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i < oo} is a subset of identically distributed, negatively dependent random variables under sub-linear
expectations. Here, we get complete convergence and Marcinkiewicz-Zygmund strong law of large
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1. Introduction

Peng [1, 2] introduced basic concepts of the sub-linear expectations space to describe the uncertainty
in probability. Stimulated by the works of Peng [1, 2], many scholars tried to discover the results under
sub-linear expectations space, similar to those in classic probability space. Zhang [3, 4] got exponential
inequalities and Rosenthal’s inequality under sub-linear expectations. Xu et al. [5], Xu and Kong [6]
investigated complete convergence and complete moment convergence of weighted sums of negatively
dependent random variables under sub-linear expectations. For more limit theorems under sub-linear
expectations, the readers could refer to Zhang [7], Xu and Zhang [8, 9], Wu and Jiang[10], Zhang
and Lin [11], Zhong and Wu [12], Gao and Xu [13], Kuczmaszewska [14], Xu and Cheng [15, 16],
Zhang [17], Chen [18], Zhang [19], Chen and Wu [20], Xu et al. [5], Xu and Kong [6], and references
therein.

In classic probability space, Chen et al. [21] obtained limiting behavior of moving average
processes under ¢-mixing assumption. For references on complete moment convergence and complete
convergence in probability space, the reader could refer to Hsu and Robbins [22], Chow [23], Hosseini
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and Nezakati [24], Meng et al. [25] and refercences therein. Inspired by the works of Chen et
al. [21], Xu et al. [5], Xu and Kong [6], we try to discuss complete convergence for the partial
sums of moving average processes generated by negatively dependent random variables under sub-
linear expectations, and the relevant Marcinkiewicz-Zygmund strong law of large number, which
complements the corresponding results in Chen et al. [21]. We also establish Conjecture 3.1 given
by Xu and Kong [6] in some sense.

We organize the remainders of this article as follows. We give relevant basic notions, concepts
and properties, and cite relevant lemmas under sub-linear expectations in Section 2. In Section 3, we
present our main results, Theorems 3.1-3.4, the proofs of which are postponed in Section 4.

2. Preliminary

Hereafter, we use notions similar to that in the works by Peng [2], Zhang [4]. Assume that (Q, F)
is a given measurable space. Suppose that H is a set of all random variables on (Q,F) fulfilling
eXy1,---,X,) € H for X;,---,X, € H, and each ¢ € C;1;,(R"), where C;1;,(R") is the set of ¢
fulfilling

lp(x) — @(y)l < C(A + xI" + ly[")(Ix = yD), ¥x,y € R"

for C > 0, m € N relying on ¢.

Definition 2.1. A sub-linear expectation E on H is a functional E : H +— R := [—oo, oo] fulfilling the
following: for every X, Y € H,

(a) X > Y implies E[X] > E[Y];

(b) E[c] =¢, Yc eR;

(c) E[AX] = AE[X], VA > O;

(d) E[X + Y] < E[X] + E[Y] whenever E[X] + E[Y] is not of the form co — co or —0o + oo.
V:F [0, 1] is named to be a capacity if

(@) V(0)=0,V() =1,

(b) V(A) <V(B),ACB,A,BeF.
Furthermore, if V is continuous, then V obey

(©) A, T A yields V(A,) T V(A) .
(d) A, | Avyields V(4,) | V(A).

V is said to be sub-additive when V(A + B) < V(A) + V(B), A,B€ F.
Under (Q, H,E), set V(A) := inf{E[£] : Iy < &,& € H}, YA € F (cf. Zhang [3]). V is a sub-additive
capacity. Write

00 0
Cy(X) = f V(X > x)dx + f (V(X > x) — 1)dx.
0 —o0

As in 4.3 of Zhang [3], throughout this paper, define an extension of E on the space of all random
variables by
E'(X) =inf{E[Y] : X <Y, Y € H}.
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Then E* is a sublinear expectation on the space of all random variables, E[X] = E*[X], VX € H, and
V(A) = E*(1y), YA € F.

Suppose X = (X1,---,X,,), Xi € Hand Y = (Yy,---,Y,), ¥; € H are two random vectors on
(Q,H,E). Y is named to be negatively dependent to X, if for ¥, on C;z;,(R™), ¥, on C;p;,(R"),
Ely1(X(Y)] < Ely1(X)]JE[¥2(Y)] whenever ¢1(X) = 0, E[Y2(Y)] = 0, E[y1(X)a(Y)] < oo,
E[ly1(X)]] < oo, E[Jf2(Y)|] < oo, and either ¢ and ¢, are coordinatewise nondecreasing or ¢; and
Y, are coordinatewise nonincreasing (see Definition 2.3 of Zhang [3], Definition 1.5 of Zhang [4]).
{Xu)o_ 1s said to be negatively dependent, if X,,,; is negatively dependent to (X;, X1, - , Xj4n—1) for
eachn > 1, —co < [ < oo. The existence of negatively dependent random variables {X,}~_., under
sub-linear expectations could be guaranteed by Example 1.6 of Zhang [4] and Kolmogorov’s existence
theorem in classic probabililty space.

Suppose X; and X, are two n-dimensional random vectors under (Q, H,,E;) and (Q,, H>,E,)
respectively. They are said to be identically distributed if for every ¢ € C;1;,(R"),

Ei[y(X)] = Ea[y(Xy)].

{X,}, is called to be identically distributed if for every i > 1, X; and X, are identically distributed.

Throughout this paper, we suppose that E is countably sub-additive, i.e., E(X) < }.7, E(X,,) could
be implied by X < > 77, X,,, X, X, € H,and X > 0, X, > 0,n = 1,2,.... Therefore E* is also countably
sub-additive. Write S, = X\, X;, n > 1. Let C denote a positive constant which may change from
line to line. I(A) or I, is the indicator function of A. The symbol a, ~ b, means that there exists two
positive constants Cy, C, fulfilling C;|b,| < |a,| < C,|b,|, x* stands for max{x, 0}, for x € R.

Asin Zhang [4], if X;, X, . . ., X, are negatively dependent random variables and f, f>, ..., f, are all
non increasing ( or non decreasing) functions, then f;(X;), f2(X>),..., f,(X,) are negatively dependent
random variables.

We cite the following under sub-linear expectations.

Lemma 2.1. (Cf. Lemma 4.5 (iii) of Zhang [3]) If E is countably sub-additive under (Q, H,E), then
for X € H,

ElX] < Cv (IX]).

Lemma 2.2. (Cf. Theorem 2.1 of Zhang [4] and its proof there) Assume that p > 1 and {Y,;n > 1} is
a sequence of negatively dependent random varables with E[Y,] < 0, k > 0, under (Q, H, E). Then for
every n > 1, there exists a positive constant C = C(p) relying on p such that for p > 2,

n n n /2
E {r<1j(1<xZ Yjp sC{ZE|Yi|P+(ZEY§]p }
R i=1 i=1
n \P n n p/2
E ((Z Y./) ) < C{ZE|Y,-|P+[ZEY?) } 2.1)
=1 i=1 i=1

By (2.1) of Lemma 2.2 and similar proof of Lemma 2.4 of Xu et al. [5], we could get the following.
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Lemma 2.3. Assume that p > 1 and {Y,;n > 1} is a sequence of negatively dependent random varables
with E[Y,] <0, k > 0, under (Q, H,E). Then for every n > 1, there exists a positive constant C = C(p)
relying on p such that for p > 2,

i P
(5]
J:

Lemma 2.4. (Cf. Lemma 2.2 and its proof of Zhong and Wu [12])If X € H,a > 0,8> 0,y >0, > 0,
Cy (le“h(leﬁ)(log(l + |X|))’7) < oo, h(-) is a slowly varying function, then there exist two positive
constants C,, C, relying on «, 8,y,n such that

E

n n p/2
< C(logn)” {Z E Y + [Z ]EYI.Z) } .
i=1

i=1

C1Cy (IXI"h(IXP)(log(1 +1X1))") < fo VAIXI > yyby™ ' hG#)dy
< GCy (IXI"h(XF)(log(1 + X)) < eo,

Proof. Here we give a detailed proof. By Lemma 2.1 of Zhong and Wu [I2], A(x) =
c(xyexp{ i Xduf, where lim,c(x) = ¢ > 0, c(x) 2 0, limo f(x) = 0. Set Z(x) =

Ix|2A(xf)(log(1 + [x]))" and write the inverse function of Z(x) to be Z~!(x). We get
[ x> 1y oogr + yyay
~ fo VX > ) (1) (@r"y* ™ h(O ) + By~ ) f () (log(1 +yy))'dy
~ fom V(X1 > 27" () == yy) dx

= fo V (IX“1R(XP)(log(1 + X)) > x) dx = Cy (IX*[R(XF)(log(1 + |X1))") < co.

3. Main results

Our main results are below.

Theorem 3.1. Assume that h is a slowly varying function, 1 < p < 2, and r > 1. Suppose {X,, =
Y aiYin,n > 1} is a moving average process produced by a sequence of negatively dependent
random varables {Y;,—oco < i < oo} with ¥\ _ a; < oo, {a;,—co < [ < oo} is a subset of numbers
being all non-negative, and for fixed —co < i < oo, Y; is identically distributed as Y under sub-linear
expectation space (Q,H,E). Suppose that for some g > max{2, rp}, Cy (|YI""h()Y|?)(log(1 + |Y]))?) <
oo, Then for all € > 0,

(@) 22y 2RV {maxi gz, (S (X - BOX)) 2 en'/7} < oo,

s )V {maxi e (S (-Xi ~ B(-X)) = en'lP} < oo,

and

(i) Sz, n2h(m)V {supy.., (ZE,(X; - B(X)) /k'P > & < oo,

Sy 02 h(m)V {supy, (S5, (=X — E(-X)) /K7 > e} < .
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Moreover, if E(X;) = —E(—X;), then for all € > 0,
(ifi) Tp2y # 20V {max) seen [Th, (X = BOX))| 2 en'/7) < oo,
S 2RV {supys, | S (X; — EXD)| /K7 2 6 < oo

Remark 3.1. Letting ay = 1, a; = 0 fori # 0, and h(x) = 1 in Theorem 3.1, and by the similar
proof of Corollary 3.1 of Xu and Kong [6], we deduce that Conjecture 3.1 of Xu and Kong [6] holds
in some sense. Adapting the proof of Theorem 3.1, we see that (ii1) of Theorem 3.1 still holds when
the condition that for some q > max{2,rp}, Cy (|Y|"?h(|Y|?)(log(1 + |Y]))?) < oo is reduced to that
Cvy ([YI"Ph(]Y|P)) < oo, and the other conditions remained unchanged. The above discussion also could
applies to that in Theorems 3.2, 3.3, 3.4.

By Theorem 2.1 (b) of Zhang [4] and its proof there, similar proof of Theorem 3.1, we could get
the following.

Theorem 3.2. Suppose that in Theorem 3.1, with the condition that Y,, is negatively dependent to
(Yos1s -+ Yuuy) for each —oco < m < oo and | > 1 in place of the assumption that {Y;, —co < [ < oo}
is a sequence of negatively dependent random varables, the other conditions remained unchanged.
Suppose that E(Y) = 0 and for some q > max{2,rp}, Cy (|Y|"?h(|Y|")(log(1 + |Y]))?) < oo. Then all
conclusions in Theorem 3.1 also hold.

We study the occation r = 1 in the following.

Theorem 3.3. Assume that h is a slowly varying function and 1 < p < 2. Suppose that {a;, —co <

i < oo} is a subset of numbers being all non-negative, Y r_.. a° < oo, where 8 € (0,1) if p = 1

i=—o0 Y

and 6 = 1if 1 < p < 2. Assume that {X, = Y- aYin,n > 1} is a moving average process

produced by a sequence of negatively dependent random varables {Y;,—oco < i < oo}, and for fixed
—00 < I < oo, Y; is identically distributed as Y under (Q, H,E). Suppose that for some g > max{2, rp},
Cy (|[YIPh(Y|P)(log(1 + |Y])?)) < co. Then for all € > 0,

(o0

h(n) d
Z TV {{21?; Z(Xi - E(X) = 8711/’7} < oo,

n=1 i=1

o h(n) .
Z ) {{2@ Z(_Xi —E(=X)) 2 sn”p} < 0.

n=1 i=1

In particular, if BY = —E(=Y), Cy (|Y|?) < 0o and V is continuous, then S ,/n'’? — E(Y) a.s. V, i.e.,
v {Q \ {lim S, /n'/? = E(Y)}} 0,
which is called the Marcinkiewicz-Zygmund type strong law of large numbers under sub-linear

expectations,

By Theorem 2.1 (b) of Zhang [4] and its proof there, similar proof of Theorem 3.3, we could get
the following.

Theorem 3.4. Suppose that in Theorem 3.1, with the condition that Y,, is negatively dependent to
(Yosts oo Yuy) for each —co < m < oo and | > 1 in place of the assumption that {Y;, —c0 < i < oo}
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is a sequence of negatively dependent random varables, the other conditions remained unchanged.
Suppose that for some g > max{2, rp},

Cy (IY7h(1Y1P)(og(1 + [Y)?)) < eo.

Then all conclusions in Theorem 3.3 also hold.

Remark 3.2. Theorems 3.3, 3.4 complement Theorem 1 for identically distributed, independent
random variables under sub-linear expectations in Zhang and Lin [11].

4. Proofs of main results

We obtain helpful lemmas firstly.

Lemma 4.1. Suppose r > 1, and 1 < p < 2. Then for all € > 0,

> n v {sup [Z(X E(X; ))) TS s}

n=1 k>"11

<Z ”h(nw{max [Z(X E(X))] (e72%7) ”P}.

Proof. We get

o

k
Z n'h(n)V {sup (Z(Xi - E(Xi))) [k > 8}
n= kzn \iZ
1 co  2M—] l k
= Z Z n"2h(n)V {sup [Z(X,- - E(X,-))] JkYP > g}

m=1 p=om-1 k>n -1

ad om_1

=C sup | ) (Xi - E(X))] 2 el S ame-apom)
; {k>2m 1 (Z n;m—l
> k

<C 2m(r—1)h(2m)V sup [ X; — E(X,-))] /kl/p > e
; k22n171 ;
- k

=C omlr= l)h MY X, — B(X; > A(-1)/p
; 2" {Sup 211’}'13()( (;( ( ))) &

8

0 k
<C Z; 2mr=Dp2m) Z V {gi’;, [Z(Xi - E(Xi))] > g20=D/p }
k
(I-1)/ m(r—1) m
{@3’5 [Z(X E(X, ))) > &2 P} Z M= p2m)

i=1 m=1

8

=C ) V
I=1

k
I(r-1) 1 o ) (=n/p
<C ; 21D p2lyy {fnsffé (ZI(X, ]E(X,))] > &2 }

8
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00 2[+l_1

< CZ Z 2h(n)V {max (Z(X E(X))) > (8/22/”)711/”}

=1 n=2!

< CZ r- 2h(n)v{max (Z(x E(X, ))) > (8/22/”)111/”}

n=1

O

Lemma 4.2. Assume that Y is a random variable fulfilling Cv (|Y|"?h(|Y|?)) < oo, for some r > 1,
p>1. Write Y = —n"YPI{Y < —n~V/P} + YI{|Y| < 0"/} + nV'PI{Y > n''?}. Suppose q > rp. Then

(o)

Z nr—l—q/ph(n)(log n)IE|Y’'|? < CCy (IYI""h(JY|")(log(1 + |Y]))9).

n=1

Proof. Since r — q/p < 0, from Lemma 2.1 and Lemma 2.4, follows that

o

Z n" 4P p(n)(log n)EY’| < Z n P h(n)(log n)Cy {|Y’|9)

n=1 n=1

%) nl/p
< > WP h(n)(log n)? f VY[ > x1) gx7 ' dx
n=1 0

< f ”W%@wwﬂf j‘

1
SCf HW>ﬂMf Y P h(y)(log y)'dy
0 1

]/p

VA{IY')? > x7} x7 ' dxdy

+C f VA|Y] > x) 277! f y 1747 p(y)(log y)?dydx
1 xP

<C+C f ) V{|Y] > x} h(x")x""" (log x)7dx
1
< CCy (IYI""h(Y1")(og(1 + Y1) < oo.
O

In the rest of this paper, let % <u<1,gQy) € CipR) fulfilling 0 < g(y) < 1 forall yand g(y) = 1
if [yl < u, g(y) =0, if [y > 1. We assume g(y) to be a decreasing function for y > 0. The next lemma
gives a useful fact in the proofs of Theorems 3.1 and 3.3.

Lemma 4.3. Assume that h is a slowly varying function and p > 1. Assume that {X,,,n > 1} is a moving
average process produced by a sequence of negatively dependent random varables {Y;, —c0 < i < oo},
{a;,—oco < i < oo} is a subset of numbers being all non-negative, and for fixed —co < i < oo, Y; is
identically distributed as Y with E(Y) = 0, Cy (|Y|?) < oo under (Q, H, E). For all € > 0, write

00 (e8] i+k
I = an—Zh(n)V {P;,f‘;ﬁ, Z a; Z Y/ > sn”"/z},

n=1 i=—c0  j=itl
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and
= hai i+k +
[ r=2 ' . , »
11 := Z; n h(n)V{Z aj g}g[zl(Yj E[Yj])] > en /4}’
"~ == j=it
where

Yi = —n'""I{Y; < =07 VPy + Y I{IY)| < 0Py + nVPIY; > 0P,

Y/ =Y, - Y=Y +n""IY; < —n"P} + (Y, - n/P)I{Y; > 0P}
Suppose I < oo and 11 < oo. Then

(o8]

Z "~ zh(n)V{maxSk > 811””} <I+1I < 0.

1<k<n
n=1

Proof. Note that

i+n

=Y S atas Y Sy

k=1 i=—c0 i=—oco  j=i+l

By Y2 o ai < 0, E(Y;) =0, and |E(X) — E(Y)| < E[X — Y|, Lemma 2.1, we get

e S0 3 ] -

i+n

n-lr Z Z |EY’

i=—co  j=i+l i=—o0  j=i+l
) i+n
<n N 4 3 EIY, - Y] < CnnPEYY| = Con PEIY”| < o7 PEGr Py Y
i=—oco  j=itl

< Cn M EyYP (1 - ( o )) < CCy {'Y'p (1 i (l%))}

< CCy {IYPH{IY] 2 pn''PY} = 0, n - 0,

where Y” and Y’ is defined as Y{" and Y| only with Y in place of Y, throughout this paper. Therefore
for n sufficiently large, we obtain

i+n

n\p Z Z < g/4.
i=—00 Jj=i+1
Then

Z "~ 2h(n)V{max Sy > gn””}

n=1 "
o] i+k

<C), ”’_2’1(”)"{1‘9,?32 DLy, vz 8n””/z}

n=1 - j=—00 Jj=i+l
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00 o0 i+k
+ RV {fgix > a Y (Y;—E[Y]]) > sn“l’/4}
n=1 =

i=—c0  j=itl
co ) i+k
<C Z; n"h(n)V {{2&); Z a; Z] Y7 > 8n1/"/2}
+ Z W 2h(m)V {Z;o a; max (J;(Y} - ]E[YJ’-])] > en'/P /4}

= I+1I

Proof of Theorem 3.1. By Lemma 4.1, it is sufficient to establish that (1) holds. Without loss of
restrictions, we assume that E(Y) = 0. By Lemma 4.3, we just need to deduce that / < oo and
Il < o0,

For I, combining Markov inequality under sub-linear expectations, Lemma 2.1, and Lemma 2.4
results in

0 ) i+k
1<C Y n2hn™ "B max | > a; » ¥}
1<k<n
n=1 i=—0c0  j=i+l

< CZl’lr_l_l/pl’l(l’l)E*|Y{,| — CZ nr_l_l/ph(l’l)]E|YI,| — CZ nr—l—l/ph(n)]Elynl
n=1 n=1 n=1

<C ) PRy (1Yl

n=1

< CZn”‘l_””h(n)f V{|Y"| > x}dx
n=1 0

<C Z n P () [V{lYl > n”f’}n”l’ + f V{|Y] > x) dx]
n=1 nt/

(oo

<C f ROV 1Y) > x'7)dx + € f Y epy | VA{IY] > x) dxdy
1 1

yi/p
00 00 x?
< Cf VAIYIP"h(Y|?) > x"h(x)} d(x"h(x)) + Cf VA{Y] > x} dxf y P p(y)dy
1 1 1
< CCy {lYI""h(|Y|P)} + Cf VAIY] > x} xP ' h(xP)dx
1
< CCy {[YI""h(]Y|P)} < oo.
For 11, by Markov inequality under sub-linear expectations, Holder inequality, Lemma 2.3, we have
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for all g > 2,

a; max
1<k<n

1H<C Z 02 h(n)n~4/PE*

n=1

1=—00

[ee)

S

li=—c0

<C Z n""2h(n)n 4'PE*

n=1

(o9

2.

1=—00

< CZ r-2- q”’h(n)[
q-1
- CZ 2 Wh(n)( )

< CZ "=2-4I7 h(n)(log n)* (nEY; )’

n=1

[

2.

1=—00

2,

i=—00

/

ot

a;E max

i+k q

(v - E[Y;D]

i+k +
Y' E Y'

I

( i+k
j=itl

i+k

[[ > - E[Y;])]
Jj=i+l

+ CZ r=1=4IP p(n)(log n)7E| Y/ |

n=1

max
1<k<n

(¥} - E[Y}]))

1<k<n

=11, + II,.

To get I1; < oo, we study two cases. If rp < 2, take g > 2, observe that in this case r —2+¢q/2 —rg/2 <
—1. By Lemma 2.1, we obtain

1L =C Y w2 hny(log nyn?” (E[Y;P)"

n=1
= C > w9 h(m)log my'n® (EIY'P)"
n=1

- 2
<€ " WAy log nye (BN P

n=1

q

=¢ Z ARy log m)? (Cy (Y1) 7

n=1

<C ) w2 () (log Y < oo,

n=1

If rp > 2, take g > pr. Note in this case E|Y|> < Cy(|Y[*) < co. We get

1l = CZ r=1=4I2 () (log n)* (E|Y;|

n=1

_ CZ 9P h(n)(log ny? (EIY'P)"

n=1

< CZ n""P(log n)?h(n) < co.

n=1

By Lemma 4.2, we conclude that /1, < co. The proof of Theorem 3.1 is complete. O
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Proof of Theorem 3.3. Without loss of restrictions, we assume that E(Y) = 0. By Lemma 4.3, we just
need to establish that / < oo and I/ < oo with r = 1. For I, by Markov inequality under sub-linear
expectations, C, inequality, Lemma 2.1, and Lemma 2.4 ( observe that § < 1), we get

0

00 oo i+k
1< E n~ ' h(n)n %PE* max E a; E Y?
1<k<n | ; —
= i=—00 Jj=i+l

<C Y hmn B = C Y hn PEIYYF = C Y hn PEIY ")
n=1

n=1 n=1

<C i h(n)n™?'PC, (|Y"|0)

n=1

<C Z hn™ P Cy {[YPHY| > 7))

n=1

< CZ n-"/Ph(n)f \' {|Y|"1{|Y| > nllP) > x} dx
n=1 0

<C f Y ""h(y) f V |Y|61{|Y|>y1/"}>x}dxdy
1

H/p

< Cfl hO) [f fe/p

< cf V{|Y| >y”P}h(y)dy
1

00 xPl?
+C f vy > x} f v h(y)dydx
1 1

< COyYPHITIY +C [V {175 2} 27 ey
1

V{[YI’I{lY| > y''7} > x} dxdy

< CCy (IYPPR(YI7)) < co.

For /1, from Markov inequality under sub-linear expectations, Holder inequality, and Lemmas 2.1, 2.3,

follows
00 i+k
< -1 -2/ po* ’
11<C E n h(n)n "'PE E al{g?j;{ E (Y EY J

n=1 i=—00 j=i+1
0 00 i+k
-1 -2/ pio* 1/2 1/2 v
<C Z n h(n)n ='’E Z a; (al lrr<1]fl<)§l [ (Y; - )] ])
n=1 i=—00 Jj=i+l
i+k
< CZ ~1=21P () Z a; Z a;E* [Q&ﬁ[zl(y E[Y; )) ]
i=—00  i=—00 J=it
2
i+k
-1-2/p . ’ ’
CZ h(n) Z a; Z a/E max [[ Z}(Yj E[Yj])] ]
i=—c0  i=—00 J=i
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<C Z n—1—2/ph(n)(log n)2 [nE[lY“Z]]

n=1

=C > nPh(n)(logn)’EIY{"] =: I
n=1
By Lemma 4.2, we get 1], < co. Now we will get almost sure convergence under V. Without loss of
restrictions, we assume E(Y;) = E(-Y;) = 0. By Cy (|Y|?) < oo, we have

(o9

Z ‘V{max 1S, > sn””} < oo, forall & > 0.

n=

Therefore,

oo >

n v {max IS«] > sn”p}
1<k<n

2k-1
n- {max ISkl > 8n1/p}

Ms 1P

1<k<n
k=1 p=2k-1
1
> —V{ max |S,|>&2""P}.
2 1<m<2k-1

By Borel-Cantelli lemma under sub-linear expectations (cf. Lemma 1 of Zhang and Lin [11]), we get

27MP max IS,| — 0, a.s. V,
1<m<2k

which yields S, /n'? — 0, a. s. V. ]
5. Conclusions

We have obtained new results about complete convergence for moving average processes produced
by negatively dependent random variables under sub-linear expectations. Results obtained in our
article extend those for negatively dependent random variables under classical probability space, and
Theorems 3.1-3.4 complement the results of Xu et al. [5], Xu and Kong [6], and in Remark 3.1 we
establish Conjecture 3.1 of Xu and Kong in some sense.
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