zi)

)
, i, j = 0, 1, ....,N and G = (g(zi)) =

[
g(z0), g(z1), ..., g(zN)

]T . With the boundary
conditions given by Eq (3.5), we have

CT Φ(0) = CT Φ(1) = 0. (3.9)

Equations (3.8) and (3.9) give a linear system of equations with the coefficients c j, j = 0, 1, ...N. These
coefficients must be determined. Lastly, we integrate υ(z) two times to evaluate W(z).
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4. Investigation of convergence and error analysis

In this section, we explain the convergence and error analysis of generalized Fibonacci expansion.
Theorem 1. If W(z) is defined on [0, ι] and

∣∣∣W (i)(s)
∣∣∣ ≤ Li, i ≥ 0 where L is a positive constant, s is any

point in [0, ι], and if W(z) has the expansion:

W(z) =

∞∑
j=0

c j Υ
α,β
j (z) ,

then one has:

1)
∣∣∣c j

∣∣∣ < σ
(

L
|α|

) j+1

j!
,

2) the series converges absolutely,

where

σ =
6 Ω

L s2

∣∣∣∣∣βα
∣∣∣∣∣ cosh

2L
√
|β|

|α|

 ,
and

Ω = Li6

(
α2s2

3 |β|

)
,

where Li6(z) is the polylogarithmic function.

Proof. See [37] �

Theorem 2. Let W(z) satisfy the assumptions stated in Theorem 1, where εN(z) =
∞∑

i=N+1
c j Υ

α,β
j (z) ;

then we have the following truncation error estimate:

EN = max
0≤z≤`

εN(z) < Ē
ςN

(N − 1)!
,

where Ē = σL eς
|α|

, ς =
L p
|α|

and p =
√
α2`2 + 2 |β|.

Proof. See [37] �

Lemma 1. The derivatives of Υ
(γ(z))
j and Υ′′j are denoted by the following estimates:

i)
∣∣∣∣Υ(γ(z))

j

∣∣∣∣ ≤ j2;

ii)
∣∣∣Υ′′j ∣∣∣ ≤ j2.

Proof. From Lemma 5 [37] ∣∣∣∣Υα,β
j (z)

∣∣∣∣ ≤ p j.

By applying the differential operators to the right-hand side of Eq (2.4) two times, we have∣∣∣∣(Υα,β
j (z))′′

∣∣∣∣ =

∣∣∣∣∣∣∣
j∑

i=2

i (i − 1)αi β
j−i
2 ζ j+i

( j+i
2

j−i
2

)
zi−2

∣∣∣∣∣∣∣ ≤ j2 p j.
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We obtain i(i−1) and the end is j2 p j . Finally by induction on j, noting that z < 1 and `−1 ≤ γ(z) ≤ `,
So, we get the desired results. �

Theorem 3. If υ(z) = W ′′(z) =
∞∑
j=0

c j

(
Υ
α,β
j (z)

)′′
is the exact solution of Eq (3.6) and υ(z) is

approximated by υN(z) =
N∑

j=0
c j

(
Υ
α,β
j (z)

)′′
, let

RN(z) =

∣∣∣∣∣∣∣∣−υ(z) −
f (z)

Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z) υ(t) dt − g(z)

∣∣∣∣∣∣∣∣ ,
<N = max

0≤z≤`
RN(z),

where f (z) and g(z) are continuous functions such that | f (z)| ≤ λ, where λ is a positive constant. Then
we have the following global error estimate:

<N ≤
1
2

Aσς1+N

{
1 +

λ`2−`

Γ(3 − `)

}
.

{
(1 + N + ς)
Γ(1 + N)

+
(1 + ς) ς
Γ(2 + N)

eς
}
,

where A = 2L
|α|
.

Proof. From Eq (3.6)

g(z) = −υ(z) −
f (z)

Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z) υ(t) dt.

So

RN(z) =

∣∣∣∣∣∣∣∣(υ(z) − υN(z)) +
f (z)

Γ(2 − γ(z))

z∫
0

(z − t)1−γ(z) (υ(z) − υN(z)) dt

∣∣∣∣∣∣∣∣ .
By integrating and taking ` − 1 ≤ γ(z) ≤ ` , so we have

RN(z) ≤ |υ(z) − υN(z)|
{

1 +
λ

Γ(2 − `)
z2−`

2 − `

}
From Theorems 1 and 2

RN(z) ≤
∞∑

j=N+1

σ
(

L
|α|

) j+1

j!


{

1 +
λ

Γ(2 − `)
z2−`

2 − `

} ∣∣∣∣(Υα,β
j (z)

)′′∣∣∣∣ .
By Lemma 1, we have

RN(z) ≤
1
2

Aσ
{

1 +
λ

Γ(2 − `)
z2−`

2 − `

} ∞∑
j=N+1

ς j

j!
j2.

Using some calculations, we obtain

RN(z) ≤
1
2

Aσς
Γ(1 + N)

{
1 +

λz2−`

Γ(3 − `)

}
×

AIMS Mathematics Volume 7, Issue 8, 14323–14337.
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ςN (1 + N + ς) + (1 + ς) eς (Γ(1 + N) − Γ(1 + N, ς))

}
,

where Γ( ) and Γ( , ) are gamma and incomplete gamma functions respectively; therefore

<N ≤
1
2

Aσς
Γ(1 + N)

{
1 +

λ`2−`

Γ(3 − `)

}
.

{
ςN (1 + N + ς) + eς

(1 + ς) ςN+1

N + 1

}
.

So the proof is completed �

Theorem 4. If W(z) =
∞∑
j=0

c j Υ
α,β
j (z) is the exact solution of Eq (3.4) and it satisfies the hypotheses of

Theorem 1 and if W(z) is approximated by WN(z) =
N∑

j=0
c j Υ

α,β
j (z) , let

RN(z) =
∣∣∣W ′′

N (z) + f (z) C
0 Dγ(z)

z WN(z) + g(z)
∣∣∣ ,

<N = max
0≤z≤`

RN(z).

Then we have the following global error estimate:

<N ≤
1
2

(1 + λ)AσςN+1
{

(1 + N + ς)
Γ(1 + N)

+ eς
(1 + ς) ς
Γ(2 + N)

}
.

Proof. From Eq (3.4)
g(z) = −W ′′(z) − f (z) C

0 Dγ(z)
z W(z).

So
RN(z) =

∣∣∣(W ′′
N −W ′′) + f (z) C

0 Dγ(z)
z (W(z) −WN(z))

∣∣∣
≤

∣∣∣W ′′
N −W ′′

∣∣∣ +
∣∣∣ f (z) C

0 Dγ(z)
z (W(z) −WN(z))

∣∣∣ .
From Theorems 1 and 2

RN(z) ≤
∞∑

j=N+1

σ
(

L
|α|

) j+1

j!

 (∣∣∣(Φ(z))′′
∣∣∣ + | f (z)|

∣∣∣(Φ(z))(γ(z))
∣∣∣) .

By Lemma 1, we have

RN(z) ≤
∞∑

j=N+1

σ
(

L
|α|

) j+1

j!
j2 p j (1 + λ) .

Therefore

RN(z) ≤
(1 + λ)

2Γ(1 + N)
Aσς

{
ςN (1 + N + ς) + (1 + ς) eς (Γ(1 + N) − Γ(1 + N, ς))

}
.

In the same way as with the previous theorem, we obtain

<N ≤
1
2

(1 + λ)
Γ(1 + N)

AσςN+1
{

(1 + N + ς) + eς
(1 + ς) ς

N + 1

}
.

So the proof is completed �

AIMS Mathematics Volume 7, Issue 8, 14323–14337.



14331

5. Numerical examples

In this section, we solve some examples by applying Eqs (3.4) and (3.5) using the generalized
Fibonacci polynomials.
Example 1. Suppose we have Eq (3.4) with f (z) = 1 and

γ(z) = (γ0 − γ1)
(
1 − z −

sin (2π (1 − z))
2π

)
+ γ1,

with γ0 = 1.2 and γ1 = 1.6. The exact solution is W(z) = z4 (1 − z) .
In Tables 1 and 2, we observe that the absolute error obtained via the GFC method is better than

that obtained via the FS method and FDAC method [32]. Figure 1 illustrates the results of the present
method at N = 5, 8 and 10. The figure shows that the convergence is exponential.

Table 1. Maximum absolute error E with GFC method.

α β N E N E N E
1 1 5 2.7 × 10−15 8 3.3 × 10−15 10 4.8 × 10−15

2 1 1.3 × 10−15 5.4 × 10−16 9.2 × 10−16

3 −2 2.8 × 10−16 4.8 × 10−16 4.4 × 10−16

2 −1 2.2 × 10−16 2.5 × 10−16 2.1 × 10−16

Table 2. Maximum absolute error E with FS and FDAC methods.

N FS [32] FDAC [32]
28 4.4 × 10−6 4.3 × 10−6

29 1.2 × 10−6 1.1 × 10−6

210 2.7 × 10−7 2.7 × 10−7

211 6.8 × 10−8 6.6 × 10−8

212 1.7 × 10−8 1.7 × 10−8

213 4.2 × 10−9 4.4 × 10−9

Error

z

0.0 0.2 0.4 0.6 0.8 1.0

2 × 10-17

5 × 10-17

1 × 10-16

2 × 10-16

5 × 10-16

N=5

N=8

N=10

Figure 1. Graph of the absolute error obtained for N=5, 8 and 10 and different values of α
and β.
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Example 2. Suppose we have Eq (3.4) with f (z) = 1 and

γ(z) = (γ1 − γ0) z + γ0.

Tables 3–5 compare the methods at different values of γ0 and γ1. We notice that the error calculated
using this method is the best because it is the smallest. Also, we prove the accuracy and efficiency
of the method. The absolute error at these values is plotted in Figures 2 and 3. We observe from the
Figures that the convergence is exponential and the errors are better for different values of α and β.

With γ0 = 1.2, γ1 = 1.6

Table 3. Maximum absolute error E with GFC method.

α β N E N E N E
1 1 5 4.4 × 10−15 8 4.4 × 10−15 10 6.4 × 10−15

2 1 8.9 × 10−16 1 × 10−15 1.1 × 10−15

3 −2 2.8 × 10−16 3.4 × 10−16 3.7 × 10−16

2 −1 1.9 × 10−16 2 × 10−16 4 × 10−16

Table 4. Maximum absolute error E with FS and FDAC methods.

N FS [32] FDAC [32]
28 4.4 × 10−6 4.3 × 10−6

29 1.2 × 10−6 1.1 × 10−6

210 2.7 × 10−7 2.7 × 10−7

211 6.8 × 10−8 6.6 × 10−8

212 1.7 × 10−8 1.7 × 10−8

213 4.2 × 10−9 4.4 × 10−9

With γ0 = 1, γ1 = 1.5

Table 5. Maximum absolute error E with GFC method.

α β N E N E N E
1 1 5 4.4 × 10−15 8 5.5 × 10−15 10 4 × 10−15

2 1 6.7 × 10−16 7.4 × 10−16 1.7 × 10−15

3 −2 3.1 × 10−16 2.3 × 10−16 4.5 × 10−16

2 −1 1.7 × 10−16 5 × 10−16 2.5 × 10−16
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Error

z

0.0 0.2 0.4 0.6 0.8 1.0

1 × 10-17

2 × 10-17

5 × 10-17

1 × 10-16

2 × 10-16

5 × 10-16

N=5

N=8

N=10

Figure 2. Graph of the absolute error obtained for N=5, 8 and 10 and different values of α
and β.

z

Error

0.0 0.2 0.4 0.6 0.8 1.0

1 × 10-17

2 × 10-17

5 × 10-17

1 × 10-16

2 × 10-16

5 × 10-16

N=5

N=8

N=10

Figure 3. Graph of the absolute error obtained for N=5, 8 and 10 and different values of α
and β

.

Example 3. Suppose we have Eq (3.4) with f (z) = z and γ(z) = 1+z
3 .

The exact solution is W(z) = z (1 − z) . The results of the present method are shown for N = 5, 8
and 10 in Table 6 and Figure 4. It is clear from the figure that the absolute errors decrease drastically
as a result of increasing the number of steps and the values of α and β. Table 5 lists the numerical
results obtained via the proposed method for N= 8, 12 and 16 and different values of a and b. The
absolute errors of this method are plotted in Figure 2. We observe from the figure that the convergence
is exponential.

Table 6. Maximum absolute error E with GFC method.

α β N E N E N E
1 1 5 2.2 × 10−16 8 6.3 × 10−16 10 4.3 × 10−16

2 1 2.2 × 10−16 6.6 × 10−16 5.3 × 10−16

3 −2 2.8 × 10−16 5.2 × 10−16 3.2 × 10−16

AIMS Mathematics Volume 7, Issue 8, 14323–14337.
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z

Error

0.0 0.2 0.4 0.6 0.8 1.0

10-19

10-18

10-17

10-16

N=5

N=8

N=10

Figure 4. Graph of the absolute error obtained for N=5, 8 and 10 and different values of α
and β.

6. Conclusions

This paper details an attempt to solve the variable-order sFDE by using a collocation method
based on the operational matrix of fractional derivatives of the generalized Fibonacci polynomials.
We modified the variable-order sFDE for compatibility with a system of linear algebraic equations
which were solved by using Mathematica software. Then we evaluated the errors. The spectral results
which were used throughout, indicate strong adequacy, viability and ease of application. Finally, we
discussed the convergence and error analysis of our method.
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