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1. Introduction

Zadeh [50] presented the concept of a fuzzy set and fuzzy logic. Unlike classical logic, which states
whether an element belongs to a set or not, fuzzy logic expresses the bonding of an element to a set
as a positive real value in unit interval [0,1]. With the introduction of fuzzy logic, fuzzy mathematics
began to evolve. If the distance between points is not exact real number, then the factor of inaccuracy
is incorporated in the metric, a distance measuring function. Kramosil and Michalek [24] generalized
probabilistic metric space by introducing the concept of fuzzy metric space. Kramosil’s notion of
fuzzy metric was improved by George and Veeramani [11, 12], who defined Hausdorff topology on
fuzzy metric space, which could not be defined on the Kramosil’s fuzzy metric space.
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One of the several spaces in which the theory of fixed point has been investigated is fuzzy metric
space. The Banach’s contraction principle is one of the most useful and important theorems in classical
functional analysis. Its utility is not only to prove that, a contraction in a complete metric space has
unique fixed point, but also to show that the Picard iteration converges to the fixed point. This powerful
result in fuzzy metric space was first generalized by M. Grabiec [17].

Theorem 1.1. ( [17] fuzzy Banach contraction theorem) Let (S ,M, ∗) be a complete fuzzy metric space
and f : S → S be a mapping such that

M(fr, fz, ξ) ≥ M
(
r, z,

ξ

δ

)
∀r, z ∈ S , ξ > 0, (1.1)

where δ ∈ (0, 1). Then f has unique fixed point.

Subsequently, many researchers investigated fixed point theory in fuzzy metric space, for
example, [8, 9, 13, 15, 17, 18, 28, 36–40, 48, 49].

There are several metric space extensions, in addition to fuzzy metric space. With the goal of
generalizing the Banach contraction principle [4], Bakhtin [3] presented b-metric space where the
condition of triangular inequality is weakened. We recommend [1,7,25,29,32,45–47] for more detail.
Hassanzadeh [22] considered relationship between b-metric and fuzzy metric space. Nǎdǎban [33]
introduced fuzzy b-metric space to generalise b-metric space. Mehmood et al. [27] presented the
notion of extended fuzzy b-metric to generalize fuzzy b-metric. Rome et al. [43] generalized extended
fuzzy b-metric by introducing µ-extended fuzzy b-metric space.

Many researchers have made attempts to relax the essential condition of continuity contraction in
Banach contraction principle see for example [23, 42].

One of the most well-known results in generalizations of Banach’s contraction principle where the
Picard iteration still converges to the fixed point of map is the Ćirić’s fixed point theorem [6]. A self
mapping f on a metric space (S , d) is said to be quasi-contraction iff there exists δ ∈ (0, 1) such that for
all r, z ∈ S

d(fr, fz) ≤ δmax {d(r, z), d(r, fr), d(z, fz), d(r, fz), d(fz, r)} .

According to Ćirić’s fixed point theorem, every quasi-contraction on T -orbitally complete metric space
has unique fixed point. D. Rakić et al. [35] generalized Ćirić’s fixed point theorem in the setting of
fuzzy b-metric space.

The aim of this paper is to generalize Banach and Ćirić’s fixed point results in the context of
extended fuzzy b-metric space (EFbMS for short). We prove a very useful lemma, which can be used
in extended fuzzy b-metric to verify Cauchyness of a sequence. Finally, we investigate the applicability
of the obtained results to integral equations. A nontrivial example is provided to confirm authenticity
of our results.

2. Preliminaries

In this section some terms and definitions are provided which will be used in the main work of this
manuscript. Throughout this paper the symbol N will stand for positive integers and the real numbers
will be represented by R, whereas S will signify an arbitrary non-empty set.
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Definition 2.1. [26] A binary operation ∗ : [0, 1]2 → [0, 1] is called continuous t-norm, if the
following conditions hold:
(01) ∗ is commutative and associative,
(02) ∗ is continuous,
(03) ∗(w, 1) = w, ∀w ∈ [0, 1],
(04) ∗(w1,w2) ≤ ∗(w3,w4) whenever w1 ≤ w3 and w2 ≤ w4,∀w1,w2,w3,w4 ∈ [0, 1].

Some frequently used example of continuous t-norm are w1 ∗Lw2 = max{w1 +w2−1, 0}, w1 ∗Pw2 =

w1w2, and w1 ∗M w2 = min{w1,w2}. These are respectively called Lukasievicz t-norm, product t-norm
and minimum t-norm.

Definition 2.2. [19] Let ∗ be a t-norm and define ∗n : [0, 1] × [0, 1]→ [0, 1], as:

∗1(r) = ∗(r, r), ∗n+1(r) = ∗(∗n(r), r), ∀n ∈ N, r ∈ [0, 1].

Then the t-norm ∗ is said to be Hadžić-type (H-type for short) if the family {∗n(r)}n∈N is
equicontinuous at r = 1, that is, for every β ∈ (0, 1), there exists γ ∈ (0, 1) such that r ∈ (1 − γ, 1]
implies that ∗nx > 1− β, for all n ∈ N. ∗min is a trivial example of t-norm of H-type. From associativity
of t-norm it follows that each t-norm ∗ can be extended in a unique manner to an n-array operation that
takes for (r1, ..., rn) ∈ [0, 1]n the values

∗1
i=1ri = r1, ∗

n
i=1ri = ∗(∗n−1

i=1 (ri, rn)) = ∗(r1, r2, ..., rn).

Example 2.1. The n-array extensions of t-norms ∗M, ∗L, and ∗P, are as follows:
∗M(r1, ..., rn) = min(r1, ..., rn),
∗L(r1, ..., rn) = max(

∑n
i=1 ri − (n − 1), 0),

∗P(r1, ..., rn) = Πni=1ri.

Klement et al. [26] extended t-norm ∗ to a countable infinite operation for any (rn)n∈N in [0, 1],
where

∗∞i=1ri = lim
n→∞
∗ni=1ri.

The sequence (∗ni=1ri)n∈N being bounded from below and non increasing, is convergent. In the theory
of fixed point [20, 21], interesting families of t-norms ∗ and sequences (rn) from [0, 1] are those which
possess the properties lim

n→∞
rn = 1 and

lim
n→∞
∗∞i=nri = lim

n→∞
∗∞i=1rn+i = 1.

The following lemma generates a large number of t-norms of H-type.

Lemma 2.1. [41] Let ∗ be a t-norm and ε ∈ (0, 1]. If

r ∗ε y =

r ∗ y ; if max(r, y) ≤ 1 − ε,
min(r, y) ; if max(r, y) > 1 − ε.

Then ∗ε is a t-norm of H-type.
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Proposition 2.1. [35] Let (rn)n∈N in [0, 1] be such that lim
n→∞
rn = 1 and let ∗ of H-type. Then

lim
n→∞
∗∞i=nri = lim

n→∞
∗∞i=1 rn+i = 1

.

Definition 2.3. [11] (S ,M, ∗) is called a fuzzy metric space, where ∗ is a continuous t-norm, and M is
a fuzzy set on S 2 × (0,∞) if for all r, z, ω ∈ S and ξ, ζ > 0 :
(FM1) M(r, z, ξ) > 0,
(FM2) M(r, z, ξ) = 1⇔ r = z,
(FM3) M(r, z, ξ) = M(z, r, ξ),
(FM4) ∗(M(r, z, ξ),M(z, ω, ζ)) ≤ M(r, ω, ξ + ζ),
(FM5) M(r, z, ·) : (0,∞)→ [0, 1] is continuous.

Definition 2.4. [33] For a continuous t-norm ∗ and and a fuzzy set M on S 2 × (0,∞), (S ,M, ∗) is
called a fuzzy b-metric, if for all r, z, ω ∈ S , ξ, ζ > 0 and a given real numbers b ≥ 1 :
(FbM1) M(r, z, ξ) > 0,
(FbM2) M(r, z, ξ) = 1⇔ r = z,
(FbM3) M(r, z, ξ) = M(z, r, ξ),
(FbM4) ∗(M(r, z, ξb ),M(z, ω, ζb )) ≤ M(r, ω, ξ + ζ),
(FbM5) M(r, z, ·) : (0,∞)→ [0, 1] is continuous.
When b = 1, fuzzy b-metric reduces to fuzzy metric. The following example demonstrates that the family
of fuzzy b-metric is is effectively broader than that of fuzzy metric.

Example 2.2. [8] Let M(r, z, ξ) = e
−|r−z|q

ξ , where q > 1 is a real number. Obviously M is a fuzzy b-metric
with b = 2q−1.

Notice that for q = 2 in the above example, it can be verified that (S ,M, ∗) is not a fuzzy metric
space.

Example 2.3. [8] Let(d, S ) be b-metric space and M(r, z, ξ) =
ξ

ξ+d(r,z) . Then it can be verified that
(S ,M, ∗m)is fuzzy b-metric space.

Definition 2.5. [8] A function f : R → R is said to be b-nondecreasing if f(r) ≥ f(z) whenever r > bz
for all r, z ∈ R.

Lemma 2.2. [8] Let M(r, z, ·) be a fuzzy b-metric. Then M(r, z, ξ) is b-nondecreasing w.r.t. ξ and for
all r, z ∈ S .

Remark 2.1. A fuzzy b-metric space is not continuous in general.

Definition 2.6. [27] The 4-tuple (S ,M, ∗,Ω) is called EFbMS with function Ω : S × S → [1,∞),
where ∗ is continuous t-norm and M : S × S → [0,∞) is fuzzy set such that for all r, z, ω ∈ S , the
following conditions are satisfied:

(EΩ1) MΩ(r, z, 0) = 0;
(EΩ2) MΩ(r, z, ξ) = 1,∀ξ > 0⇔ r = z;
(EΩ3) MΩ(r, z, ξ) = MΩ(z, r, ξ);
(EΩ4) MΩ(r, ω,Ω(r, ω)(ξ + ζ) ≥ MΩ(r, z, ξ) ∗MΩ(z, ω, ζ), for all ζ, ξ > 0;
(EΩ5) MΩ(r, z, .) : (0,∞)→ [0, 1] is continuous and lim

t→∞
MΩ(r, z, ξ) = 1.

AIMS Mathematics Volume 7, Issue 8, 14029–14050.
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Example 2.4. [27] Let S = {1, 2, 3} and define db : S × S → R by d(r, z) = |r − z|2. Then it is simple
to demonstrate that (S , db) is a b-metric space. Define the mapping

Ω : S × S → [1,∞), Ω(r, z) = 1 + r + z.

Let MΩ : S × S × [0,∞)→ [0, 1] be given by the rule:

MΩ(r, z, ξ) =

 ξ

ξ+db(r,z)
, if ξ > 0,

0, if ξ = 0,

and take the continuous t-norm ∗M, that is, ξ1 ∗ ξ2 = ξ1 ∗M ξ2 = min{ξ1, ξ2}.
Then (S ,MΩ, ∗,Ω) is an EFbMS.

Remark 2.2. It is worth mentioning that fuzzy b-metric is special type of extended fuzzy b-metric when
Ω(r, z) = b ≥ 1.

Definition 2.7. [5, 11, 27] Let (S ,MΩ, ∗,Ω) be an EFbMS. A sequence {rn} :
(a) converges to r if n→ ∞ then MΩ(rn, r, ξ)→ 1 for each ξ > 0. In this case, we write lim

n→∞
rn = r.

(b) is called M-Cauchy if for each ε ∈ (0, 1) and ξ > 0 there exists n0 ∈ N such that MΩ(rm, rn, ξ) > 1−ε,
for all m, n ≥ n0. limn→∞MΩ(rn+m, rn, ξ) = 1, for all ξ > 0 and each m, n ∈ N.
(c) is called G-Cauchy if limn→∞MΩ(rn+m, rn, ξ) = 1, for all ξ > 0 and each m, n ∈ N.

Definition 2.8. [27] An EFbMS, is said to be M-complete(G-complete), provided every M-Cauchy
(G-Cauchy) sequence converges in it.

For more details on fuzzy topology, we refer the reader to [5].

3. Main results

Stimulated and inspired by the concept presented in [35, 43], we present several new fixed point
results in EFbMS. From now onward, Ω : S × S → [1,∞) will represent a bounded function. First
we prove the following lemmas, which will be used in our main work.

Lemma 3.1. Let (S ,MΩ, ∗,Ω) be an EFbMS by Ω : S × S → [1,∞) and {rn} is a sequence in it.
Assume that for δ ∈ (0, 1

κ
) and n ∈ N

MΩ(rn, rn+1, ξ) ≥ MΩ

(
rn−1, rn,

ξ

δ

)
, ξ > 0, (3.1)

with κ = lim sup
m,n→∞

Ω(rn, rm) and

lim
n→∞
∗∞i=nMΩ

(
r0, r1,

ξ

vi

)
= 1, t > 0. (3.2)

where r0, r1 ∈ S and v ∈ (0, 1). Then {rn} is Cauchy sequence.
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Proof. Clearly
∑∞

i=1 %
i converges for % ∈ (δκ, 1) ⊂ (0, 1) and therefore there exists n0 ∈ N such that∑∞

i=n %
i < 1 for every n > n0. Due to MΩ being b-nondecreasing and by property (EΩ4), for all ξ > 0

and n > m > n0, we get the following

MΩ(rn, rn+m, ξ)

≥ MΩ

(
rn, rn+m,

ξ
∑n+m+1

i=n %i

κ

)
≥ ∗

(
MΩ

(
rn, rn+1,

ξ%n

κΩ(rn + rn+m)

)
,MΩ

(
rn+1, rn+m,

ξ
∑n+m−1

i=n+1 %i

κΩ(rn, rn+m)

))
≥ ∗

(
MΩ

(
rn, rn+1,

ξ%n

κΩ(rn + rn+m)

)
, ∗

(
MΩ

(
rn+1, rn+2,

ξ%n+1

κΩ(rn, rn+m)Ω(rn+1, rn+m)

)
,

∗

(
MΩ

(
rn+2, rn+3,

ξ%n+2

κΩ(rn, rn+m)Ω(rn+1, rn+m)Ω(rn+2, rn+m)

)
. . . ,

MΩ

(
rn+m−1, rn+m,

ξ%n+m−1

κΩ(rn, rn+m)Ω(rn+1, rn+m)Ω(rn+2, rn+m)Ω(rn+3, rn+m)

)
. . .

))
.

By (3.1), it turns out that

MΩ(rn,n+1 , ξ) ≥ MΩ

(
r0, r1,

ξ

δn

)
,∀n ∈ N, ξ > 0,

and since κ ≥ 1 and n > m , we have

MΩ(rn, rn+m, ξ)

≥ ∗

(
MΩ

(
ro, r1,

ξ%n

κΩ(rn + rn+m)δn

)
, ∗

(
MΩ

(
r0, r1

ξ%n+1

κΩ(rn, rn+m)Ω(rn+1, rn+m)δn+1

)
,

∗

(
MΩ

(
r0, r1

ξ%n+2

κΩ(rn, rn+m)Ω(rn+1, rn+m)Ω(rn+2, rn+m)δn+2

)
. . .

))
MΩ

(
r0, r1,

ξ%n+m−1

κΩ(rn, rn+m)Ω(rn+1, rn+m)Ω(rn+2, rn+m)Ω(rn+3, rn+m)δn+m−1 . . .

) )
= ∗∞i=nMΩ

r0, r1, ξ%i

κ
∏i

j=nΩ(r j, rn+m)δi


≥ ∗∞i=nMΩ

(
r0, r1,

ξ%i

κ(i+2−n)δi

)
≥ ∗∞i=nMΩ

(
r0, r1,

ξ%i

κiδi

)
≥ ∗∞i=nMΩ

(
r0, r1,

ξ

vi

)
where v = κδ

%
. Since v ∈ (0, 1), by (3.2) it follows that {rn} is Cauchy sequence. �

Corollary 3.1. Let {rn} is a sequence in EFbMS (S ,MΩ, ∗,Ω) with Ω : S × S → [1,∞) and let ∗ is of
H-type. If there is δ ∈ (0, 1

κ
), where κ = lim sup

m,n→∞
Ω(rn, rm) and

MΩ(rn, rn+1, ξ) ≥ MΩ

(
rn−1, rn,

ξ

δ

)
,∀n ∈ N, ξ > 0, (3.3)
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then {rn} is Cauchy sequence.

Lemma 3.2. If for some δ ∈ (0, 1) and r, z ∈ S ,

MΩ(r, z, ξ) ≥ MΩ

(
r, z,

ξ

δ

)
, ξ > 0 (3.4)

then r = z.

Proof. Condition (3.4) implies that

MΩ(r, z, ξ) ≥ MΩ

(
r, z,

ξ

δn

)
,∀n ∈ N, ξ > 0.

Now

MΩ(r, z, ξ) ≥ lim
n→∞

MΩ

(
r, z,

ξ

δn

)
= 1, ξ > 0,

and (EΩ2) implies that r = z. �

Theorem 3.1. Let (S ,MΩ, ∗,Ω) be a complete EFbMS and let f : S → S . Assume that there exist
δ ∈ (0, 1

κ
), with κ = lim sup

m,n→∞
Ω(rn, rm) such that

MΩ(fr, fz, ξ) ≥ MΩ

(
r, z,

ξ

δ

)
∀r, z ∈ S , ξ > 0, (3.5)

and there are r0 ∈ S and v ∈ (0, 1) such that

lim
n→∞
∗∞i=nMΩ

(
r0, fr0,

ξ

vi

)
= 1, ξ > 0. (3.6)

Where {rn} ⊂ S , is defined by rn+1 = frn, n ∈ N ∪ {0}. Then f has unique fixed point .

Proof. Putting r = rn−1 and z = rn in (3.8), we have

MΩ(rn, rn+1, ξ) ≥ MΩ

(
rn−1, rn,

ξ

δ

)
,∀ n ∈ N, ξ > 0,

it follows that rn is a Cauchy sequence by Lemma 3.1. Since (S ,MΩ, ∗,Ω) is complete, there exist r ∈ S
such that lim

n→∞
rn = r and therefore

lim
n→∞

MΩ(r, rn, ξ) = 1, ξ > 0. (3.7)

Using (3.8) and (EΩ4), it follows that

MΩ(fr, r, ξ) ≥ ∗
(
MΩ

(
fr, rn,

ξ

2Ω(fr, r)

)
,MΩ

(
rn, r,

ξ

2Ω(fr, r)

))
≥ ∗

(
MΩ

(
r, rn−1,

ξ

2Ω(fr, r)δ

)
,MΩ

(
rn, r,

ξ

2Ω(fr, r)

))
.

If n→ ∞, by (3.7), we have
MΩ(fr, r, ξ) ≥ ∗(1, 1) = 1.
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Therefore r is fixed point of f. To show uniqueness, assume that z , r is another fixed point of f. That
is z = f(z) , f(r) = r. Then using (3.8), it follows that

MΩ(r, z, ξ) = MΩ(fr, fz, ξ) ≥ MΩ

(
r, z,

ξ

δ

)
, ξ > 0.

Which by Lemma 3.2 gives a contradiction r = z. Hence f has unique fixed point. �

Corollary 3.2. ( [17] fuzzy Banach contraction theorem) Let (S ,M, ∗) be a complete fuzzy metric space
and f : S → S be a mapping such that

M(fr, fz, ξ) ≥ M
(
r, z,

ξ

δ

)
∀r, z ∈ S , ξ > 0, (3.8)

where δ ∈ (0, 1). Then f has unique fixed point .

Proof. Proof follows directly from Theorem 3.1, by taking Ω : S × S → [1,∞) to be the constant
function Ω(r) = 1 for all r ∈ S . �

Corollary 3.3. ( [35] Theorem 2.4) Let (S ,M, ∗) be a complete fuzzy b-metric space and f : S → S
be a mapping. Assume that there exist δ ∈ (0, 1

b ), such that

M(fr, fz, ξ) ≥ M
(
r, z,

ξ

δ

)
∀r, z ∈ S , ξ > 0, (3.9)

and there are r0 ∈ S and v ∈ (0, 1) such that

lim
n→∞
∗∞i=nM

(
r0, fr0,

ξ

vi

)
= 1, ξ > 0. (3.10)

Then f has unique fixed point .

Proof. Take Ω : S × S → [1,∞), in above Theorem, to be a constant function Ω(r) = b for all r ∈ S .
Where b ≥ 1. �

The following example elaborates that Theorem 3.1 is proper generalization of fuzzy Banach
contraction theorem ( [17] Theorem 5).

Example 3.1. Let S = [0, 1] and MΩ(r, z, ξ) = e
−|r−z|

ξ , f or all r, z ∈ S . It can be verified that
(S ,MΩ, ∗,Ω) is complete EFbMS with mapping Ω : S × S → [1,∞) defined by Ω(r, z) = 1 + rz,
and continuous t-norm ∗ as usual product.

Let f : S → S be such that f(r) = 1 − 1
3r. For all ξ > 0, we have

MΩ

(
fr, fz,

1
3
ξ

)
= e

− 2
3 |r−z|
ξ > e

−|r−z|

ξ = MΩ(r, z, ξ) ∀r, z ∈ S , ξ > 0,

for 0 < δ = 1
3 < κ = 1

2 . that is conditions of Theorem 3.1 are satisfied. Therefore, f has unique fixed
point 3

4 ∈ [0, 1] = S .
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Theorem 3.2. Let f be a self mapping on a complete extended fuzzy b-metric space (S ,MΩ, ∗,Ω).
Assume that there exist δ ∈ (0, 1

κ
) with κ = lim sup

m,n→∞
Ω(rn, rm) such that

MΩ(fr, fz, ξ) ≥ min
{
MΩ

(
r, z,

ξ

δ

)
,MΩ

(
fr, r,

ξ

δ

)
,MΩ

(
fz, z,

ξ

δ

)}
, (3.11)

for all r, z ∈ S , ξ > 0, and there exist r0 ∈ S and v ∈ (0, 1)

lim
n→∞
∗∞i=nMΩ

(
r0, fr0,

ξ

vi

)
= 1, (3.12)

for each ξ > 0. Where {rn} ⊂ S , is defined by rn+1 = frn, n ∈ N ∪ {0}.
Then f is unique fixed point.

Proof. By (3.11) with r = rn and z = zn−1, for every ξ > 0 and for all n ∈ N, we have

MΩ(rn+1, rn, ξ) ≥ min
{
MΩ

(
rn, rn−1,

ξ

δ

)
,MΩ

(
rn+1, rn,

ξ

δ

)
,MΩ

(
rn, rn−1,

ξ

δ

) }
≥ min

{
MΩ

(
rn, rn−1,

ξ

δ

)
,MΩ

(
rn+1, rn,

ξ

δ

)}
.

If MΩ(rn+1, rn, ξ) ≥ MΩ

(
rn+1, rn,

ξ

δ

)
, then Lemma 3.2, implies that rn = rn+1, n ∈ N. That is n is fixed

point of f.
Therefore

MΩ(rn+1, rn, ξ) ≥ MΩ

(
rn, rn−1,

ξ

δ

)
, n ∈ N, ξ > 0,

and we have that rn is Cauchy sequence by Lemma 3.1. As a result there is a r ∈ S such that lim
n→∞
r = rn

and therefore
lim
n→∞

MΩ(r, rnn, ξ) = 1, ξ > 0. (3.13)

Let’s show that r is fixed point of f. Let %1 ∈ (δκ, 1) an %2 = 1 − %1. By (3.11) we have

MΩ(fr, r, ξ)

≥ ∗

(
MΩ

(
fr, frn,

ξ%1

Ω( f r, r)

)
,MΩ

(
rn+1, r,

ξ%2

Ω(fr, r)

))
≥ ∗

(
min

{
MΩ

(
r, rn,

ξ%1

δΩ(fr, r)

)
,MΩ

(
r, fr,

ξ%1

δΩ( f r, r)

)
,

MΩ

(
rn, rn+1,

ξ%1

δΩ(fr, r)

) }
,MΩ

(
rn+1, r,

ξ%2

Ω(fr, r)

) )
.

Letting n→ ∞ and using (3.13), we obtain

MΩ(fr, r, ξ) ≥ ∗
(
MΩ

(
r, fr,

ξ%1

κδ

)
, 1

)
= MΩ

(
r, fr,

ξ

v

)
.

Where v = κδ
%1
∈ (0, 1), we have

MΩ(fr, r, ξ) ≥ MΩ

(
fr, r,

ξ

v

)
.
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From Lemma 3.2 it follows that fr = r. To show uniqueness, suppose z , r is another fixed point of f.
By condition (3.11) we get

MΩ(fr, fz, ξ)

≥ min
{
MΩ

(
r, z,

ξ

δ

)
,MΩ

(
r, fr,

ξ

δ

)
,MΩ

(
z, fz,

ξ

δ

)}
= min

{
MΩ

(
r, z,

ξ

δ

)
, 1, 1

}
= MΩ

(
r, z,

ξ

δ

)
= MΩ

(
fr, fz,

ξ

δ

)
, ∀ξ > 0.

Lemma 3.2 gives r = z. Hence f has unique fixed point. �

In the following we present fuzzy version of Ćirić quasicontraction in the setting of EFbMS.

Theorem 3.3. Let f be self mapping on a complete EFbMS (S ,MΩ, ∗m,Ω). Suppose there exists
δ ∈ (0, 1

k2 ), with κ = lim sup
m,n→∞

Ω(rn, rm), such that

MΩ(fr, fz, ξ) ≥ min
{

MΩ

(
r, z,

ξ

δ

)
,MΩ

(
fr, r,

ξ

δ

)
,MΩ

(
fz, z,

ξ

δ

)
,

MΩ

(
fr, z,

2ξ
δ

)
,MΩ

(
r, fz,

ξ

δ

) }
,∀r, z ∈ S , ξ > 0.

(3.14)

Where {rn} ⊂ S , is defined by rn+1 = frn, n ∈ N∪ {0}, for some r0 ∈ S . Then f has a unique fixed point.

Proof. Take r = rn and z = rn−1 in (3.14). By (EΩ4) along with the assumption ∗ = ∗m, and Lemma 3.1,
we have

MΩ(rn+1, rn, ξ)

≥ min
{

MΩ

(
rn, rn−1,

ξ

δ

)
,MΩ

(
rn+1, rn,

ξ

δ

)
,MΩ

(
rn, rn−1,

ξ

δ

)
,

min
{

MΩ

(
rn+1, rn,

ξ

Ω(rn+1, rn−1)δ

)
,MΩ

(
rn, rn−1,

ξ

Ω(rn+1, rn−1)δ

)}
,

MΩ

(
rn, rn,

ξ

δ

) }
≥ min

{
MΩ

(
rn, rn−1,

ξ

Ω(rn+1, rn−1)δ

)
,MΩ

(
rn+1, rn,

ξ

Ω(rn+1, rn−1)δ

)}
.

Using same arguments as used in the proof of Theorem 3.2, it turns out that

MΩ(rn+1, rn, ξ) ≥ MΩ

(
rn, rn−1,

ξ

κδ

)
, ∀n ∈ N, ξ > 0,

and {rn} is Cauchy . So there is r ∈ S such that lim
n→∞
r = rn and therefore

lim
n→∞

MΩ(r, rn, ξ) = 1, ξ > 0. (3.15)
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Let %1 ∈ (κ2δ, 1) and %2 = 1 − %1. Using (3.14) and (EΩ4) for ∗ = ∗m, we have

MΩ(fr, r, ξ)

≥ min
{

MΩ

(
fr, frn,

ξ%1

Ω(fr, r

)
,MΩ

(
frn, r,

ξ%2

Ω(fr, r)

)}
≥ min

{
min

{
MΩ

(
r, rn,

ξ%1

Ω(fr, r)δ

)
,MΩ

(
r, fr,

ξ%1

Ω(fr, r)δ

)
,

MΩ

(
rn, rn+1,

ξ%1

Ω(fr, r)δ

)
,min

{
MΩ

(
fr, r,

ξ%1

Ω(fr, rn)Ω(fr, r)δ

)
,

MΩ

(
r, rn,

ξ%1

Ω(fr, rn)Ω(fr, r)δ

) }
,MΩ

(
r, rn+1,

ξ%1

Ω(fr, r)δ

) }
,

MΩ

(
rn+1, r,

ξ%2

Ω(fr, r)

) }
, ∀ n ∈ N, ξ > 0.

Letting n→ ∞ and using (3.15), we obtain

MΩ(fr, r, ξ) ≥ min
{

min
{
1,MΩ

(
r, fr,

ξ%1

κδ

)
, 1,min

{
MΩ

(
fr, r,

ξ%1

κ2δ

)
, 1

}
, 1

}
, 1

}
= MΩ

(
fr, r,

ξ%1

κ2δ

)
, ξ > 0

and by Lemma 3.2 with v = κ2δ
%1
∈ (0, 1) it follows that fr = r. To show uniqueness, suppose z = f(z) ,

f(r) = r. By Condition (3.14) we get

MΩ(fr, fz, ξ)

≥ min
{

MΩ

(
r, z,

ξ

δ

)
,MΩ

(
fr, r,

ξ

δ

)
,MΩ

(
fz, z,

ξ

δ

)
,

min
{

MΩ

(
fr, r,

ξ

κδ

)
,MΩ

(
r, z,

ξ

κδ

) }
,MΩ

(
r, fz,

ξ

δ

) }
= min

{
MΩ

(
r, z,

ξ

δ

)
, 1, 1,min

{
1,MΩ

(
r, z,

ξ

κδ

)}
,MΩ

(
r, z,

ξ

δ

) }
= MΩ

(
r, z,

ξ

κδ

)
= MΩ

(
fr, fz,

ξ

κδ

)
∀ξ > 0.

Which gives contradiction r = z in the view of Lemma 3.2. Hence f has unique fixed point. �

Remark 3.1. In the above theorem, the quasicontractive condition involves the strongest t-norm, that
is minimum t-norm ∗m, therefore is of least interest. In the next theorem, we relax this condition by
using a t-norm weaker than ∗m. This new contractive condition therefore ensures the existence of fixed
point for a relatively broader class of t-norms.

Theorem 3.4. Let (S ,MΩ, ∗,Ω) with ∗ ≥ ∗p be a complete EFbMS, and let f : S → S . Assume that
for some δ ∈ (0, 1

κ2 ),
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with κ = lim sup
m,n→∞

Ω(rn, rm),

MΩ(fr, fz, ξ) ≥ min
{

MΩ

(
r, z,

ξ

δ

)
,MΩ

(
fr, r,

ξ

δ

)
,MΩ

(
fz, z,

ξ

δ

)
,√

MΩ

(
fr, z,

2ξ
δ

)
,MΩ

(
r, fz,

ξ

δ

) }
, r, z ∈ S , ξ > 0,

(3.16)

and there is r0 ∈ S and v ∈ (0, 1) such that

lim
n→∞
∗∞i=nMΩ

(
r0, f r0,

ξ

vi

)
= 1, ξ > 0. (3.17)

Where {rn} ⊂ S , is defined by rn+1 = frn, n ∈ N ∪ {0}. Then f is unique fixed point.

Proof. Taking r = rn and z = rn−1 in Condition (3.16), by (EΩ4) and ∗ ≥ ∗p, we have

MΩ(rn+1, rn, ξ)

≥ min
{

MΩ

(
rn, rn−1,

ξ

δ

)
,MΩ

(
rn+1, rn,

ξ

δ

)
,MΩ

(
rn, rn−1,

ξ

δ

)
,√

MΩ

(
rn+1, rn,

ξ

Ω(rn+1, rn−1)δ

)
MΩ

(
rn, rn−1,

ξ

Ω(rn+1, rn−1)δ

)
,MΩ

(
rn, rn,

ξ

δ

) }
≥ min

{
MΩ

(
rn, rn−1,

ξ

δ

)
,MΩ

(
rn+1, rn,

ξ

δ

)
,MΩ

(
rn, rn−1,

ξ

δ

)
,√

MΩ

(
rn+1, rn,

ξ

κδ

)
MΩ

(
rn, rn−1,

ξ

κδ

)
,MΩ

(
rn, rn,

ξ

δ

) }
.

since MΩ(r, z, ξ) is b-nondecreasing in ξ and for w1,w2 ∈ [0, 1], min{w1,w2} ≤
√
w1.w2, therefore

MΩ (rn+1, rn, ξ) ≥min
{

MΩ

(
rn+1, rn,

ξ

κδ

)
,MΩ

(
rn, rn−1,

ξ

κδ

) }
.

Which implies

MΩ(rn+1, rn, ξ) ≥ MΩ

(
rn, rn−1,

ξ

κδ

)
for n ∈ N, ξ > 0.

Otherwise from Lemma 3.2, it follows that rn is fixed point of f.
Lemma 3.1 implies that {rn} is Cauchy. Completeness of (S ,MΩ, ∗,Ω) implies that there is r ∈ S

such that lim
n→∞
r = rn and therefore

lim
n→∞

MΩ (rn, r, ξ) = 1, ξ > 0. (3.18)

Let %1 ∈ (κ2δ, 1) and %2 = 1 − %1. By (3.16) and (EΩ4) for ∗ ≥ ∗p, we have

MΩ(fr, r, ξ)
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≥ ∗

(
MΩ

(
fr, frn,

ξ%1

Ω(fr, r)

)
,MΩ

(
frn, r,

ξ%2

Ω(fr, r)

))
≥ ∗

(
min

{
MΩ

(
r, rn,

ξ%1

Ω(fr, r)δ

)
,MΩ

(
r, fr,

ξ%1

Ω(fr, r)δ

)
,MΩ

(
rn, rn+1,

ξ%1

Ω(fr, r)δ

)
,√

MΩ

(
fr, r,

ξ%1

Ω(fr, rn)Ω(fr, r)δ

)
,MΩ

(
r, rn,

ξ%1

Ω(fr, rn)Ω(fr, r)δ

)
,

MΩ

(
r, rn+1,

ξ%1

Ω(fr, r)δ

) }
,MΩ

(
rn+1, r,

ξ%2

Ω(fr, r))

) )
≥ ∗

(
MΩ

(
fr, frn,

ξ%1

Ω(fr, r)

)
,MΩ

(
frn, r,

ξ%2

Ω(fr, r)

))
≥ ∗

(
min

{
MΩ

(
r, rn,

ξ%1

Ω(fr, r)δ

)
,MΩ

(
r, fr,

ξ%1

Ω(fr, r)δ

)
,MΩ

(
rn, rn+1,

ξ%1

Ω(fr, r)δ

)
,

min
{

MΩ

(
fr, r,

ξ%1

Ω(fr, rn)Ω(fr, r)δ

)
,MΩ

(
r, rn,

ξ%1

Ω(fr, rn)Ω(fr, r)δ

) }
,

MΩ

(
r, rn+1,

ξ%1

Ω(fr, r)δ

) }
,MΩ

(
rn+1, r,

ξ%2

Ω(fr, r))

) )
∀n ∈ N, ξ > 0.

Letting n→ ∞ and by (3.18), we get

MΩ(fr, r, ξ) ≥ ∗
(
min

{
1,MΩ

(
r, fr,

ξ%1

κδ

)
, 1,min

{
MΩ

(
fr, r,

ξ%1

κ2δ

)
, 1

}
, 1

}
, 1

)
= MΩ

(
fr, r,

ξ%1

κ2δ

)
ξ > 0,

and by Lemma 3.2 with v = κ2δ
%1
∈ (0, 1) it follows that fr = r. To show uniqueness, suppose that z , r

is another fixed point of f . By Condition (3.16) we get

MΩ(fr, fz, ξ) ≥ min
{
MΩ

(
r, z,

ξ

δ

)
,MΩ

(
fr, r,

ξ

δ

)
MΩ

(
fz, z,

ξ

δ

)
√

MΩ

(
fr, r,

ξ

κδ

)
,MΩ

(
r, z,

ξ

κδ

)
,MΩ

(
r, fz,

ξ

δ

) }
≥ min

{
MΩ

(
r, z,

ξ

δ

)
, 1, 1,min

{
1,MΩ

(
r, z,

ξ

κδ

)}
,MΩ

(
r, z,

ξ

δ

) }
= MΩ

(
r, z,

ξ

κδ

)
= MΩ

(
fr, fz,

ξ

κδ

)
, ∀ξ > 0.

Lemma 3.2 gives contradiction r = z. Hence f has unique fixed point. �
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4. Consequences

This section is about the construction of some fixed point results involving integral inequalities as
consequences of our results. Define a function T : [0,∞)→ [0,∞) as

T (t) =

∫ t

0
f(t)dt ∀t > 0, (4.1)

where T (t) is non-decreasing and continuous function. Also f(t) > 0 and f(t) = 0 iff t = 0.

Theorem 4.1. Let (S ,MΩ, ∗m,Ω) be a complete extended fuzzy b-metric space and f is self mapping
on S . Assume there exist r0 ∈ S , v ∈ (0, 1) and δ ∈ (0, 1

κ
), with κ = lim sup

m,n→∞
Ω(rn, rm) such that

∫ MΩ(fr,fz,δξ)

0
f(ξ)dξ ≥

∫ MΩ(r,z,ξ)

0
f(ξ)dξ ∀r, z ∈ S , ξ > 0, (4.2)

and
lim
n→∞
∗∞i=nMΩ

(
r0, fr0,

ξ

vi

)
= 1, ξ > 0.

Where {rn} ⊂ S , is defined by rn+1 = frn, n ∈ N ∪ {0}. Then f has unique fixed point .

Proof. (4.1) along with (4.2) implies that

T (MΩ(fr, fz, δξ)) ≥ T (MΩ(r, z, ξ)) .

As T is non-decreasing and continuous therefore

MΩ(fr, fz, δξ) ≥ MΩ(r, z, ξ).

Rest of the proof follows from Theorem 3.1. �

In the following, we present a more general form of Theorem 4.1 as a consequence of Theorem 3.2.

Theorem 4.2. Let (S ,MΩ, ∗m,Ω) be a complete extended fuzzy b-metric space and f is self mapping
on S . Assume there exist r0 ∈ S , v ∈ (0, 1) and δ ∈ (0, 1

κ
), with κ = lim sup

m,n→∞
Ω(rn, rm) such that

∫ MΩ(fr,fz,δξ)

0
f(ξ)dξ ≥

∫ B(r,z,ξ)

0
f(ξ)dξ ∀r, z ∈ S , ξ > 0, (4.3)

and
lim
n→∞
∗∞i=nMΩ

(
r0, fr0,

ξ

vi

)
= 1, ξ > 0.

Where B(r, z, ξ) = min {MΩ (r, z, ξ) ,MΩ (fr, r, ξ) ,MΩ (fz, z, ξ)}, and {rn} ⊂ S , is defined by rn+1 = frn,
n ∈ N ∪ {0}. Then f has unique fixed point .

Proof. (4.1) along with (4.3) implies that

T (MΩ(fr, fz, δξ)) ≥ T (B(r, z, ξ)) .

As T is non-decreasing and continuous therefore

MΩ(fr, fz, δξ) ≥ B(r, z, ξ).

Rest of the proof follows from Theorem 3.2. �
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Theorem 4.3. Let (S ,MΩ, ∗m,Ω) be a complete extended fuzzy b-metric space and f is self mapping
on S . Assume there exist r0 ∈ S , v ∈ (0, 1) and δ ∈ (0, 1

κ
), with κ = lim sup

m,n→∞
Ω(rn, rm) such that

∫ MΩ(fr,fz,δξ)

0
f(ξ)dξ ≥

∫ Y(r,z,ξ)

0
f(ξ)dξ ∀r, z ∈ S , ξ > 0, (4.4)

and
lim
n→∞
∗∞i=nMΩ

(
r0, fr0,

ξ

vi

)
= 1, ξ > 0.

Where Y(r, z, ξ) = min {MΩ (r, z, ξ) ,MΩ (fr, r, ξ) ,MΩ (fz, z, ξ) ,MΩ (fr, z, 2ξ) ,MΩ (r, fz, ξ)}, and {rn} ⊂
S , is defined by rn+1 = frn, n ∈ N ∪ {0}. Then f has unique fixed point .

Proof. (4.1) along with (4.4) implies that

T (MΩ(fr, fz, δξ)) ≥ T (Y(r, z, ξ)) .

As T is non-decreasing and continuous therefore

MΩ(fr, fz, δξ) ≥ Y(r, z, ξ).

Rest of the proof follows from Theorem 3.3. �

In the same manner, results on integral inequalities can be obtained as a consequence of
Theorem 3.4.

5. Application to integral equations

Integral equations find applications in a variety of scientific fields, such as biology, chemistry,
physics, or engineering. It is a rapidly growing field in abstract space. Furthermore, fuzzy integral
equations constitute one of the important branches of fuzzy analysis theory and play a vital role in
numerical analysis. One of the important approaches used for the studying integral equations is to
apply fixed point theory directly to the mapping defined by the right-hand side of the equation, or
to develop homotopy methods, which are largely considered in fixed point theory. In particular, for
its connection with the study of fuzzy integral problems, we highlight a very recent paper [14], in
which the author proposes a homotopy analysis method to find an approximate solution of the two-
dimensional non-linear fuzzy Volterra integral equation. We also refer the reader to [15, 16, 27, 31, 51]
for other related works.

We apply our theory of fixed point to ensure the existence of solutions to the following type of
integral equations:

u(t) = f (t) +

∫ t

0
H(t, s, u(s))ds, t ∈ [0, b], (5.1)

where b > 0. The Banach space C ≡ C([0, b],R) of all real continuous functions defined on [0, b], with
norm ‖u‖ := sup

s∈[0,b]
|u(s)| for every u ∈ C, can be considered as a fuzzy Banach space [30] (for more

details concerning the relation between Banach spaces and fuzzy Banach spaces, see [44]). Consider
the fuzzy metric on C given by

M(u, v, δ) = e−
sup

s∈[0,b]
|u(s)−v(s)|2

δ ,
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for all u, v ∈ C and δ > 0, furnished with the t-norm ∗p defined as x ∗p y = xy for all x, y ∈ [0, 1]. Then
(C,M, ∗p,Ω) is a complete EFbMS for a bounded function Ω : C × C → [1,∞) .

In the following, we discuss the existence of solutions for the integral equations of the form (5.1).

Theorem 5.1. Let P : C → C be an integral operator given by

[P(u)](t) = f (t) +

∫ t

0
H(t, s, u(s))ds, u ∈ C, t ∈ [0, b].

Let { fn} ⊂ C, be defined by fn+1 = P( fn), n ∈ N∪{0}, for f ∈ C. Suppose there exists δ ∈ (0, 1
k2 ), with κ =

lim sup
m,n→∞

Ω( fn, fm), where Ω : C×C → [1,∞) is a bounded function and let H ∈ C([0, b]× [0, b]×R,R)

satisfies the following condition:

(i) There exists a continuous and non-decreasing mapping ψ : [0, 1] → [0, 1] with ψ(t) > t for all
t ∈ (0, 1), such that, for all u, v ∈ C, and every δ > 0,

sup
s∈[0,b]

(∫ s

0
|H(s, r, u(r)) − H(s, r, v(r))|dr

)2

≤ − ln

ψ
e− sup

s∈[0,b]
|u(s)−v(s)|2

κδ


 .

Then, the integral Eq (5.1) has a solution u∗ ∈ C.

Proof. For all u, v ∈ C, and δ > 0, we have

M(P(u), P(v), κδ) = e−
sup

s∈[0,b]
|[P(u)](s)−[P(v)](s)|2

κδ

≥ e−
sup

s∈[0,b]
(∫ s

0 |H(s,r,u(r))−H(s,r,v(r))|dr)2

κδ

≥ e−
sup

s∈[0,b]
(∫ s

0 |H(s,r,u(r))−H(s,r,v(r))|dr)2

δ

≥ ψ

e− sup
s∈[0,b]

|u(s)−v(s)|2

δ


= M(u, v, δ).

Hence, using Theorem 3.1, P has a fixed point u∗ ∈ C, which is a solution to the integral Eq (5.1).
�

Remark 5.1. With slight modification, Theorems 3.2–3.4 can also be applied to the solution of integral
equation of type (5.1).

6. Application to nonlinear fractional differential equations

The important objective in this section is to study the existence and uniqueness of solutions to a
nonlinear fractional differential equation (NFDE)by applying Theorem 3.1. Considering the Banach
spacer S ≡ C([0, 1],R) of all continuous real valued functions defined on [0, 1] with with norm
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‖u‖ := sup
s∈[0,1]

|u(s)| for every u ∈ S, we study the existence of unique solutions to a non-linear fractional

differential equation

Dσ
0+(u(t)) = g(t, u(t)), t ∈ (0, 1) (6.1)

with boundary conditions

u(0) + ú(0) = 0, u(1) + ú(1) = 0,

where u ∈ S, σ ∈ (1, 2] and f : [0, 1] × R→ R is a continuous function.
Notice that, u ∈ S is a solution of (6.1) whenever u ∈ S solves the following integral equation

u(s) =
1

Γ(σ)

∫ 1

0
(1 − τ)σ−1(1 − s)f(τ, x(τ))dτ +

1
Γ(σ − 1)

∫ 1

0
(1 − τ)σ−2(1 − s)f(τ, x(τ))dτ

+
1

Γ(σ)

∫ s

0
(s − τ)σ−1f(τ, x(τ))dτ.

(6.2)

Detailed description of the problem context can be found in [2, 10, 34, 52]. The following theorem
demonstrates that a solution exists to the nonlinear fractional differential Eq (6.1). Define integral
operator J : S → S by

Ju(s) =
1

Γ(σ)

∫ 1

0
(1 − τ)σ−1(1 − s)f(τ, u(τ))dτ +

1
Γ(σ − 1)

∫ 1

0
(1 − τ)σ−2(1 − s)f(τ, u(τ))dτ

+
1

Γ(σ)

∫ s

0
(s − τ)σ−1f(τ, u(τ))dτ.

(6.3)

where S is an extended fuzzy b-metric space with extended fuzzy b-metric given by

M(u, v, `) =
α`

α` + β sup
s∈[0,1]
|u(s) − v(s)|

,

∀ ` > 0 and u, v ∈ S. Here α and β are positive real numbers and continuous t-norm ∗ as the usual
product.

Theorem 6.1. Let { fn} ⊂ S, be defined by fn+1 = J( fn), n ∈ N ∪ {0}, for f ∈ S. Suppose there exists
δ ∈ (0, 1

λ2 ), with λ = lim sup
m,n→∞

Ω( fn, fm), with Ω : S × S → [1,∞) being a bounded function such that

the following conditions are satisfied:

• |f(τ, u(τ)) − f(τ, v(τ))| ≤ |u(τ) − v(τ)|, ∀u, v ∈ S

• sup
t∈[0,1]

{
1−s

Γ(σ+1) + 1−s
Γ(σ) + sσ

Γ(σ+1)

}
≤ λ < 1.

Then the non-linear fractional differential Eq (6.1) has a unique solution
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Proof. ∣∣∣Ju(s) − Jv(s)∣∣∣ =

∣∣∣∣∣1 − s
Γ(σ)

∫ 1

0
(1 − τ)σ−1 [f(τ, u(τ)) − f(τ, v(τ))] dτ

+
1 − s

Γ(σ − 1)

∫ 1

0
(1 − τ)σ−2 [f(τ, u(τ)) − f(τ, v(τ))] dτ

+
1

Γ(σ)

∫ s

0
(s − τ)σ−1 [f(τ, u(τ)) − f(τ, v(τ))] dτ

∣∣∣∣∣
≤

1 − s
Γ(σ)

∫ 1

0
(1 − τ)σ−1

∣∣∣f(τ, u(τ)) − f(τ, v(τ))
∣∣∣dτ

+
1 − s

Γ(σ − 1)

∫ 1

0
(1 − τ)σ−2

∣∣∣f(τ, u(τ)) − f(τ, v(τ))
∣∣∣dτ

+
1

Γ(σ)

∫ s

0
(s − τ)σ−1

∣∣∣f(τ, u(τ)) − f(τ, v(τ))
∣∣∣dτ

≤
1 − s
Γ(σ)

∫ 1

0
(1 − τ)σ−1

∣∣∣u(τ) − v(τ)
∣∣∣dτ

+
1 − s

Γ(σ − 1)

∫ 1

0
(1 − τ)σ−2

∣∣∣u(τ) − v(τ)
∣∣∣dτ

+
1

Γ(σ)

∫ s

0
(s − τ)σ−1

∣∣∣u(τ) − v(τ)
∣∣∣dτ

≤ sup
s∈[0,1]

∣∣∣u(s) − v(s)
∣∣∣(1 − s

Γ(σ)

∫ 1

0
(1 − τ)σ−1dτ +

1 − s
Γ(σ − 1)

∫ 1

0
(1 − τ)σ−2dτ

+
1

Γ(σ)

∫ s

0
(s − τ)σ−1dτ

)
= sup
s∈[0,1]

∣∣∣u(s) − v(s)
∣∣∣( 1 − s

Γ(σ + 1)
+

1 − s
Γ(σ)

+
sσ

Γ(σ + 1)

)
= δ sup

s∈[0,1]

∣∣∣u(s) − v(s)
∣∣∣, where δ =

1 − s
Γ(σ + 1)

+
1 − s
Γ(σ)

+
sσ

Γ(σ + 1)
.

From the above inequality, it turns out that

sup
s∈[0,1]

∣∣∣Ju(s) − Jv(s)∣∣∣ ≤ δ sup
s∈[0,1]

∣∣∣u(s) − v(s)
∣∣∣

⇒ αs +
β

δ
sup
s∈[0,1]

∣∣∣Ju(s) − Jv(s)∣∣∣ ≤ αs + β sup
s∈[0,1]

∣∣∣u(s) − v(s)
∣∣∣

⇒
α(δs)

α(δs) + β sup
s∈[0,1]

∣∣∣Ju(s) − Jv(s)∣∣∣ ≥ αs

αs + β sup
s∈[0,1]

∣∣∣u(s) − v(s)
∣∣∣

⇒M (Ju,Jv, δs) ≥ M (u, v, s) ,

Thus by Theorem 3.1, the operator J has a fixed point in S, consequently the non-linear fractional
differential Eq (6.1) has a unique solution in S. �

Remark 6.1. Using similar arguments as above, with little modification, Theorems 3.2–3.4 can also
be applied to the solution of the non-linear fractional differential Eq (6.1).
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7. Conclusions

In this work we established an important lemma for showing a sequence to be Caushy in EFbMS.
Utilizing this lemma we have established some fixed point results in the context of EFbMS. As
application, we apply the established theory for the existence of solution to a type of integral equations
and a nonlinear fractional differential equation. Our results generalize some well-known fixed point
results in the literature. Our established results may lead to further research and investigation.
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33. S. Nǎdǎban, Fuzzy b-metric spaces, Int. J. Comput. Commun., 11 (2016), 273–281.
http://dx.doi.org/10.15837/ijccc.2016.2.2443

34. T. Phong, L. Long, Well-posed results for nonlocal fractional parabolic equation
involving Caputo-Fabrizio operator, J. Math. Comput. Sci., 26 (2022), 357–367.
http://dx.doi.org/10.22436/jmcs.026.04.04

35. D. Rakic, A. Mukheimer, T. Došenovic, Z. Mitrovic, S. Radenovic, On some new fixed point results
in fuzzy b-metric spaces, J. Inequal. Appl., 2020 (2020), 99. http://dx.doi.org/10.1186/s13660-020-
02371-3

36. A. Razani, Existence of fixed point for the nonexpansive mapping of intuitionistic fuzzy metric
spaces, Chaos, Soliton. Fract., 30 (2006), 367–373. http://dx.doi.org/10.1016/j.chaos.2005.10.010

37. A. Razani, A fixed point theorem in the Menger probabilistic metric space, New Zealand Journal
of Mathematics, 35 (2006), 109–114.

38. A. Razani, Fixed points for total asymtotically nonexpansive mappings in a new version of bead
space, Int. J. Ind. Math., 6 (2014), 329–332.

39. A. Razani, An iterative process of generalized Lipschitizian mappings in uniformly convex Banach
spaces, Miskolc Math. Notes, 22 (2021), 889–901. http://dx.doi.org/10.18514/MMN.2021.3615

40. A. Razani, A contraction theorem in fuzzy metric spaces, Fixed Point Theory Appl., 2005 (2005),
427012. http://dx.doi.org/10.1155/FPTA.2005.257

41. A. Roldán, J. Martinez-Moreno, C. Roldán, Tripled fixed point theorem in fuzzy metric spaces
and applications, Fixed Point Theory Appl., 2013 (2013), 29. http://dx.doi.org/10.1186/1687-1812-
2013-29

42. S. Rolewicz, Metric linear spaces (German), Warszawa: Polish Scientific Publishers, 2002.

43. B. Rome, M. Sarwar, T. Abdeljawad, µ-extended fuzzy b-metric spaces and related fixed point
results, AIMS Mathematics, 5 (2020), 5184–5192. http://dx.doi.org/10.3934/math.2020333

44. R. Saadati, S. Vaezpour, Some results on fuzzy Banach spaces, JAMC, 17 (2005), 475–484.
http://dx.doi.org/10.1007/BF02936069

45. R. Shahkoohi, A. Razani, Fixed point theorems for semi λ-subadmissible contractions in bmetric
spaces, Journal of Linear and Topological Algebra, 4 (2015), 65–85.

46. R. Shahkoohi, A. Razani, Some fixed point theorems for rational Geraghty contractive mappings
in ordered b-metric spaces, J. Inequal. Appl., 2014 (2014), 373. http://dx.doi.org/10.1186/1029-
242X-2014-373

AIMS Mathematics Volume 7, Issue 8, 14029–14050.

http://dx.doi.org/http://dx.doi.org/10.1016/j.fss.2006.11.012
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-016-1007-2
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-016-1007-2
http://dx.doi.org/http://dx.doi.org/10.1007/s11784-019-0663-5
http://dx.doi.org/http://dx.doi.org/10.15837/ijccc.2016.2.2443
http://dx.doi.org/http://dx.doi.org/10.22436/jmcs.026.04.04
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-020-02371-3
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-020-02371-3
http://dx.doi.org/http://dx.doi.org/10.1016/j.chaos.2005.10.010
http://dx.doi.org/http://dx.doi.org/10.18514/MMN.2021.3615
http://dx.doi.org/http://dx.doi.org/10.1155/FPTA.2005.257
http://dx.doi.org/http://dx.doi.org/10.1186/1687-1812-2013-29
http://dx.doi.org/http://dx.doi.org/10.1186/1687-1812-2013-29
http://dx.doi.org/http://dx.doi.org/10.3934/math.2020333
http://dx.doi.org/http://dx.doi.org/10.1007/BF02936069
http://dx.doi.org/http://dx.doi.org/10.1186/1029-242X-2014-373
http://dx.doi.org/http://dx.doi.org/10.1186/1029-242X-2014-373


14050

47. T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., 2017 (2017),
256. http://dx.doi.org/10.1186/s13660-017-1528-3

48. R. Vasuki, P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy
Set. Syst., 135 (2003), 415–417. http://dx.doi.org/10.1016/S0165-0114(02)00132-X
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