A $ k $-injective-coloring of a graph $ G $ is a mapping $ c: \; V\left(G \right) \to \left\{ {1, 2, \cdots, k} \right\} $ such that $ c\left(u \right) \ne c\left(v \right) $ for any two vertices $ u $ and $ v $ if $ u $ and $ v $ have a common vertex. The injective chromatic number of $ G $, denoted by $ {\chi _i}\left(G \right) $, is the least $ k $ such that $ G $ has an injective k-coloring. In this paper, we prove that for planar graph $ G $ with $ g\left(G \right) \ge 5 $, $ \Delta \left(G \right) \ge 20 $ and without adjacent 5-cycles, $ {\chi _i}\left(G \right) \le \Delta \left(G \right) + 2 $.
Citation: Yuehua Bu, Qiang Yang, Junlei Zhu, Hongguo Zhu. Injective coloring of planar graphs with girth 5[J]. AIMS Mathematics, 2023, 8(7): 17081-17090. doi: 10.3934/math.2023872
A $ k $-injective-coloring of a graph $ G $ is a mapping $ c: \; V\left(G \right) \to \left\{ {1, 2, \cdots, k} \right\} $ such that $ c\left(u \right) \ne c\left(v \right) $ for any two vertices $ u $ and $ v $ if $ u $ and $ v $ have a common vertex. The injective chromatic number of $ G $, denoted by $ {\chi _i}\left(G \right) $, is the least $ k $ such that $ G $ has an injective k-coloring. In this paper, we prove that for planar graph $ G $ with $ g\left(G \right) \ge 5 $, $ \Delta \left(G \right) \ge 20 $ and without adjacent 5-cycles, $ {\chi _i}\left(G \right) \le \Delta \left(G \right) + 2 $.
[1] | G. Hahn, J. Kratochvíl, J. $\check{S}$ir$\acute{a}\check{n}$, D. Sotteau, On the injective chromatic number of graphs, Discrete Math., 256 (2002), 179–192. https://doi.org/10.1016/S0012-365X(01)00466-6 doi: 10.1016/S0012-365X(01)00466-6 |
[2] | Y. Bu, C. Qi, J. Zhu, T. Xu, Injective coloring of planar graphs, Theoret. Comput. Sci., 857 (2021), 114–122. https://doi.org/10.1016/j.tcs.2021.01.007 doi: 10.1016/j.tcs.2021.01.007 |
[3] | Y. Bu, K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, Discrete Appl. Math., 161 (2013), 1367–1377. https://doi.org/10.1016/j.dam.2012.12.017 doi: 10.1016/j.dam.2012.12.017 |
[4] | W. Dong, W. Lin, Injective coloring of planar graphs with girth 5, Discrete Math., 315 (2014), 120–127. https://doi.org/10.1016/j.disc.2013.10.017 doi: 10.1016/j.disc.2013.10.017 |
[5] | B. Lu$\breve{z}$ar, R. $\breve{S}$krekovski, M. Tancer, Injective colorings of planar graphs with few colors, Discrete Math., 309 (2009), 5636–5649. https://doi.org/10.1016/j.disc.2008.04.005 doi: 10.1016/j.disc.2008.04.005 |
[6] | Y. Bu, C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl., 10 (2018), 1850068. https://doi.org/10.1142/S1793830918500684 doi: 10.1142/S1793830918500684 |
[7] | Y. Bu, P. Ye, Upper bounds for the injective coloring of planar graphs with girth at least five, Adv. Math., 47 (2018), 363–372. |
[8] | W. Dong, W. Lin, Injective coloring of planar graphs with girth 6, Discrete Math., 313 (2013), 1302–1311. https://doi.org/10.1016/j.disc.2013.02.014 doi: 10.1016/j.disc.2013.02.014 |
[9] | O. Borodin, A. Ivanova, List injective colorings of planar graphs, Discrete Math., 311 (2011), 154–165. https://doi.org/10.1016/j.disc.2010.10.008 doi: 10.1016/j.disc.2010.10.008 |