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Abstract: We focused on the quasi-projective synchronization (QPS) and finite-time synchronization
(FNTS) for a class of fractional-order memristive complex-valued delay neural networks
(FOMCVDNNSs). Rather than decomposing the complex-valued system into its real and imaginary
components, we adopted a more streamlined approach by introducing a lemma associated with the
complex-valued sign function. This innovative technique enabled us to design a simpler discontinuous
controller. Then, based on the finite-time Lemma, measurable selection theorem, Lyapunov function
theory, properties of the Mittag-Leffler function, and the fractional-order Razumikhin theorem, various
substantial results were derived using a novel hybrid control scheme. In conclusion, we presented
numerical simulations to illustrate the practical effectiveness of our theoretical findings.
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1. Introduction

In recent decades, neural networks (NNs) have found widespread application across diverse fields,
including associative memories, signal and image processing, pattern recognition, and combinatorial
optimization [1-4]. Scholars and researchers have closely observed the progress in NNs with great
interest.

Incorporating fractional-order dynamics offers a more nuanced portrayal of temporal relationships
and memory influences. This enriches the model’s capacity to grasp intricate behaviors in practical,
real-world scenarios. Moreover, fractional-order exhibit favorable properties in comparison to integer
orders, implying that fractional-order approaches can yield results that more accurately reflect real-
world phenomena. At present, fractional-order neural networks find widespread application and have
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yielded numerous outstanding results [5—7]. The incorporation of memristive elements [8] introduces
adaptive and non-linear characteristics, fostering a more biologically inspired approach to neural
network modeling. In addition, time delay is inevitable in the transmission of information in neural
networks; Thus, so adding time delay to neural networks is more practical [9].

Many practical applications of NNs involve handling complex signals, which are challenges
that cannot be effectively addressed by real-valued neural networks (RVNNs). However, complex-
valued neural networks (CVNNs) emerge as a promising solution for resolving such intricate
problems. CVNNSs, equipped with both real and imaginary components, offer a more comprehensive
framework for modeling intricate relationships in diverse applications, such as signal processing, image
recognition, and communication systems [10-12]. However, the inherent nonlinearity, time delays, and
fractional-order dynamics in such networks pose considerable challenges in achieving synchronization,
a critical phenomenon in the study of interconnected systems.

QPS, characterized by asymptotic synchronization with an arbitrary scaling factor, provides a
versatile framework for controlling the synchronization behavior in complex systems. Furthermore,
the focus on FNTS addresses the practical importance of achieving rapid and precise synchronization
in various applications. This synchronization technique is often used in secure communication systems,
where the transmitter and receiver systems need to synchronize their chaotic dynamics to ensure
proper decoding of information. FNTS aims to achieve synchronization between two systems within a
predetermined finite time. The synchronization is not only guaranteed but is also achieved in a specified
time duration. Moreover, it is particularly relevant in scenarios where time efficiency is critical, such
as in secure communication protocols or real-time control systems. Consequently, QPS and FNTS
have emerged as prominent areas of exploration, with numerous findings being documented in prior
studies [13-19].

Until now, there have been limited synchronization results associated with FOMCVDNNs. To
address this gap, we aim to contribute by deriving several novel results to guarantee QPS and FNTS
through a hybrid adaptive control approach. The integration of fractional calculus, memristive devices,
and time delays in neural network models enhances their capacity to accurately capture the underlying
dynamics of real-world systems. Our results not only contribute to the theoretical understanding of
complex neural network synchronization but also pave the way for practical applications in diverse
fields. The primary contributions in this context can be encapsulated through the following dimensions:

(1) Traditional approaches, as highlighted in prior works [20-23], have typically analyzed complex-
valued systems by decomposing them into real and imaginary components. In contrast, our innovative
methodology introduces complex-valued sign functions and utilizes non-separation techniques to
tackle FOMCVDNN:E.

(2) Compared with the sliding mode control [21], quantized control [24], and adaptive control [25],
we use hybrid adaptive control to get QPS and FNTS of FOMCVDNN:S.

The remainder of the paper is organized as follows: Section 2 provides a concise overview
of mathematical prerequisites, encompassing fractional-order calculus, QPS, and FNTS Lemma.
Additionally, the FOMCVDNNSs model is introduced. The major results and analysis are presented
in Section 3, followed by numerical simulations in Section 4 to validate the theoretical findings. In
conclusion, Section 5 wraps up the paper by exploring potential applications and suggesting directions
for future research. The symbols used in this paper are shown in Table 1.
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Table 1. The meaning of symbols in the article.

Notation Meaning

R real number domains

C complex number domains
Q natural number set
i
u

imaginary unitand V-1 =i
conjugationof u,u =a+bie€ C,u =a - bi

Re(u) the real part of u

Im(u) the imag part of u

cola®, a™] the convex hull of {a*, ™"}
[u] sign(Re(u)) + isign(Im(u))
|ualy IRe(u)| + [Im(u)|

Jul> Viiu

G, (0) max{l; |1, 16/ i}

o)1) maxflo |1, lo7 i}

Q; the switching jump

31,00, 7,0) complex-valued activation function
T 7 = max{t(t)}

L(t) external input

2. Preliminaries and model description

In this segment, we will provide an overview of QTS and FTS. Additionally, we will introduce a
selection of crucial lemmas and definitions that will play a pivotal role in the forthcoming mathematical
derivations.

Definition 2.1. [26] The Caputo derivation in k-order for the function O(7) is defined as

! f (t — 7)) 1@ (n)dnr,
- K) to

oDy O1) = Iy

where y represents a positive integer, y — 1 < k < 7, f, is the initial time, I'(y) = fooo n’le™™dn is the
Gamma function.

Definition 2.2. The beta function, denoted as B(a, ), is a mathematical function defined when «, 8 €
R*:

1
B(e,B) = f v — v .
0

Definition 2.3. [26] When considering a parameter k > 0 and y € C, the Mittag-Leffler function can
be characterized as follows:

_ +00 XL
B = ; C(ke + 1)
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Definition 2.4. [14] FOMCVDNNSs (2) and FOMCVDNNSs (3) are deemed to achieve QPS if there
exist a small error bound € such that lim |[¥,(¢) — 2®,(?)||, < €, p = 1,2. Here the symbol 7 denotes a
t—00

projective coefficient belonging to R.

Definition 2.5. [27] FOMCVDNNSs (2) and (3) are deemed to achieve FNTS through designing a
hybrid controller, if there exists # > 0 such that linTl Y@ = 0 and ||Y@®)|| = 0 for Ve > T, T is called
—

the settling time of synchronization.

Lemma 2.1. [28] For any given 0(f) € C, the following equation remains valid:
(1) 0(O[O(1)] + OOB()] = 210(0)]; = 210(0)],.
(2)0 <k < 1,DNOO); < %([W]Dkwm + [0()]1D0(0)).
(3) [BOOD] = 1[0)]l;.
Lemma 2.2. [28] For any ((¢) € C and any measurable selection d(¢) € co([0(t)]), where
co([0()]) = co(sign(Re(0(1)))) + ico(sign(Im(0(1)))).
The following equation remains valid:

[0(5)]0(1) + ADO[0(1)] = 2/0(2)1,
B2 + AD0(2) = 210(1)]; = 2/0(2)],.

Lemma 2.3. [29] For y, > 0 where 1 € Q, and given that 0 < u < 1, and v > 1, we can express this as

Zn:)(i‘ 2 (Zn:)a)“, Zn:)(f > nl‘”(zn:)a)v-
=1 =1 1=1 =1

Lemma 2.4. [30] Assuming a continuous and non-negative function denoted as V(¢), considering that

DV(1) < =y V(@) V(1) € R,\{0}, ey

where ¢t > 0, > 0and 0 < ¢ < «k < 1, then lirrTlV(t) = 0and V(r) = O for r+ > T, in which
t—
T =t + (SV<(1)B(k, 1 = D)7

Lemma 2.5. [14] Provided a non-negative continuous function y(¢) that adheres to the inequality:
IOD;( < —WX(I) + O,
where 0 < k < 1, @w > 0 and o > 0. then, for any 7 > ¢, we can express it as:
o o, ©
X(0) < (x(to) — =)E(—w(t — 1p)") + —.
w w

Lemma 2.6. [31] The expression E,(@w(t — fy)*) is monotonically non-increasing for r > fy, and it
satisfies the inequality 0 < E, (w(t — 1)) < 1 and lim E, (@ (t — ty)*) = 0 whenever @w < 0.
t—+00
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In this paper, a class of FOMCVDNN:Ss is given as

2

wDiP(t) = —0,D,(1) + il G (@.(1))3(D,(0)) + il o, (@,))T,(P,(1 — 7(1))) + L(2),
= 7=
(D,(U) = TI(U) € C’ ve [_T’ t0]7

where 0 < k < 1,1 € Q, ®,(¢) € C represent the state of the :-th neuron at time ¢. The parameter
o, € R signifies the rate at which a neuron inhibits itself, where o, > 0. ¢,,(®,(1)) and o, (P,(7)) can
be alternatively described as the neural network connection parameter and the time-delayed neural
network connection parameter, respectively; 7(r) denotes time delay about #; Let’s denote 1,(-) and
T,(-) as complex-valued activation functions for the jth neuron at time ¢ and ¢ — 7(¢), respectively;
I,(t) € C represents the external input; ®,(v) = T,(v) is the initial condition of FOMCVDNNSs (2). The
parameters ¢,,(D,(?)), o,,(P,(1)) are state-dependent and satisfy

g*’ |(I)l(t)|1 < Ql { O'*, |q)l(t)|1 < Ql
(@) =1 o, (@) =1
Sy(DD)) { YT Il IV Y

where g,*J, g,*J*, o

i 0';";‘, 1, ] € Q are complex-valued constants.

Hypothesis 2.1. For every j € Q, £ = 1,2 and u, v € C, there exist positive real constants b ; and af 7
such that

|J](u) - J](V)lf < jt’j|u - Vl[» |-lj(u) - -i](V)|[ < -‘[fjlu - Vlf-

Hypothesis 2.2. For any complex number 7, 7, € Q and £ = 1,2, there are positive constants 7,, d¢,
and ¢, such that the following inequalities hold:

|J](7T)|€ < Neys |-]](7T)|f < 5[], |Il(t)|[ < P

When referring to the drive system labeled as FOMCVDNNSs (2), we can describe its corresponding
response system as

{ WD) = =0\, (2) + il G, (Wi(0)3,(F,(0) + il o, (F(D)T,(F,(r = 7(0)) + w,(0) + L(2), 3)
= =

\PI(U) = il(U) € C7U € [_T’ tO]a

where W, (7) € C is the state variable of FOMCVDNNS (3); u,(?) is the hybrid controller; W¥,(v) = £,(v)
is the initial condition of FOMCVDNNSs (3).
We design the hybrid controller «,(¢) as followed:

M,(t) = - (1) - dl[Tz(t)] - Vl(t)’ (4)

where ¢, and d, are all positive constants, T,(f) = Y,(r) — 7D,(¢),i € R is the synchronization error
signal and v,(¢) is designed as follows:

0,|@,(0) < Q, |Y.(Dl; <Q,
0’ |(D1(t)|1 > Qla |\Ill(t)|1 > Ql’

n

vi() =4 I % [ Sy = S @,(0) + (o)) = 0) X TP, (1 = T(t)))], DI < Q, PO >, (5)

J=1

M=

h [(§,*, = (@,(D) + (0, — o)) X T (D1 - T(t)))], D, (D > Q,, [P < Q.

J
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From FOMCVDNNSs (2) and (3) ,we can get the following error systems by 1,(¢) = ¥,(¢) — 7D, (¥)
WDETL(0) = = 0, T0) + > G (WD),(P,(0) = > G (@U0)I@,0) + D o (P T, (8t = 7(1)))
=1 J=1 =1
=1 ) (@) T@,( = 7(1) + (1 = WD) + w(2). (6)
Jj=1

Under the hybrid controller (4), the error system (6) can be covered with the following differential
inclusions

WDITA(0) € = (0, + €)Y, + ) Tl 67 1,(W () — T Z cols), sy 1,(@,(0) + Y colo, o]
J=1 J=1

X T, -1(1) -h Z colo,, o 17,(@,(t — (1)) + (1 = WI(1) — d,[T(D)]. (7N

J=1

By utilizing the concepts outlined in the references [32, 33] and the Lemma 2.1 of [34], we can
readily address the error system described in (6) by incorporating it into the differential inclusion
presented in (7).

Remark 2.1. Due to the nonexistence of a classical solution for FOMCVDNNS (2) and (3),
the solutions for all systems considered herein are approached in the Filippov sense. Assuming
Hypothesis 2.1 holds, the existence of a solution for (10) can be assured through the proof processes
outlined in [34].

In light of the measurable selection theorem [32, 33], it becomes evident that Eq (7) can be
reformulated in a different manner, that is, for 1 € Q, there exist ¢, (1) € cols;,¢,/] and 0 ,)(t) €

colo 0 0'**] such that

WDITL(0) = = (0, + €)TAD) + D Gy (OLT,0) =1 ) 6,3, (D,(0)
J=1 J=1
# D T O = T@) 1 ) o (OT@,( = 7)) + (1= LM - d[TO] ()
J=1 J=1
By transforming Eq (8), a new synchronization error system is obtained as follows

WDETAD) = = (0, + C)TAD) + D 6y OT,T,0) + D 6, (O, (1) = h1,(@,(0)] + Y 0,,(1)
J=1 J=1 J=1
X T, (0= TO) + " o OIT, D, = (1)) = KD, = 7@))] + (1 = W) = d [T, (D).

J=1

(€))
where’J\J(‘I’J(t)) =1,(¥,(®) - 3,(h®,(1)) and :i\J(TJ(t —1(2) = T,(¥,(t = 7())) = T,(hD,(t — 7(1))).
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3. Main results

3.1. Quasi-projective synchronization

Theorem 3.1. Based on Hypothesis 2.1 and 2.2, the FOMCVDNNSs (2) and (3) get QPS under
controller (4) if

R=TJ-R,—-pR, >0, (10)
where
J= 1}2@11{0, + ¢}, %l = II;IE%X{ZI j}ll?lj'l}a %2 = r?eeélQX{Z] -‘i]1|0-l]|l}a § > 1.
J= J=
Then the error bound is estimated by lim||Y,(?)]|; < %, where 0 = |l — A} X ¢, + (1 +
t—00 =1

) S 3 (15, Ol + 0,011, - d.

=1 j=1

Proof. Constructing the designated Lyapunov function as outlined:

Vi) = ) 0.
1=1

Based on Lemma 2.1, one has

loD;(VI (Z)

n

1 NN —_—
<3 Z [[Tp(l)]zonTl(t) + [‘I’,,(r)],OD,K‘r,(;)]

1=1
1 - T L YA
== 5 20+ ) TOT01 + TOrT.0]]
=1

L I _ _
+ E Z Z [[Tl(t)]gl](t)J](Tj(f)) + [Tl(l‘)]g‘lj(l‘)Jj(‘r](t))]

=1 =1

1 n n - .
t3 Z Z [[Tl(l)]sn SOL(RO (1) + [T.()]s, J(I)J](hq)](t))]

=1 =1

([T, (03, (@ (1)) + [0, (073, (@ (1) |

M
M=

=1 j=1

n n

+
N =

[T, (077,00 (2 = 7)) + [LAD]er, ()T,(F (¢ = 7))

1

1

1 g

[[T(t)]m ST, (Dt — 7(0))) + [T ()]0, ()T, (h D¢ — T(t)))]

M
M=

1 1

1

s |l
s |l

[[T(t)]cfz JORT(D,(t — 7(0))) + [T(D]o, (DR (D¢ - T(t)))]

=1

N =

=

—_
~
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- 5d Z‘ LI+ [ OIT.0|
+ % 1 (R0 = L@ + [COIA = WL, (11)
Applying Lemma 2.1, we can rephrase this as follows:
-5 Z(ol +c)| LMD+ TOMT0)]] = Z(ol + )LD (12)
It follows from Hypothesis 2.1 and Lemma 2.2 that:
= Z} Z] [T,/ (03,06,0) + [T016, (O,(T.(0)] < Z} Z} 6, (O3,
< Z Z O3 ATl (13)

=1 j=1
By invoking Lemma 2.1 and considering Hypothesis 2.2, we obtain

. Z Z [T, (0)s:,(1)3,(h () + [T(1)]s,, (03, (1)) | < Z Z 60,03, (R, ()

=1 j=1 =1 j=1

< Z Z IO (14)

=1 j=1
According to Hypothesis 2.2, we can rephrase it as follows:

=3 2 2 [Tl 0@, 0) + [T OR@, )
=1 j=1

IA

=1 j=1

5O, (0) < Z Z S/ Ol 71 - (15)
=1 j=1

Z [(glj(t)hJ](CD](t)))Rsign(Tf(t)) + (5,03, sign(¥! (z))]

n

D
=1

Correspondingly, we have

J=

S Z Z [(FAD1or, ()T, (2 = 7)) + [T D], (1)T,(F (¢ = 7))

tljl

< Z Z o7 (OL T T = 7@

(16)
=1 =1
1 n n - n n
3 [[Tl(t)]m,(t)-b(h@j(t—T(t)))+ [Tz(t)]a'zj(t)",(hQJ(t—T(t)))] < lo, 161, (17)
=1 =1 =1 =1
AIMS Mathematics
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=

1
32 [(T.@10 - L) + [ OIT - L0 < Z 1= Ay, (18)
And

1 v —_—

- E [[Tl(l)]o_l](l)h-i]((pj(t - T(l))) + [Tl(t)]o—lj(t)h-lj((l)](t - T(t)))]
=1 j=1
< o, (Ol 172]161,- (19)

=1 j=1

By calculation

n n

d[[TOITO] + [TOUTO] = = > dTOITO] < - ) d. (20)

=1 =1

2 =1
When incorporating inequalities (12) to (20) into inequality (11), we obtain

toDKVI (t)

<- Z(o, + )Tl + Z Z OGN

=1 j=1

- Z Z o (O 7T, 1t = 7@y + 11—l Z i

=1 j=1

+ (1 + ) Z Z (Is®lm, + Iy h61,) - d,

=1 j=1

<= (3= R) DT + R YTt =10y +e. 21)
=1 1=1

For ¢ > 1, according to the fractional-order Razumikhin theorem [35], it is affirmed that
wDiVi(t) < (8 =R - pRy)V1(1) + 0 = =RV (1) + 0. (22)

Referring to Lemma 2.5, we have

V1) < (Vi) - %)EK(—‘Rt") + % (23)
That is
IOl < (Il = 5 )E=Re9 + . (24)
According to Lemma 2.6, it implies
tim [, () < - (25)
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Hence, FOMCVDNNS (3) is QTS with FOMCVDNNSs (2) under the hybrid controller (4), the proof
has been completed.

Remark 3.1. The inclusion of d,[1,(#)] in the controller (4) serves the purpose of adjusting o, allowing
for manual control of the error . Ensuring that T,(f) # 0 is imperative, as any deviation from this
condition would lead to the establishment of a stable error system. This crucial stipulation validates
the inequality (20).

3.2. Finite-time synchronization

Taking Z,(¢) = ¥,(t) — ®,(¢) and incorporating FOMCVDNNSs (2) and (3), we can express the error
system as follows:

WD) = = 05,0 + D ey (PNI(E,(0) = ) 6,/ @()1(®,(1)
=1 J=1

+ Z o, (F(0)T,(¥ (1 = (1)) - Z T (@(0))T, (D, (1 = T(1))) + u, (D). (26)

J=1 J=1

To achieve FNTS for both FOMCVDNNSs (2) and (3), we propose the implementation of a hybrid
controller through the following design:

(1) = ~[EOIWIED) - 0.E.() - Vi(0), (27)
where ¢, > 0,0 < ¢ <k < 1and 6, > 0. v,(¢) is designed as:

0,[D,() < Q, Y. < Q,
O, |(D,(f)|1 > Qh |IP,([)|1 > Ql»

n

Vi) =1 X [(Cf‘j‘ = S @,(D) + (o) = 7)) X T(D(r = T(t)))], D, (O < Q, [P > L,

=1

M=

(65 = 503(@,0) + (@7, = ) X V@, = )| R0 > QL IEOh £ Q.

J

(28)

Under the hybrid controller (27), the error system (26) can be covered with the following differential
inclusions

WDIE(D €~ (0, 4+ 0)E0) + Y Tolsy T, (E, (1)
J=1

+ > oloy, o TE (- 1) - [EOIWEWL). (29)
=1

Through the application of the measurable selection theorem [32, 33] and the lemma 2.1 of [34],

function ¢,,(¢) € cols;, s, 1and 0(1) € colo;,, 071, @, (t) € colE,(r)] can be found such that

WDIE(D) = ~(0,+ B)E (0 + D 6, (LEM) + Y 0y (0T(E,(t = 70) - mOWIEWDE).  (30)

J=1 J=1

AIMS Mathematics Volume 9, Issue 3, 7627-7644.



7637

where 3,(,(1)) = 3,(¥,(1) = 1,(®,(0). T,E,(t = (1)) = T,(¥,(t = 7(1))) = T(@,(t = 7(1))).
Theorem 3.2. Based on Hypotheses 2.1 and 2.2, the FOMCVDNNSs (2) and (3) get FNTS under
controller (27) if

R*=J°-R]-p°R3 >0, 31

where

n n
3° = minfo, +6], K] :%"{Z%'%'l}’ %2=%x{zl'rﬂ|m,h}, P> 1.
J= J=

Proof. Constructing the designated Lyapunov function as outlined:

n

Vo) = DB

=1

Based on Lemma 2.1, one has
IOD;(VZ(t)

5% Z [[Ep(ﬂ]zonEl(r) + [Ep(l)],ODfEl(t)]
=1
=~ % >0 + B)[EOE®D + ZOEO]]
=1

1 n n L _ -
+3 2 D [ EDle,03E,0) + (205, (05,E,0)

=1 j=1

* % > E@Ie, TG - @) + [ED]o, (0T,E,(t - T0)]

=1 j=1

BN N e -
-5 2, | E@Im0) + EDw0)] . (32)
1=1
By utilizing Lemmas 2.2 and 2.3, we can rephrase this as

- % Z] [ [E01@.0 + EO]w,0 |20 = - Z] X N=AGHEEA | Z EL). (3

Correspondingly, using the formula of inequality (33) and Theorem 3.1 to represent inequality (32),
we can infer

WDEVa() <= Y (0, + OEML + > Y ilsyhIZ 0,
=1

=1 =1

+ S o B = el — i Y E @) (34)
1=1

=1 =1

AIMS Mathematics Volume 9, Issue 3, 7627-7644.
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For ° > 1, according to the fractional-order Razumikhin theorem [35], it holds that
wDiVa(1) < =(3° = RT = 9° RHVa(1) — ¢, Vo (1) (35)
According to 3° — R{ — p°RS > 0 in Theorem 3.2, we obtain
wDiVa(0) < =,V (0)F. (36)

In Lemma 2.4, it is demonstrated that FOMCVDNNSs(2) and (3), when operating under the hybrid
controller (27), can achieve synchronization within the given time frame T. This completes the proof
for Theorem 3.2.

Remark 3.2. We introduce the utilization of the complex-valued sign function for investigating
QPS and FNTS in FOMCVDNNSs through a non-separation method. In contrast to traditional methods
that entail the division of complex-valued systems into two distinct real-valued systems [20-23], our
research showcases a notable decrease in conservatism and computational complexity. This novel
approach not only enhances the range of application but also augments the generality of our research
outcomes.

Remark 3.3. In contrast to linear feedback control schemes [36, 37], the distinctive features of
fractional-order complex-valued neural networks align effectively with the capabilities of hybrid
control. This alignment renders hybrid control particularly well-suited for addressing the intricacies
inherent in such systems. Furthermore, the hybrid control approach can contribute to increased
stability, ensuring that the synchronized state is maintained even in the presence of disturbances or
uncertainties.

4. Numerical example

In this segment, we will conduct a numerical simulation to demonstrate the soundness of the
suggested outcomes.

Example 4.1. Consider a class of 2-dimensional FOMCVDNNs

oDy (1) = —0,@,(1) + Z S (@), (D,(1) + Z o (@) TP (1 — (1) + L,(1), (37)

J=1 J=1
in which

-1-0.5i, |90 <1

07 081 D ()] <1
s1(®i(n) = { _1-i D, (D)) > 1

S12(®(0) = D, (D), > 1

C[03-06i, [D0) <1 D1y < 1
§21(2(1) = { 1205 [0y, >1 2 @)= o 6 050, [0, > 1
~0.5-02i, |D,0), <1 05+01i, |00 <1
~02-08i, |D) > 1 ~02-02i, [0, > 1
0.5-0.5i, |, <1 0 51 P20 < 1
-0.8i, D, (D] > 1 -1, Dl > 1

o11(D1(1) = { o12(D1 (1) =

021(D2(1)) = { o0 (D (7)) =
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and k = 0.98, J(®,(1)) = 7,(D,(1)) = tanh(Re(D,(1))) + itanh(Im(D ())), O = diag(o,,0,) = diag(1, 1),
() = fte,, I, = (i, —i)7, the initial value of system (37) is 1(0) = (0.4 + 0.6i, 1.1 + 0.5i)”.
The corresponding response system is denoted by

WD) = =0 WD) + ) 6 (BNILCE,0) + D o (BTt = 0) + LD + (D), (38)

J=1 J=1

where o,,5,,(‘¥, (1)), o,,(‘F.(2)), 3,(F.(1)), T,(¥.(0)), T(1), I,(¢) are the same as in system (37). The initial
value of system (38) is £(0) = (—1.1 — 0.4i, 1.4 —i).

The graph of FOMCVDNNSs (37) is divided into real and image parts. The phase plot of Re(®D (%)),
Re(Dy(1)), Im(D (1)), Im(D,(¢)) are given in Figure 1. The state trajectory of the real and image parts
of FOMCVDNNSs (37) are given in Figure 2.

051

Im(® (1))

Re( (1))
-

.-0.6 -0.4 0.2 0 02 04 06 08 1 e P
Re(# (1) m(®,(1)

Figure 1. State variable phase diagram for system (37).

el e 1)

Figure 2. State trajectory of real and imag part of system (37) without control.

First, the feasibility of Theorem 3.1 is verified. Choose i = 0.5, 3;, = 7, = I, 1, = &), = 2,
o = ¢ = 1, ¢4 = ¢ = 35 d; = d, = 20. By calculation J = 1+35 = 36,

R = max Z Inlsihs Z lalspht = max{3.5,3.5) = 3.5, R, = max Z Tlo il Z Tploali} =

max{2, 21}—21 o= 143 Forgo— 1.1, we have R + pR, = 5.81, 9% 5 R, — 50‘)%2—3019
Thus, we can get error bound % ~ 0.474. Therefore, system (37) is QTS with system (38) under the
controller (4). Figure 3 shows the time responses of state variables 7®,(t) and ¥,(r) under 7 = 0.5 and
controller (4). Figure 4 shows time responses of synchronization error Y',(#) with hybrid controller (4),
and the error bound is clearly within the range of 0.474.
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Figure 3. Time responses of state variables 7®,(r) and ‘¥,(f) under %

controller (4).
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Figure 4. Time responses of synchronization error Y',(¢) with hybrid controller (4).

In control protocol (27), we choose ¥, = 125, ¢ = 09 and 6§, = 2. I, = I, = 0. To
enhance convenience, we opt for identical system parameters, initial conditions, and fractional order.
According to Theorem 3.2, we know that FOMCVDNNSs (37) and (38) can achieve FNTS based on
the hybrid controller (27). The settling time can be approximated as 7 = 9.053. Figure 5 shows the
synchronization error of Z,(¢) with controller (27). Synchronization of ®(7),'V(¢) and ®,(r), WY,(?)

with controller (27) is shown in Figure 6.

— Rec=, )|

-~ Rec=,)

R )

T-9.053

— 1m(= ()
- -~ 1mcs )

Figure 5. Time responses of synchronization error E,(¢) with hybrid controller (27).
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Figure 6. Synchronization of @,(¢) and ¥, (¢) with hybrid controller (27).

Remark 4.1. Choosing a fractional order close to an integer (e.g., 0.98) may provide a smoother
transition from the well-established integer-order control methods to fractional-order methods. This
helps in leveraging the benefits of fractional calculus while maintaining a level of familiarity with
traditional control concepts.

5. Conclusions

We investigated the QPS and FNTS for FOMCVDNNs. Employing non-separation methods, we
directly examined the FOMCVDNNSs and derived the necessary criteria for QPS and FNTS using the
hybrid control scheme. The results presented in this article enrich the synchronization control findings
of pre-existing FOMCVDNNSs [38,39]. Finally, through numerical simulation, the theoretical results
were substantiated. In our future research, we consider incorporating distributed delay into the system
and investigate its fixed-time, preassigned-time, and discrete-time [40] synchronization problems.
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