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Abstract: This paper focuses on the key issues of mosquito population control, particularly exploring
the impact of periodic releases of sterile males in the population model with a stage structure. We
construct and analyze a model that includes only sexually active sterile mosquitoes in the dynamic
interaction system. We focus on the system’s dynamical behaviors under two scenarios: when the
sexual lifespan T̄ equals the release period T of sterile mosquitoes, and when T̄ is less than T . In
the first scenario, we explore the existence and stability of equilibria, identifying a pivotal threshold
m∗ that determines the requisite release amount. In the second scenario, we convert the problem into
an impulsive switched system and derive sufficient conditions for the local asymptotic stability of
the extinction equilibrium. We also establish the existence of positive periodic solutions using the
geometric method of differential equations and the fixed point theorem. Our conclusions show that the
relationship between the sexual lifespan and release period of sterile mosquitoes significantly impacts
the stability of the mosquito population. Additionally, our numerical simulations not only corroborate
but they also complement our theoretical findings.
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1. Introduction

Mosquito-borne diseases, such as malaria, dengue fever and yellow fever, are highly detrimental
infectious diseases transmitted by mosquitoes. These diseases are prevalent worldwide and pose a
significant threat to human life and health. Effectively controlling mosquito-borne diseases has become
a primary focus for public health departments and researchers. Since there are no effective vaccines for
these diseases, suppressing mosquito populations has emerged as a crucial strategy for controlling their
spread. In recent times, apart from conventional physical and chemical approaches, the emergence of
biological techniques has been observed, which include the release of sterilized mosquitoes or those
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carrying the bacterium Wolbachia. This approach has gained widespread recognition and proven to
be highly effective in suppressing wild mosquito populations. Numerous studies delved specifically
into the use of sterile insect release as a means for targeted population control [1, 2]. Concurrently,
some research investigated the role of the endosymbiotic bacterium, Wolbachia, in inducing resistance
to the dengue virus within Aedes aegypti [3, 4]. Efforts have also been made to devise methods for
controlling specific mosquito-borne diseases [5–7]. Throughout these explorations, comprehensive
analyses of distinct population characteristics, including population diffusion and periodic changes,
among others, have been undertaken [8, 9]. In addition, a study [10] has successfully implemented a
blend of incompatible and sterile insect techniques to eradicate wild mosquitoes.

Researchers have employed a diverse range of mathematical models to simulate various release
modes of sterile mosquitoes, thereby exploring effective strategies under distinct scenarios. For
instance, uninterrupted continuous release strategies, which are grounded in ordinary differential
equation or delay differential equation models, have been thoroughly investigated [11–13]. Zheng,
along with other researchers, developed several switched systems to scrutinize the impact of releasing
Wolbachia-infected mosquitoes [14–16]. Moving beyond one-dimensional models, the authors of [17]
devised and examined a suite of high-dimensional ODE models with a stage structure. Furthermore,
the release strategies for both extended and finite periods were probed from an optimal control
perspective [18, 19], while [20] paid specific attention to impulsive release strategies within the
framework of open-loop and closed-loop control. Yu and his colleague introduced the notion of
the sexual lifespan of sterile mosquitoes during the construction of mosquito population suppression
models [21–23]. Building upon this foundation, scholars initiated a series of dialogues on the interplay
between sexual lifespan and pulse release strategies. They further constructed some switched dynamic
systems incorporating delay effects [24, 25] and the stage structure [26–28].

Frequently, sterile male mosquitoes are introduced into the environment to vie for copulation
chances alongside their wild counterparts. When females engage in reproduction with these sterile
males, they either cannot lay eggs or their eggs do not hatch. Consequently, repeated release of
sterile male mosquitoes can progressively diminish the wild mosquito population. However, male
mosquitoes have a relatively short lifespan and remain sexually active for even shorter periods. Only
sexually active sterile mosquitoes can effectively compete with wild male mosquitoes for mating
opportunities [12,14,22,23,25]. Considering these factors, Yu and his collaborators suggested that only
sexually active sterile mosquitoes should be taken into account in the dynamic system of interaction
between the two types of mosquitoes. Moreover, since sterile mosquitoes remain sexually active for
a brief period, the impact of their natural death can be neglected when constructing mathematical
models [14, 22, 23, 25]. For instance, Yu and his partners gave nearly comprehensive analysis of the
population suppression model based on the following equation

dw(t)
dt
= w(t)

(
aw(t)

w(t) + g(t)
− µ − ξ(w(t) + g(t))

)
, (1.1)

where w(t) and g(t) represent the numbers of wild mosquitoes and sexually active sterile ones in the
field, respectively. The birth rate per wild mosquito, denoted by a, adheres to logistic growth. ξ and µ
correspond to the density-dependent and density-independent mortality rates, respectively.

Lin and Hui in [27] investigated a similar model, grounded in the same assumptions and research
methodology. Meanwhile, Ai et al. in [26] explored a two-dimensional stage structured model of
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interacting wild and sterile mosquitoes, wherein the wild mosquito population comprises both larvae
and adults.

The mosquito life cycle is known to consist of several stages, each with unique environmental
adaptation necessities. For example, the development of eggs and larvae during the aquatic phase
is substantially impacted by competition within the species, while adult mosquitoes are barely
affected. Moreover, the released mosquitoes are primarily sterile males, which compete with wild male
mosquitoes for mating opportunities with wild female mosquitoes [29]. Consequently, it is essential
for mathematical models to factor in the various growth stages of mosquitoes and distinguish between
male and female groups. We observe that most existing mosquito population suppression models
overlook the stage structure of wild mosquitoes when characterizing their growth. Although a few
models consider the stage structure of mosquito growth, such as [26], the sex structure is ignored.

In this work, we will develop a mosquito population model incorporating both stage and sex
structure, as well as periodic releases of sterile individuals, while considering only sterile mosquitoes
with mating ability in the dynamic system.

We organize this paper as follows. We will first develop a novel mosquito population model
incorporating stage and sex structure in Section 2, in which sterile males are assumed to be periodically
released and possess mating capability only for a limited duration. Then we will examine the stability
of the extinction equilibrium and the presence of positive periodic solutions of the proposed model
in Section 3. Subsequently, some numerical simulations are presented in Section 4 to validate the
theoretical findings. Finally, a brief conclusion will be offered in Section 5.

2. Model formulation

Almeida et al. in [30] considered a population model for mosquitoes as follows:

dE
dt
= βEF(1 −

E
K

) − (τE + δE)E,

dL
dt
= τEE − L(cL + τL + δL),

dP
dt
= τLL − (τP + δP)P,

dF
dt
= ντPP − δF F,

dM
dt
= (1 − ν)τPP − δM M,

(2.1)

where E(t), L(t), P(t), F(t) and M(t) represent the number of eggs, larvae, pupae, adult females and
adult males in the field, respectively. βEF(1− E

K ) is interpreted as a “skip oviposition” behavior whereby
females are capable of selecting their breeding sites and seeking oviposition sites with high food
content and low intraspecific competition pressure [6]. βE denotes the oviposition rate, while K and
τE are the environmental capacity and the hatching rate of eggs, respectively. ν and 1 − ν respectively
represent the proportion of pupae developing into females and males. τL and τP are transition rates, c
represents the intraspecific competition of larvae and δE, δL, δP, δF , δM are the respective death rates.

To simplify this system, the authors of [30] proposed the following assumptions:
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(I) Assume that the time dynamics in the larvae and pupae compartments are rapid.
(II) Assume that the competition at larval stage is negligible (i.e., c ≪ 1).
(III) Assume that males and females have the same death rate (δF = δM) and the probability of

pupae emerging as females or males is equal (ν = 1
2 ) such that male and female consequently satisfy

the same equation. Without loss of generality, we can let F = M.
Under these assumptions, the equations of P(·) and L(·) are at equilibrium. That is

P =
τLτEE

(τP + δP)(τL + δL)
, L =

τEE
τL + δL

. (2.2)

By incorporating (2.2) into system (2.1) and introducing a release function u(·) for sterile male
mosquitoes, we can derive the following simplified model for the interaction between wild and sterile
mosquitoes, as presented in [30]:

dE
dt = βEF

(
1 − E

K

)
F

F+γMs
− (τE + δE) E,

dF
dt = νβF E − δF F,
dMs
dt = u(·) − δS Ms,

(2.3)

where Ms(t) represents the number of sterile males at time t and γ describes the mating competitiveness
of sterile males. A new notation, βF =

τPτLτE
(τP+δP)(τL+δL) , is introduced.

In this paper, akin to [12, 14, 22, 23, 25], we present the concept of the sexual lifespan of sterile
mosquitoes. We denote the number of sterile mosquitoes with mating ability at time t as Ms(t) and
disregard the natural mortality of sexually active sterile mosquitoes. Consequently, system (2.3) can
be rewritten in the following form: dE

dt = βEF
(
1 − E

K

)
F

F+γMs
− (τE + δE) E,

dF
dt = νβF E − δF F.

(2.4)

Assume that sterile males are impulsively introduced into the field in quantities of m at discrete
time t = kT, k = 0, 1, 2, · · · , with T representing the period of releases. Furthermore, let T̄ denote the
sexual lifespan of sterile males; upon release, they will lose their mating capabilities after this time
span. There are three cases concerning the relationship between T and T̄ : (1) T = T̄ ; (2) T > T̄ ; (3)
T < T̄ .

For the first case, we can easily deduce Ms(t) ≡ m for t ≥ 0. As a result, system (2.4) transforms
into:  dE

dt = βEF
(
1 − E

K

)
F

F+γm − (τE + δE) E,
dF
dt = νβF E − δF F.

(2.5)

A number of experimental investigations have shown that the sexual lifespan of sterile males is
generally short [14]. Consequently, in some prior research, it has been assumed that the sexual lifespan
of sterile males is shorter than the period during which they are released. In the present study, we
also examine the case where T > T̄ . Under such circumstances, the sexually viable sterile males in
the environment are not replenished at a sufficient rate, which implies that when the formerly released
sterile ones have lost their capacity to mate, new sterile mosquitoes have not been introduced yet. In
this scenario, the quantity of sterile males possessing mating capabilities, Ms(t), is a stepwise constant
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function with period T as follows

Ms(t) =
{

m (k − 1)T < t ≤ (k − 1)T + T̄ , k = 1, 2, · · · ,
0 (k − 1)T + T̄ < t ≤ kT.

(2.6)

Subsequently, system (2.4) undergoes a transformation

dE
dt
= βEF(1 − E

K ) F
F+γm − (τE + δE)E,

dF
dt = νβF E − δF F,

 (k − 1)T < t ≤ (k − 1)T + T̄ ,

dE
dt
= βEF(1 −

E
K

) − (τE + δE)E,
dF
dt = νβF E − δF F,

 (k − 1)T + T̄ < t ≤ kT,

(2.7)

where k = 1, 2, · · · .
Clearly, system (2.7) is a switched system, consisting of two continuous-time subsystems and a

governing rule that directs the transition between these two subsystems.
In this work, we will study the dynamic behaviors of system (2.4) for the cases T = T̄ and T > T̄ ,

that is, the dynamic behaviors of systems (2.5) and (2.7). We mainly investigate the stability of the
extinction equilibrium and the existence of positive periodic solutions.

3. Dynamic analysis

3.1. Preliminaries

First, we will examine the scenario in which no sterile males are released into the environment,
meaning that Ms(t) = 0. In this case, system (2.4) becomes{ dE

dt = βEF(1 − E
K ) − (τE + δE)E,

dF
dt = νβF E − δF F.

(3.1)

Through direct calculation, we can get that when νβEβF > δF(τE + δE), system (3.1) possesses a
positive equilibrium A∗(E∗, F∗), where

E∗ = (1 −
δF(τE + δE)
νβFβE

)K, F∗ =
νβF

δF
(1 −

δF(τE + δE)
νβFβE

)K. (3.2)

When νβEβF ≤ δF(τE + δE), system (3.1) has no positive equilibrium.
Denote

ℵ0 :=
νβEβF

δF(τE + δE)
;

then, system (3.1) possesses a unique positive equilibrium A∗(E∗, F∗) when ℵ0 > 1, where E∗ = (1 −
1
ℵ0

)K, F∗ = νβF
δF

(1− 1
ℵ0

)K.Obviously, ℵ0 is the classical basic offspring number of wild mosquitoes [6].
According to system (2.4), we can easily get that

Ω = {(E, F) ∈ R2
+ : 0 ≤ E ≤ K, 0 ≤ F ≤

νKβF

δF
}

is a globally attractive positive invariant set of (2.4). In this paper, we mainly study system (2.4) in the
region Ω.

In addition, by selecting Dulac function B(E, F) = 1, we can verify that system (2.4) has no closed
orbits in R2

+. Then we can obtain the subsequent result related to (3.1) when Ms(t) = 0.
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Theorem 1. For system (3.1), if ℵ0 ≤ 1, the extinction equilibrium A0(0, 0) is a globally asymptotically
stable node and no positive equilibrium exists. Conversely, if ℵ0 > 1, the system has a unique
positive equilibrium A∗(E∗, F∗) that is globally asymptotically stable, while the extinction equilibrium
A0 becomes unstable.

Proof. To discuss the stability of the equilibria, we first calculate the Jacobian matrix of (2.5) as follows

J =
(
−
βE F

K − (τE + δE) βE(1 − E
K )

νβF −δF

)
.

Then we can deduce

JA0 =

(
−(τE + δE) βE

νβF −δF

)
and

JA∗ =

(
−
βE F

K − (τE + δE) δF (τE+δE)
νβF

νβF −δF

)
.

Obviously, tr(JA0) < 0 and tr(JA∗) < 0. □

When ℵ0 < 1, we can easily get Det(JA0) > 0 and that the unique equilibrium A0(0, 0) is an
asymptotically stable node. Since system (2.4) has no closed orbits in R2

+ and there is no other
equilibrium, we can claim that A0(0, 0) is the positive limit set of all trajectories in R2

+. That is, A0(0, 0)
is globally asymptotically stable. When ℵ0 > 1, we have that Det(JA0) < 0,Det(JA∗) =

δFβE F∗

K =

δFβEβF(ℵ0 − 1). Then A0(0, 0) is unstable and A∗(E∗, F∗) is asymptotically stable. Since A∗(E∗, F∗) is
the unique equilibrium which is stable, we can claim that it is the positive limit set of all trajectories in
R2
+. Thus A∗(E∗, F∗) is globally asymptotically stable if ℵ0 > 1. The proof is completed.

Given that our focus is on cases where the wild mosquito population in the field is significantly
large and requires control measures, we assume ℵ0 > 1 in this study.

In what follows, we investigate the dynamic properties of systems (2.5) and (2.7) within the region
Ω when ℵ0 > 1.

3.2. Constant releases

We will now examine the case of constant releases, where Ms(t) ≡ m > 0. In this case, system (2.4)
is transformed into system (2.5).

It is easy to obtain that the extinction equilibrium A0 of (2.5) is locally asymptotically stable. Next,
we explore the existence of positive equilibria. For convenience, let

m1 =: mγ.

In order to confirm the existence of a positive steady state (E, F), we must solve the subsequent
algebraic equations

βEF(1 −
E
K

)
F

F + m1
− (τE + δE)E = 0, νβF E − δF F = 0.
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By direct calculation, we get E = FδF
νβF

, and F is a positive root of

Φ(F) : = βEF(1 −
δF F

KνβF
)

F
F + m1

− (τE + δE)
δF F
νβF

= −
F

F + m1
[
βEδF F2

KνβF
− F(βE − (τE + δE)

δF

νβF
) + m1(τE + δE)

δF

νβF
]

= −
βEF

F + m1
[
δF F2

KνβF
+ F(

1
ℵ0
− 1) +

m1

ℵ0
]

= −
βEF

ℵ0(F + m1)
[
ℵ0δF F2

KνβF
− F(ℵ0 − 1) + m1].

Let

Θ(F) :=
ℵ0δF F2

KνβF
− F(ℵ0 − 1) + m1 = 0;

then the discriminant of this quadratic equation is

Λ(F) : = (ℵ0 − 1)2 −
4m1δFℵ0

KνβF

= (ℵ0 − 1)2 −
4m1βE

K(τE + δE)
.

(3.3)

Define a threshold value for the release amount m as

m∗ =
K(1 − ℵ0)2(τE + δE)

4βEγ
; (3.4)

then we have the following conclusions.

Lemma 1. (i) If 0 < m < m∗, then Λ(F) > 0 and system (2.5) has two positive equilibria A1(E1, F1)
A2(E2, F2), where

E1 =
δF F1

νβF
, F1 =

(ℵ0 − 1) −
√

(1 − ℵ0)2 −
4m1βE

k(τE+δE)

2βE
K(τE+δE)

,

E2 =
δF F2

νβF
, F2 =

(ℵ0 − 1) +
√

(1 − ℵ0)2 −
4m1βE

k(τE+δE)

2βE
K(τE+δE)

.

(ii) If m = m∗, thenΛ(F) = 0 and system (2.5) has a unique positive equilibrium Am∗(Em∗ , Fm∗), where

Em∗ =
Fm∗δF

νβF
, Fm∗ =

(ℵ0 − 1)K(τE + δE)
2βE

.

(iii) If m > m∗, then Λ(F) < 0 and system (2.5) has no positive equilibrium point.
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To determine the stability of positive equilibria, we compute the Jacobian matrix of (2.5) as follows

J =
( −νβEβF F
δF (m1+F) βE(1 − δF F

KνβF
)( F

m1+F +
m1F

(m1+F)2 )
νβF −δF

)
.

We can easily get that trJ = −νβEβF F
δF (m1+F) − δF < 0 and

|J| =
νβEβF F
m1 + F

− [
νβEβF F
m1 + F

+
νβEβFm1F
(m1 + F)2 −

βEδF F2

K(m1 + F)
−
βEδFm1F2

K(m1 + F)2 ]

=
βEδFm1F2

K(m1 + F)2 +
βEδF F2

K(m1 + F)
−
νβEβFm1F
(m1 + F)2

= −νβEβF FH′(F),

(3.5)

where

H(F) =
−Θ(F)
ℵ0(m1 + F)

=
F

m1 + F
−

δF F2

KνβF

m1 + F
−

1
ℵ0
.

Since −H′(F) = − Θ(F)
ℵ0(m1+F)2 +

Θ′(F)
ℵ0(m1+F) and Θ(F1) = Θ(F2) = 0, we can obtain that |J(A1)| < 0 and

|J(A2)| > 0. Therefore, A1(E1, F1) is an unstable saddle, while A2(E2, F2) is locally asymptotically
stable.

To sum up, we get the subsequent conclusions.

Theorem 2. For system (2.5), the extinction equilibrium A0 is always locally asymptotically stable. In
addition, when ℵ0 > 1,

(i) if 0 < m < m∗, then A1(E1, F1) is an unstable saddle, while A2(E2, F2) is locally asymptotically
stable;

(ii) if m = m∗, then the unique positive equilibrium Am∗(Em∗ , Fm∗) is a saddle node;
(iii) if m > m∗, then the extinction equilibrium A0 is globally asymptotically stable.

3.3. Periodic releases

In case where the release period of sterile males is longer than the sexual lifespan, specifically,
T̄ < T , the number of sterile males with mating ability Ms(t) switches between two levels, as illustrated
in (2.6). Consequently, system (2.4) is converted to system (2.7).

Evidently, systems (2.5) and (3.1) are two subsystems of (2.7). The continual switching between
these two subsystems is crucial to the dynamics of (2.7). With the occurrence of switching, the
extinction equilibrium A0(0, 0) is the unique equilibrium of system (2.7). We first study the stability of
A0.

If ℵ0 =
νβEβF

δF (τE+δE) > 1, then we have that νβEβF > δF(τE + δE). Since βF =
τPτLτE

(τP+δP)(τL+δL) < τE and
ν ∈ (0, 1), then we get that τE + δE > νβF and βE > δF .
Let

λ = max{βE, νβF}, λ0 := min {τE + δE, δF}, λ1 := min {τE + δE − νβF , δF}.

Obviously, λ > λ0 ≥ λ1. Given any 0 < σ < 1, we further define

ω :=
λ − λ0 + (1 − σ)λ1

λ − λ0
> 1, θ :=

σγmλ1

βE
.
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Theorem 3. If ℵ0 > 1 and T̄ < T < ωT̄ , then for any E(0) + F(0) < θ, the inequality

0 ≤ E(t) + F(t) ≤ (E(0) + F(0))eκT̄ e−κt, t > 0 (3.6)

holds, where κ = λ1(1 − σ) T̄
T − (λ − λ0)(1 − T̄

T ) > 0. Thus the extinction equilibrium A0(0, 0) of
system (2.7) is locally asymptotically stable.

Proof. Suppose that (E(t), F(t)) is a solution of system (2.7) with E(0)+F(0) < θ for a fixed σ ∈ (0, 1).
Let Q(t) = E(t) + F(t), t ∈ [kT, kT + T̄ ], k = 0, 1, 2, · · · .

Based on the first two equations of system (2.7), we can deduce that

Q′(t) ≤
βE

γm
Q2(t) − λ1Q(t) = (−λ1 +

βE

γm
Q(t))Q(t). (3.7)

If Q(kT ) < θ, we can assert that Q(t) < θ for t ∈ [kT, kT + T̄ ]. We will prove this statement via
contradiction. Suppose that there exists a t > 0 for which Q(t) < θ when t ∈ [kT, t), but that Q(t) = θ.
Consequently, it follows that Q′(t) ≥ 0. However, from (3.7), we have

Q′(t) ≤ (−λ1 +
βE

γm
θ)θ = −(1 − σ)λ1θ < 0,

which leads to a contradiction.
Thus we can get

Q′(t) < −(λ1 −
βE

γm
θ)Q(t) = −(1 − σ)λ1Q(t),

which can yield Q′(t) < 0 and Q(t) < Q(kT ) < θ, t ∈ [kT, kT + T̄ ]. Therefore we obtain

Q(t) ≤ Q(iT )e−(1−σ)λ1(t−kT ), t ∈ [kT, kT + T̄ ]. (3.8)

Similarly, according to the last two equations of system (2.7) for t ∈ [kT + T̄ , (k + 1)T ], we can
easily get

Q′(t) ≤ (λ − λ0)Q(t),

and then
Q(t) ≤ Q(kT + T̄ )e(λ−λ0)(t−kT−T̄ ) ≤ Q(kT + T̄ )e(λ−λ0)(T−T̄ ). (3.9)

By (3.8) and (3.9), we obtain

Q(t) ≤ Q(kT )e−(1−σ)λ1T̄ e(λ−λ0)(T−T̄ ) = ηQ(kT ), t ∈ [kT + T̄ , (k + 1)T̄ ], (3.10)

where η := e−(1−σ)λ1T̄+(λ−λ0)(T−T̄ ) < 1.
Obviously, Q((k + 1)T ) ≤ ηQ(kT ) and Q(kT ) < ηkQ(0), k = 0, 1, 2, · · · .
If t ∈ [kT, kT + T̄ ], then k > (t−T̄ )

T , and from (3.8) we know that

Q(t) ≤ Q(0)ηk ≤ Q(0)eκT̄ e−κt, t ∈ [kT, kT + T̄ ]. (3.11)

If t ∈ [kT + T̄ , (k + 1)T ], then k + 1 > t
T , and from (3.10) we know that

Q(t) ≤ Q(0)ηk+1 ≤ Q(0)ηt/T ≤ Q(0)e−κt, t ∈ [kT + T̄ , (k + 1)T ]. (3.12)

According to (3.11) and (3.12) , we can easily obtain (3.6), which indicates the local asymptotic
stability of the extinction equilibrium A0(0, 0) of system (2.7). The proof is completed. □
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Clearly, Theorem 3.3 only provides sufficient conditions for the local stability of A0(0, 0). Owing to
the limitations of the theorem’s conditions, the applicability of this result is somewhat restricted. Apart
from examining A0(0, 0), we are also intrigued by the periodic fluctuations in mosquito population
levels caused by the recurring release of sterile males. We will now investigate the presence of positive
periodic solutions for system (2.7) in scenarios where 0 < m < m∗ and m > m∗, respectively.

Switched system (2.7) is composed of two subsystems (2.5) and (3.1). According to the previous
discussion, if ℵ0 > 1 and 0 < m < m∗, system (2.5) has two positive points Ai(Ei, Fi) , i = 1, 2 ( see
Lemma 1), while system (3.1) has a unique positive point A∗(E∗, F∗) given in (3.2). It is easy to verify
that F∗ > F2 > F1 and K > E∗ > E2 > E1.
Let

Ω0 := [E2, E∗] × [F2, F∗]

be a rectangle in the EF-phase plane; then, we obtain the subsequent result.

Theorem 4. If ℵ0 > 1 and 0 < m < m∗, then system (2.7) exhibits a continuous T-periodic solution
within Ω0. Furthermore, if a solution (E(t), F(t)) of system (2.7) fulfills the conditions E(t0) ≥ E1

and F(t0) ≥ F1 for a certain t0 ≥ 0, then E(t) ≥ E1 and F(t) ≥ F1 hold for all t > t0 and
dist((E(T ), F(t)),Ω0) → 0 as t → ∞. In addition, if such a solution is periodic, then (E(t), F(t)) ∈ Ω0

for all t ≥ 0.

Proof. Let ζ(E) := K(τE+δE)E
K−E , E ∈ [0,K]; then, the vertical isoclinics E′ = 0 of (2.5) and (3.1) are

F = H1(E) :=
1

2βE
[ζ(E) +

√
ζ2(E) + 4βEm1ζ(E)] and F = H2(E) :=

1
βE
ζ(E),

respectively. Since H1(E) > H2(E), the positions of these two isoclinics are as shown in Figure 1. In
addition, F = G(E) := νβE E

δF
is the shared horizontal isoclinic of (2.5) and (3.1).

E
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1EO

F

1A

*A

1P

mE 2E
*E ME

2P

1Q 2Q

1( )F H E= 2 ( )F H E=

( )F G E=

1F

mF

2F

*F

MF

Figure 1. The phase-plane analysis in Theorem 4.

Take any two positive numbers Em, EM such that E1 < Em < E2 < E∗ < EM < K and denote
Fm := G(Em) and FM := G(EM). Since G(E) is strictly monotonically increasing with respect to E,
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we have that Fm < FM. Now let Ω1 be the closed rectangle with the vertices P1, P2,Q1 and Q2, where
P1 = (Em, Fm), P2 = (EM, Fm),Q1 = (Em, FM) and Q2 = (EM, FM) (see Figure 1).

Obviously, F1 < Fm < F2 < F∗ < FM and Ω0 lies in the inside of Ω1. Given the strictly monotonic
increasing of G(E), the segment P1P2 lies strictly below the isoclinic F = G(E), except the point P1.
Similarly, the whole segment Q1Q2 lies strictly above the isoclinic F = G(E) except the point Q2. In
addition, from the second equations of (2.5) and (3.1), we can derive

dF
dt
= δF(G(E) − Fm) > δF(G(Em) − Fm) = 0, E ∈ (Em, EM]

and
dF
dt
= δF(G(E) − FM) < δF(G(EM) − FM) = 0, E ∈ [Em, EM).

Therefore, the vector fields of (2.7) point to the interior of Ω1 on P1P2 and Q1Q2.
Furthermore, because H1(E) and H2(E) are both strictly monotonically increasing for K > E > 0,

we can easily obtain that the whole segment P1Q1 lies strictly above the isoclinic F = H1(E) and the
whole segment P2Q2 lies strictly below the isoclinic of F = H2(E). From system (2.5), we can obtain

dE
dt
=

βE

m1 + F
(1 −

E
K

)(F2 −
m1 + F
βE

ζ(E)) =
βE

m1 + F
(1 −

E
K

)(F − H1(E))(F + H−1 (E)),

where H−1 (E) = 1
2βE

[−ζ(E) +
√
ζ2(E) + 4βEm1ζ(E)] > 0.

From system (3.1), we have
dE
dt
= βE(1 −

E
K

)(F − H2(E)).

Then we can easily get that F > H1(Em) and F > H2(Em) hold on P1Q1; therefore, dE
dt > 0 holds on

P1Q1 for both (2.5) and (3.1). Similarly, F < H1(EM) and F < H2(EM) hold on P2Q2 so that dE
dt < 0

hold on P2Q2 for both systems. Then the vector fields of (2.7) point to the inside of Ω1 on segments
P1Q1 and P2Q2.

To sum up, Ω1 is a positively invariant set of system (2.7). Then for any point A ∈ Ω1, the trajectory
of (2.7) from point A will always stay in Ω1. Assume that ϕt(A) and ψt(A) are the solutions of (2.5)
and (3.1) starting from point A, respectively. Then both ϕt(A), t ∈ [0, T̄ ] and ψt−T̄ (ϕT̄ (A)), t ∈ [T̄ ,T ]
remain in Ω1.

Similar to the discussion in [26], define a Poincare map Φ : Ω1 → Ω1 as follows

Φ(A) := (ψT−T̄ ◦ ϕT̄ )(A) = ψT−T̄ (ϕT̄ (A)). (3.13)

Since Φ is continuous and maps Ω1 into Ω1, by applying Brouwer’s fixed point theorem, we can
conclude that Φ possesses a fixed point, denoted by Ã ∈ Ω1. Then the solution of (2.7) through Ã is a
continuous T -periodic solution which lies entirely in Ω1.

We note that when Em → E2, EM → E∗, it follows that Ω1 → Ω0. According to the arbitrariness of
Em, EM and the above discussion, we can deduce that the continuous T -periodic solution of (2.7) in Ω1

lies entirely in Ω0.
In addition, when Em → E1 and EM → ∞, it follows that Ω1 → [E1,∞) × [F1,∞). Therefore,

[E1,∞) × [F1,∞) is also a positively invariant set of system (2.7) for which Ω0 is a small attraction
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domain. Then for any solution (E(t), F(t)) of system (2.7) that satisfies E(t0) ≥ E1 and F(t0) ≥ F1,
t0 ≥ 0, it follows that E(t) ≥ E1 and F(t) ≥ F1 for all t > t0 and dist((E(T ), F(t)),Ω0) → 0 as t → ∞.
Moreover, if such a solution is periodic, then (E(t), F(t)) ∈ Ω0 for all t ≥ 0. The proof is completed. □

In the case where the release amount m exceeds the release threshold m∗, meaning that m > m∗, we
obtain the subsequent result concerning the existence of a positive periodic solution.

Theorem 5. If ℵ0 > 1 and m > m∗, then there must exist T0 > 0 and δ0 > 0 such that system (2.7)
exhibits a positive and continuous T-periodic solution when T̄ < T0 and T − T̄ > δ0.

Proof. It is easy to obtain that for system (2.5), there is no positive equilibrium, whereas system (3.1)
possesses a unique positive equilibrium when ℵ0 > 1 and m > m∗.

Similar to the proof in Theorem 4, we select arbitrarily two positive numbers Em and EM such
that Em < E∗ < EM and G(EM) < H1(Em). Using the same donations as in Theorem 4, let Fm :=
G(Em), FM := G(EM) and Ω1 be the closed rectangle with vertices P1 := (Em, Fm), P2 := (EM, Fm),
Q1 := (Em, FM) and Q2 := (EM, FM). In addition, we denote the intersection point of the isoclinic
F = H2(E) and the segment P1P2 by P3(E3, Fm), and then we arbitrarily choose E0 ∈ (Em, E3) and
denote P0 := (E0, Fm) and Q0 := (E0, FM) (see Figure 2).

E
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1Q 2Q

1( )F H E=
2 ( )F H E=

( )F G E=
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*F
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3P0P

0Q

0E 3E

Figure 2. The phase-plane analysis in Theorem 5.

Obviously, the rectangle Ω1 can be divided into two parts which are denoted by Ω1
1 with vertices P1,

P0, Q1 and Q0 and Ω2
1 with vertices P0, P2, Q0 and Q2, respectively. Denote

α1 : = min
{
G1(E, F)|(E, F) ∈ Ω1

1

}
< 0

α2 : = min
{
G2(E, F)|(E, F) ∈ Ω1

1

}
> 0

(3.14)

where Gi(E, F), i = 1, 2 correspond to the right-hand side expressions of the first equations in
systems (2.5) and (2.7), respectively. Then let T0 := E0−Em

|α1 |
and δ0 := E0−Em

α2
and assume that

T̄ < T0, T − T̄ > δ0; (3.15)
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then in what follows we will prove that the Poincare map Φ defined in (3.13) is continuous and maps
Ω2

1 into Ω2
1. Thus by the same discussion method in Theorem 4, it can be deduced that system (2.7)

possesses a positive and continuous T -periodic solution.
First, we demonstrate that for any given solution (E(t), F(t)) of (2.5) with (E(0), F(0)) ∈ Ω2

1, it
follows that (E(t), F(t)) ∈ Ω1 for t ∈ [0, T̄ ]. Analogous to the analysis in Theorem 4, it becomes evident
that the vector field of (2.5) points to the inside of Ω1 on the segments P1P2, Q1Q2 and P2Q2. Thus for
any given solution (E(t), F(t)) of (2.5) with (E(0), F(0)) ∈ Ω2

1, if it leaves Ω2
1, it can only cross P0Q0.

Suppose that there exists some t0 ∈ (0, T̄ ) such that (E(t0), F(t0)) ∈ P0Q0 and (E(t), F(t)) ∈ Ω2
1, t ∈

[0, t0); then, E′(t0) < 0, and the solution enters Ω1
1 after t0. We can further prove that (E(t), F(t)) ∈ Ω1

1
for t ∈ (t0, T̄ ]. If it leaves Ω1

1, it can only cross P1Q1. Suppose that there exists some t̃ ∈ (t0, T̄ ] such
that (E(t̃), F(t̃)) ∈ P1Q1 and (E(t), F(t)) ∈ Ω1

1, t ∈ (t0, t̃]; then, E′(t) = G1(E(t), F(t)) ≥ α1 for t ∈ [t0, t̃],
and E(t̃) = Em ≥ E(t0) + α1(t̃ − t0) ≥ E0 + α1T̄ . Since α1 < 0 and T̄ < T0, we get that Em > E0 + α1T0,
which contradicts with the definition of T0. Thus, for any given solution (E(t), F(t)) of (2.5) with
(E(0), F(0)) ∈ Ω2

1, we can deduce (E(t), F(t)) ∈ Ω1, t ∈ [0, T̄ ].
Next, we prove that for any solution (E(t), F(t)) of (3.1) with (E(T̄ ), F(T̄ )) ∈ Ω1, it follows that

(E(t), F(t)) ∈ Ω1, t ∈ [T̄ ,T ] and (E(T ), F(T )) ∈ Ω2
1. Obviously, the vector field of (3.1) points to the

inside of Ω1 and Ω2
1; then, they are both positively invariant sets and for any given solution (E(t), F(t))

of (3.1) with (E(T̄ ), F(T̄ )) ∈ Ω1, it follows that (E(t), F(t)) ∈ Ω1, t ∈ [T̄ ,T ]. Since Ω2
1 is also a

positively invariant set, if (E(T ), F(T )) < Ω2
1, then (E(t), F(t)) ∈ Ω1

1, t ∈ [T̄ ,T ]. However, from E′(t) =
G2(E(t), F(t)) ≥ α2, we can deduce E(T ) ≥ E(T̄ )+α2(T − T̄ ) and E0−Em ≥ E(T )−E(T̄ ) ≥ α2(T − T̄ ),
which contradicts with the definition of δ0 and (3.15).

On the basis of the above discussion, it implies that for any solution of (2.7) with (E(0), F(0)) ∈ Ω2
1,

it holds that (E(t), F(t)) ∈ Ω1 for all t ∈ [0,T ] and (E(T ), F(T )) ∈ Ω2
1. Clearly, the Poincare map Φ

defined in (3.13) maps Ω2
1 into Ω2

1 and has at least one fixed point in Ω2
1 which is denoted by Ã0 ∈

Ω2
1. Then the solution of (2.7) through Ã0 is a positive continuous T -periodic solution. The proof is

completed. □

4. Numerical simulation

In this section, we present several numerical simulations to substantiate the theoretical findings
presented in Section 3. The majority of parameter values have been sourced from [30, 31] as follows

βE = 10, γ = 1, τE = 0.05, δE = 0.03,
δF = 0.04, βF = 0.01, ν = 0.5.

(4.1)

We utilize the method for determining the environmental capacity K found in [30, 31], which takes
into account an island of 74 hectares. After estimation, the density of male mosquitoes on this island
is approximately 69 per hectare. The assumption is that in the absence of sterile mosquitoes, when the
mosquito population stabilizes, the quantity of wild male and female wild mosquitoes on the island is
approximately M∗ = F∗ = 5106. Consequently, we can determine the number of eggs E∗ = δF F∗

νβF
=

40848 at this time, as well as the approximate value of the environmental capacity

K =
E∗

1 − (τE+δE)δF
νβEβF

≈ 43641.
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For the selection of parameter T̄ , we adopt the value from [13] and set

T̄ = 2.5.

Through direct calculation, we can get

ℵ0 :=
νβEβF

δF(τE + δE)
= 15.625 > 1, m∗ =

K(1 − ℵ0)2(τE + δE)
4βEγ

≈ 18669.
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Figure 3. Dynamic behaviors of model (2.5). (a) Global stability of A∗ when m = 0; (b)
Bistable phenomenon when m = 13000 ∈ (0,m∗); (c) Semi-stability phenomenon when
m = 18669 = m∗; (d) Global stability of A0 when m = 20000 > m∗.

For the constant releases, i.e., T = T̄ , we select varying values for the release amount m and
observe the mosquito population’s changes. From Figure 3(a), it is evident that when no sterile males
are present in the field, meaning that Ms(t) = m = 0, the unique positive equilibrium A∗(E∗, F∗) is
globally uniformly asymptotically stable, aligning with the conclusion in Theorem 1. When sterile
mosquitoes are consistently released into the field, namely Ms(t) = m > 0, we find that system (2.5)
exhibits a bistable phenomenon when 0 < m < m∗, and that both the extinction equilibrium A0 and a
positive equilibrium are locally stable (refer to Figure 3(b)). As the release amount increases to m = m∗,
these two positive equilibrium points merge into a unique positive equilibrium, which is semi-stable
(see Figure 3(c)). Conversely, if m > m∗, the extinction equilibrium A0 becomes the only equilibrium
which is globally stable (see Figure 3(d)).
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For the case T > T̄ , we first let m = 1.3 × 104 < m∗; then, after simple calculation, we can
get that λ0 = λ1 = 0.04 and λ = 10. Without losing generality, we take the constant σ = 0.1 ∈
(0, 1) and then deduce ω = 1.0375 and ωT̄ = 2.5938. Choose T = 2.59; then, T̄ < T < ωT̄ and
the extinction equilibrium A0 of the switched system (2.7) is locally stable as shown in Figure 4 (a),
aligning with the conclusion in Theorem 3.3. It is worth noting that besides A0, system (2.7) also
exhibits a positive periodic solution which is locally stable. In other words, system (2.7) demonstrates
a bistable phenomenon as well. In addition, we find that the domain of attraction of the extinction
equilibrium shown in Figure 4(a) is much larger than the region determined in Theorem 3.3, which
further proves that the stability conditions given in Theorem 3.3 are only sufficient and unnecessary.
Under the same conditions, it can have a larger domain of attraction.

Furthermore, we fix the release amount m = 1.3 × 104 < m∗ and extend the release period to T =
3 > ωT̄ ; then, we find that the extinction equilibrium loses its stability while the positive continuous
periodic solution becomes globally stable (see Figure 4(b)). According to the expressions of equilibria
A∗(E∗, F∗) and A2(E2, F2) in (3.2) and Lemma 1, we can calculate that when m = 1.3 × 104,

E∗ = 40848, F∗ = 5106, E2 = 31676, F2 = 3960.

Then the rectangle region Ω0 = [E2, E∗] × [F2, F∗] defined in Theorem 4 is Ω0 = [31676, 40848] ×
[3960, 5106]. We observe that the stable periodic solutions in Figure 4(a) and (b) do fall into the region
Ω0. This further confirms the conclusion in Theorem 4.

Figure 4. Profiles produced by system (2.7) for 0 < m = 1.3 × 104 < m∗. (a) Local stability
of A0 and bistable phenomenon of system (2.7); (b) Existence and stability of a positive
continuous periodic solution.

Then we increase the release amount to m = 2 × 104 > m∗ and choose T = 2.55 and T = 3,
respectively. From Figure 5(a), we can see that when T̄ < T = 2.55 < ωT̄ , system (2.7) also shows
the bistable phenomenon, and that there is a locally stable positive periodic solution besides A0 which
is locally stable. When T = 3, the positive periodic solution becomes globally stable (see Figure 5(b)).
Compared with the case m = 1.3 × 104 < m∗ in Figure 4, we can see that the population level at the
positive stable state decreases significantly due to the increase of the release amount.
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Figure 5. Profiles produced by system (2.7) for m = 2× 104 > m∗. (a) Bistable phenomenon
of system (2.7) with T = 2.55; (b) Existence and stability of a positive continuous periodic
solution with T = 3.

In addition, if we further increase the release amount to m = 3×104 with T = 2.55, then the positive
periodic solution vanishes and A0 attains global stability. (see Figure 6).

Figure 6. Profiles produced by system (2.7) with m = 3 × 104 and T = 2.55.

Upon analyzing the numerical simulation results, we observed that the system displays diverse
equilibrium stabilities, including bistability, semistability and global stability. For a mosquito
population suppression model, deciphering the phenomena of bistability, semi-stability and global
stability is crucial as they are directly related to the dynamic variations of the population over time.
These dynamics are especially significant when considering responses to interventions targeted at
curtailing or eradicating the population. The comprehension of these phenomena aids in forecasting the
long-term consequences of varied intervention strategies and assessing the potential for the population
to either rebound or be extinguished.
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5. Conclusions

In this paper, we developed and analyzed a new mosquito population model featuring a stage
structure and periodic releases of sterile males. Certain modeling concepts from prior research were
incorporated, such as only considering sexually active sterile mosquitoes in the interactive dynamic
system and periodically and impulsively releasing sterile mosquitoes.

In light of the relationship of two important parameters T and T̄ , our primary focus is on
examining the dynamical behaviors in two distinct scenarios: T = T̄ and T > T̄ . Regarding the
first scenario, the nonautonomous system (2.4) was transformed into the two-dimensional ordinary
differential equation system (2.5). The dynamical behaviors of this system were analyzed in detail
( Theorem 2) and an important threshold m∗ for the release amount was proposed. For the scenario
T > T̄ , the nonautonomous system (2.4) was transformed into the switched system (2.7). We first
explored sufficient conditions under which the extinction equilibrium of system (2.7) is locally stable
in Theorem 3.3, and then we discussed the existence of positive periodic solutions of (2.7) for cases
0 < m < m∗ and m > m∗, respectively (Theorems 4 and 5). In addition, we conducted a range of
numerical simulations that not only corroborate our theoretical findings but also supplement the results
of theoretical investigations (see Figures 3–6).

A clear demonstration of bistability in system (2.7) is evident from Figures 3–5. This crucial
observation underlines the system’s sensitivity to initial conditions. As a result, delving deeper into
the fractal structure of the basins of attraction becomes immensely important. However, considering
the intricacy of the switched system that we have formulated, we are presently facing challenges in
identifying a suitable method to probe the stability of the positive periodic solutions. Identifying
the precise attractor regions for each stable state also remains a complex task using our current
methodology. Nevertheless, in future research work, we will further attempt new methods, such as
constructing Lyapunov functions to determine the stability of periodic solutions [32, 33]. Moreover,
the developmental process of mosquitoes is dictated by a variety of factors. Therefore, incorporating
elements such as random effects and time delay effects into our existing system can yield a more
accurate representation of mosquito population growth. Concurrently, we are continuously refining
our understanding of such mathematical modeling methods [34–37], preparing us for more extensive
research in the future.
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