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1. Introduction

All graphs considered in this paper are finite simple graphs. For a planar graph G, we use V(G),
E(G), F(G), ∆(G), δ(G), g(G) and dG(u, v) to denote its vertex set, edge set, face set, maximum degree,
minimum degree, girth and the distance between u and v in graph G, respectively. For a vertex v ∈
V (G), we use k (k+ or k−)-vertex to denote a vertex of degree k (at least k or at most k). A k (k+ or
k−)-face is defined similarly. A k-neighbor of v is a k-vertex adjacent to v. For f ∈ F (G), we use b( f )
to denote the boundary walk of f and write f = [x1x2 · · · xk] if x1, x2, · · · , xk are the vertices of b( f ) in
the clockwise order.

An injective k-coloring of a graph G is a vertex coloring c : V (G) → {1, 2, · · · , k} such that c (u) ,
c (v) if u and v have a common neighbor. The injective chromatic number of G, denoted by χi (G), is
the least integer k such that G has an injective k-coloring.

The idea of injective coloring was introduced by Hahn et al. [1]. They proved the inequality ∆ ≤

χi(G) ≤ ∆2−∆+1 for any planar graph G with maximum degree ∆. For planar graph G with g (G) ≥ 4,
there are fewer results, Bu et al. [2] proved that χi (G) ≤ ∆ + 6 if ∆ ≥ 20 and 4-cycle and 4-cycle are
disjoint. For planar graph G with g (G) ≥ 5, Bu and Lu [3] proved that χi(G) ≤ ∆ + 7; then Dong and
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Lin [4] improved this result to χi(G) ≤ ∆ + 6; Luz̆ar et al [5] proved that χi(G) ≤ ∆ + 4 if ∆ ≥ 439;
recently, Bu and Huang [6] showed that χi(G) ≤ ∆ + 4 if ∆ ≥ 11; Bu and Ye [7] improved this upper
bound to ∆ + 3 when ∆ ≥ 20. For planar graph G with g (G) ≥ 6, Dong and Lin [8] proved that
χi(G) ≤ ∆ + 2 if ∆ ≥ 9 and χi(G) ≤ ∆ + 1 if ∆ ≥ 17. In [9], Borodin et al proved that for every planar
graph G, χi(G) = ∆ in each of the following cases (i-iv): (i) g(G) = 7 and ∆ ≥ 16; (ii) 8 ≤ g(G) ≤ 9
and ∆ ≥ 10; (iii) 10 ≤ g(G) ≤ 11 and ∆ ≥ 6; (iv) g(G) ≥ 13 and ∆ = 5.

In this paper, we consider the injective chromatic number of planar graph G with g(G) ≥ 5 and
prove the following theorem.
Theorem 1.1. If G is a planar graph with g(G) ≥ 5, ∆ (G) ≥ 20 and without adjacent 5-cycles, then
χi(G) ≤ ∆(G) + 2.

2. Proof of Theorem 1.1

2.1. The properties of minimal counterexample

Let G be a graph. If G can not admit any injective coloring with k colors, but any subgraph of G
can, then we call G is injective k-critical. In this section, we assume G is injective k-critical. We give
some structural properties of G.

For convenience, we give out some notations. For a k-vertex v, let N(v) = {v1, v2, · · ·, vk} with

d(v1) ≤ d(v2) ≤ · · · ≤ d(vk), D(v) =
k∑

i=1
d(vi), N2 (v) = ∪1≤i≤k (N (vi) \ {v}). We use nk(v) to denote the

number k-vertices in N(v). If d (v1) = 2 , then let N (v1) = {v, v′1}. A 2-vertex or 4+-vertex v of G is
called a heavy vertex or is heavy if D(v) ≥ ∆ + 2 + d(v), otherwise v is called a light vertex or is light.
A 3-vertex v of G is called a heavy vertex or is heavy if D (v) ≥ ∆+2+d (v) and n2 (v) = 0. Conversely,
a 3-vertex v is called a light vertex or is light if D (v) ≤ ∆ + 1 + d (v) and n2 (v) = 0. We use nl

k(v)
and nh

k(v) to denote the number of adjacent light and heavy k-vertices of v, respectively. For a partial
vertex coloring c of G, we use F(v) to denote the forbidden colors for v. Let C = {1, 2, · · ·,∆ + 2} be a
color set. For integers k and n, a k(n)-vertex is a k-vertex adjacent to n 2-vertices. Now, we discuss the
structures of G.
Lemma 2.1. Let uv ∈ E(G). If D (u) ≤ ∆ + 1 + d (u), then D (v) ≥ ∆ + 2 + d (v).
Proof. By contradiction, suppose D (v) ≤ ∆ + 1 + d (v). By the minimality of G, G − uv admits an
injective coloring with ∆ + 2 colors. Erase the colors on u and v. Since D (u) ≤ ∆ + 1 + d (u) and
D (v) ≤ ∆+ 1 + d (v), we have |F (u)| ≤ ∆+ 1, |F (v)| ≤ ∆+ 1. Let c (u) ∈ C−F (u) and c (v) ∈ C−F (v),
then G has an injective (∆ + 2)-coloring, a contradiction.

Based on Lemma 2.1, we can obtain the following two lemmas .
Lemma 2.2. δ(G) ≥ 2 and G contains no adjacent 2-vertices.
Lemma 2.3. Let v be a 3(1)-vertex of G with N (v) = {v1, v2, v3}, where d (v1) = 2, then d (v2)+d (v3) ≥
∆ + 3.
Lemma 2.4. G contains no adjacent 3(1)-vertices.
Proof. By contradiction, suppose that there exists two adjacent 3(1)-vertices u and v. Let u1 ∈ N (u)
and v1 ∈ N (v) be two 2-vertices. By the minimality of G, G − uu1 admits an injective coloring with
∆ + 2 colors. We erase the colors on u, v1 and u1. First, we can color u since |F (u)| ≤ ∆ + 1. Then
|F (v1)| ≤ ∆ + 1, |F (u1)| ≤ ∆ + 1, so we can color v1 and u1 in turn to get an injective (∆ + 2)-coloring
of G, a contradiction.

AIMS Mathematics Volume 8, Issue 7, 17081–17090.



17083

Lemma 2.5. If f = [· · · uv1vv2x · · ·], v is a light 3-vertex, v1 and v2 are 3(1)-vertices, d(u) = 2, then f
is a 6+-face.
Proof. Suppose that the lemma is not true. Assume that f = [uv1vv2x] is a 5-face, then d(x) = ∆ by
Lemmas 2.1 and 2.2. By the minimality of G, G − vv2 admits an injective coloring with ∆ + 2 colors.
We erase the colors on v, v2 and u. Since |F (v2)| ≤ ∆−2 + 1 + 2 = ∆+ 1 and |F (u)| ≤ ∆−1 + 1 = ∆, we
can color v2 and u. Finally, |F (v)| ≤ ∆ + 1 since v is a light 3-vertex, we can color v, a contradiction.

2.2. Discharging

In this section, we prove Theorem 1.1 by contradiction. Let G be a minimal counterexample of
Theorem 1.1.

Applying Eulers formula |V | + |F| − |E| = 2 and the fact
∑

v∈V(G)
d(v) =

∑
f∈F(G)

d( f ) = 2|E(G)| for a

plane graph, we have ∑
v∈V(G)

(
3
2

d (v)−5)+
∑

f∈F(G)

(d( f )−5) = −10.

Design a weight function ω (x) such that ω (x) = 3
2d (x) − 5 for each x ∈ V (G), ω (x) = d (x) − 5

for each x ∈ F (G). Hence,
∑

x∈V(G)
⋃

F(G)
ω(x) = −10. Next, we shall transfer weight. Our discharging

procedure has two steps. Now, let’s look at the structural properties of G, while keeping the total
weight sum constant, we obtain a new weight w

′

(x) for all x ∈ V ∪ F by transferring weights after the
first step. We shall prove that w∗(x) ≥ 0 for each x ∈ V ∪ F after the second step and then get the
following contradiction:

0 ≤
∑

x∈V(G)
⋃

F(G)

ω∗(x) =
∑

x∈V(G)
⋃

F(G)

ω(x) = −10.

This contradiction shows that G does not exist and thus Theorem 1.1 is true.
The f irst step
We define the following discharging rules.

R10. Every vertex v with d (v) ≥ 10 sends 3
2−

5
d(v) to each adjacent 9−-vertex.

R11. Let v be a 2-vertex with N (v) = {v1, v2}. If d (v1) ≤ d (v2) ≤ 9, then vi (i = 1, 2) sends 11
12 to v. If

d (v1) ≤ 9 < d (v2), then v1 sends 1
3 + 5

d(v2) to v.
R12. Let v be a 3(1)-vertex with N (v) = {v1, v2, v3}. If d(v1) = 2, 3 ≤ d (v2) ≤ 9, and d (v3) ≤ 20, then
v2 sends 5

d(v3) −
1
4 to v.

R13. Every heavy vertex v with 3 ≤ d(v) ≤ 9 sends 1
3 to each adjacent light 3-vertex.

R14. Each of 8-vertex and 9-vertex sends 1
6 to every adjacent heavy 3-vertex.

R15. Every 6+-face sends d( f )−5
d( f ) to each incident 9−-vertex.

Let ω′ (x) be the new weight of each x ∈ V ∪ F by applying the above rules. Let v be a k-vertex.
Note that k ≥ 2 by Lemma 2.2. By R10, every 10+-vertex sends at least 1 to each adjacent 9−-vertex.

(1) k = 2, w(v) = −2.
If d (v1) ≤ d (v2) ≤ 9, then vi(i = 1, 2) sends 11

12 to v. If d (v1) ≤ 9 < d (v2), then v1 sends 1
3 + 5

d(v2) to
v, v2 sends 3

2 −
5

d(v2) to v by R10 and R11. If 10 ≤ d (v1) ≤ d (v2), then vi sends 3
2 −

5
d(vi)

(i = 1, 2) to v by

AIMS Mathematics Volume 8, Issue 7, 17081–17090.



17084

R10. By R15, 6+-face sends at least 1
6 to v. Hence,

ω′ (v) ≥ −2 + min
{

11
12

+
11
12
,

1
3

+
5

d (v2)
+

3
2
−

5
d (v2)

,
3
2
−

5
d (v1)

+
3
2
−

5
d (v2)

}
+

1
6

= 0.

(2) k = 3, ω(v) = −1
2 .

Case 1. Suppose that v is a 3(1)-vertex. By Lemma 2.3, d (v2) + d (v3) ≥ ∆ + 3 ≥ 23. Note
that v is adjacent to at least a 12+-vertex and d (v2) ≥ 3. If 3 ≤ d (v2) ≤ 9, then d (v3) ≥ ∆ − 6.
By R10, R11, R12 and R15, ω′ (v) ≥ − 1

2 −
11
12 + 1

6 × 2 + 5
d(v3) −

1
4 + 3

2 −
5

d(v3) = 1
6 when d(v3) ≤ 20;

ω′ (v) ≥ −1
2 −

11
12 + 1

6 × 2 + 3
2 −

5
d(v3) ≥

5
28 when d(v3) ≥ 21. If d (v3) ≥ d (v2) ≥ 10, then ω′ (v) ≥

−1
2 −

11
12 + 3

2 −
5

d(v2) + 3
2 −

5
d(v3) + 1

6 × 2 > 0 by R10, R11 and R15.
Case 2. Supose that v is a heavy 3-vertex. Note that D (v) ≥ ∆ + 2 + 3 ≥ 25, v is a (8,8,9)-vertex

or (d1,9,9)-vertex(7 ≤ d1 ≤ 9) or (d1,d2,10+)-vertex(d1 ≤ d2 ≤ 10). By R13, a heavy 3-vertex sends at
most 1

3 to a light 3-vertex. Hence, ω′ (v) ≥ −1
2 + min

{
1
6 × 3, 1

6 × 2, 1 − 1
3 × 2

}
+ 1

6 × 2 > 0 by R10, R14
and R15.

Case 3. Suppose that v is a light 3-vertex. If v is adjacent to a 3(1)-vertex u, then u is adjacent to a
∆-vertex by Lemma 2.3. If ∆ = 20, then v sends 5

∆
− 1

4 = 0 to u. Otherwise, v sends nothing to u. If v is
adjacent to at least one 10+-vertex, then ω′ (v) ≥ −1

2 −
(

5
∆
− 1

4

)
+1+ 1

6 ×2 > 0 by R10, R12 and R15. If v
is adjacent to at most two 3(1)-vertices and not adjacent to 10+-vertex, then ω′ (v) ≥ −1

2 + 1
3 + 1

6 × 2 > 0
by R12, R13 and R15. Finally, v is adjacent to three 3(1)-vertices. If v is incident with three 6+-faces
or a 5-face, two 7+-faces or a 5-face, at least a 8+-face, then ω′ (v) ≥ −1

2 + min
{

1
6 × 3, 2

7 × 2, 1
6 + 3

8

}
> 0

by R15. If v is incident with a 5-face, two 6-faces or a 5-face, a 6-face and a 7-face, then ω′ (v) = −1
6

or ω′ (v) = − 1
12 by R15.

(3) k = 4, ω(v) = 1.
Case 1. n2 (v) = 0. By Lemma 2.3, the 3(1)-neighbor u of v is adjacent to a (∆ − 1)+-vertex. If u

is adjacent to a 21+-vertex, then v sends 0 to u. Suppose v is adjacent to a l-vertex with 19 ≤ l ≤ 20.
By R12, v sends at most 5

19 −
1
4 to 3(1)-vertex. If D (v) ≤ ∆ + 1 + 4, then v is light. Therefore,

ω′ (v) ≥ 1 − 4 ×
(

5
19 −

1
4

)
+ 1

6 × 2 > 0 by R15. If D (v) ≥ ∆ + 6, then v is heavy. If nl
3 (v) = 1, then

ω′ (v) ≥ 1 − 2 ×
(

5
19 −

1
4

)
− 1

3 + 1
6 × 2 > 0 by R12, R13 and R15. If nl

3 (v) ≥ 2, then d (v3) + d (v4) ≥ ∆.

Hence, v4 is a 10+-vertex. This implies that ω′ (v) ≥ 1 − 1
3 × 3 +

(
3
2 −

5
d(v4)

)
+ 1

6 × 2 > 0 by R10, R13
and R15.

Case 2. n2 (v) = 1. If D (v) ≥ ∆ + 6, then v is heavy. If n3 (v) = 0, then v only sends weight
to 2-vertex. By R10, R11 and R15, ω′ (v) ≥ 1− 11

12 + 1
6 ×2 > 0. If n3 (v) = 1, then d (v3)+d (v4) ≥ ∆+1.

Therefore, v4 is a 11+-vertex. It follows from R10, R11, R13 and R15 that ω′ (v) ≥ 1 − 11
12 −

1
3 +(

3
2 −

5
d(v4)

)
+ 1

6 × 2 > 0. If n3 (v) = 2, then d (v4) ≥ ∆ − 2. This together with R10, R11, R13 and R15
implies that ω′ (v) ≥ 1− 11

12 −
1
3 × 2 + (3

2 −
5

∆−2 ) + 1
6 × 2 > 0. Otherwise, D (v) ≤ ∆ + 5, then v is light and

the vertices adjacent to v are all heavy. So the 2-neighbor u of v is adjacent to a ∆-vertex and the 3(1)-
neighbor of v is adjacent to a (∆− 1)+-vertex. If the 3(1)-neighbor of v is adjacent to a 21+-vertex, then
v sends 0 to this 3(1)-vertex. This implies that ω′ (v) ≥ 1−

(
1
3 + 5

∆

)
− 3×

(
5

∆−1 −
1
4

)
+ 1

6 × 2 > 0 by R11,
R12 and R15.

Case 3. n2 (v) = 2. If D (v) ≥ ∆+6, then v is heavy. It follows from Lemma 2.1 that d (v3)+d (v4) ≥
∆+2, which means that v4 is a 11+-vertex. Therefore, ω′ (v) ≥ 1− 11

12 ×2+min
{
−1

3 + 3
2 −

5
∆−1 ,

3
2 −

5
11

}
+
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1
6 × 2 > 0 by R10, R11, R13 and R15. Otherwise, D (v) ≤ ∆ + 5, then v is light and the vertices
adjacent to v are all heavy. Hence, the 2-neighbor of v is adjacent to a ∆-vertex and the 3(1)-neighbor
of v is adjacent to a (∆ − 1)+-vertex. If the 3(1)-neighbor of v is adjacent to a 21+-vertex, then v sends
0 to this 3(1)-vertex. This together with R11, R12 and R15 yields that ω′ (v) ≥ 1 −

(
1
3 + 5

∆

)
× 2 −(

5
∆−1 −

1
4

)
× 2 + 1

6 × 2 > 0.
Case 4. n2 (v) = 3. If D (v) ≥ ∆ + 6, then v is heavy and d (v4) = ∆. If the 2-vertices adjacent to v

are all light and v is incident with at most a 5-face, then ω′ (v) ≥ 1 +
(

3
2 −

5
∆

)
− 11

12 × 3 + 1
6 × 3 ≥ 0 by

R10, R11 and R15. If the 2-vertices adjacent to v are all light and v is incident with two 5-faces, then
ω′ (v) ≥ 1+ 3

2−
5
∆
− 11

12×3+ 1
6×2 ≥ −1

6 by R10, R11 and R15. If the 2-vertices adjacent to v are all heavy,
thenω′ (v) ≥ 1+

(
3
2 −

5
∆

)
−
(

1
3 + 5

∆

)
×3+ 1

6×2 ≥ 5
6 by R10, R11 and R15. If the 2-vertices adjacent to v are

not all light, let v1 be a light 2-vertex, then we have that ω′ (v) ≥ 1+
(

3
2 −

5
∆

)
−
(

1
3 + 5

∆

)
− 11

12×2+ 1
6×2 > 0

by R10, R11 and R15. Otherwise, D (v) ≤ ∆ + 5, then v is light and the vertices adjacent to v are all
heavy. Hence, the 2-neighbor of v is adjacent to a ∆-vertex and the 3(1)-neighbor of v is adjacent to a
(∆− 1)+-vertex. If the 3(1)-neighbor of v is adjacent to a 21+-vertex, then v sends 0 to this 3(1)-vertex.
This together with R11, R12 and R15 yields that ω′ (v) ≥ 1 −

(
1
3 + 5

∆

)
× 3 −

(
5

∆−1 −
1
4

)
+ 1

6 × 2 ≥ − 49
114 .

Case 5. n2 (v) = 4. Clearly, D (v) ≤ ∆ + 5, which implies that the 2-neighbor of v is adjacent to a
∆-vertex. By R11 and R15, ω′ (v) ≥ 1 −

(
1
3 + 5

∆

)
× 4 + 1

6 × 2 ≥ −1.
(4) k = 5, ω(v) = 5

2 .
Case 1. n2 (v) ≤ 2. It follows from R11, R13 and R15 that ω′ (v) ≥ 5

2 −
11
12 × 2 − 1

3 × 3 + 1
6 × 3 > 0.

Case 2. n2 (v) = 3. If D (v) ≥ ∆ + 7, then v is heavy and d (v4) + d (v5) ≥ ∆ + 1. Therefore, v5

is a 11+-vertex. This means that ω′ (v) ≥ 5
2 −

11
12 × 3 + min

{
−1

3 +
(

3
2 −

5
∆−2

)
, 3

2 −
5

11

}
+ 1

6 × 3 > 0 by
R10, R11, R13 and R15. Otherwise, D (v) ≤ ∆ + 6, then v is light and the vertices adjacent to v are all
heavy. So the 2-neighbor of v is adjacent to a (∆−1)+-vertex and the 3(1)-neighbor of v is adjacent to a
(∆− 2)+-vertex. If the 3(1)-neighbor of v is adjacent to a 21+-vertex, then v sends 0 to this 3(1)-vertex.
By R11, R12 and R15, ω′ (v) ≥ 5

2 −
(

1
3 + 5

∆−1

)
× 3 −

(
5

∆−2 −
1
4

)
× 2 + 1

6 × 3 > 0.
Case 3. n2 (v) = 4. If D (v) ≥ ∆ + 7, then v is heavy and d (v5) ≥ ∆ − 1. By R10, R11 and R15,

ω′ (v) ≥ 5
2−

11
12×4+ 3

2−
5

∆−1 + 1
6×3 > 0. Otherwise, D (v) ≤ ∆+6, then v is light and the vertices adjacent

to v are all heavy. Hence, the 2-neighbor of v is adjacent to a (∆ − 1)+-vertex and the 3(1)-neighbor of
v is adjacent to a (∆ − 2)+-vertex. If the 3(1)-neighbor of v is adjacent to a 21+-vertex, then v sends 0
to this 3(1)-vertex. By R11, R12 and R15, ω′ (v) ≥ 5

2 −
(

1
3 + 5

∆−1

)
× 4 −

(
5

∆−2 −
1
4

)
+ 1

6 × 3 > 0.
Case 4. n2 (v) = 5. Clearly, D (v) ≤ ∆ + 6, which means that the 2-neighbor of v is adjacent to a

(∆ − 1)+-vertex. So ω′ (v) ≥ 5
2 −

(
1
3 + 5

∆−1

)
× 5 + 1

6 × 3 > 0 by R11 and R15.
(5) k = 6, ω(v) = 4.
Case 1. n2 (v) ≤ 4. It is clear that ω′ (v) ≥ 4 − 11

12 × 4 − 1
3 × 2 + 1

6 × 3 > 0 by R11, R13 and R15.
Case 2. n2 (v) = 5. If D (v) ≥ ∆ + 8, then v is heavy and d (v6) ≥ ∆ − 2. This together with

R10, R11 and R15 implies that ω′ (v) ≥ 4 − 11
12 × 5 + 3

2 −
5

∆−2 + 1
6 × 3 > 0. Otherwise, D (v) ≤

∆ + 7, then v is light and the vertices adjacent to v are all heavy. Therefore, the 2-neighbor of v is
adjacent to a (∆ − 2)+-vertex and the 3(1)-neighbor of v is adjacent to a (∆ − 3)+-vertex. If the 3(1)-
neighbor of v is adjacent to a 21+-vertex, then v sends 0 to this 3(1)-vertex. By R11, R12 and R15,
ω′ (v) ≥ 4 −

(
1
3 + 5

∆−2

)
× 5 −

(
5

∆−3 −
1
4

)
+ 1

6 × 3 > 0.
Case 3. n2 (v) = 6. It is easy to see that D (v) ≤ ∆ + 7, which implies that the 2-neighbor of v is

adjacent to a (∆ − 2)+-vertex. By R11 and R15, ω′ (v) ≥ 4 −
(

1
3 + 5

∆−2

)
× 6 + 1

6 × 3 > 0.
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(6) k = 7, ω(v) = 11
2 .

Case 1. n2 (v) ≤ 6. By R11, R13 and R15, ω′ (v) ≥ 11
2 −

11
12 × 6 − 1

3 + 1
6 × 4 > 0.

Case 2. n2 (v) = 7. It is clear that D (v) ≤ ∆ + 7, which means that the 2-neighbor of v is adjacent
to a (∆ − 3)+-vertex. By R11 and R15, ω′ (v) ≥ 11

2 −
(

1
3 + 5

∆−3

)
× 7 + 1

6 × 4 > 0.
(7) k = 8, ω(v) = 7. Observe that ω′ (v) ≥ 7 − 11

12 × 8 + 1
6 × 4 > 0 by R11, R13 and R15.

(8) k = 9, ω(v) = 17
2 . By R11, R13 and R15, ω′ (v) ≥ 17

2 −
11
12 × 9 + 1

6 × 5 > 0.

(9) k ≥ 10, ω(v) = 3
2k − 5. By R10, ω′ (v) ≥ 3

2k − 5 −
(

3
2 −

5
k

)
× k = 0.

After the first step, ω′ (x) ≥ 0 for each x ∈ V ∪ F except some 3-vertices and 4-vertices. For
f ∈ F (G), if d ( f ) ≥ 5, then ω′ ( f ) ≥ min

{
0, d ( f ) − 5 − d( f )−5

d( f ) · d ( f )
}

= 0 by R15. For convenience, a
vertex v is called bad if ω′ (v) < 0. If uv ∈ E (G) and u,v are all 10+-vertices, then uv is called special
edge.

There are four bad vertices:
I-vertex: 3-vertex v is adjacent to three 3(1)-vertices and incident with a 5-face, two 6-faces or

a 5-face, a 6-face and a 7-face, ω′ (v) ≥ −1
6 .

II-vertex: 4-vertex v is adjacent to three light 2-vertices, a ∆-vertex and incident with two 5-faces,
ω′ (v) ≥ −1

6 .
III-vertex: light 4-vertex v is adjacent to three 2-vertices, ω′ (v) ≥ − 49

114 .
IV-vertex: 4-vertex v is adjacent to four 2-vertices, ω′ (v) ≥ −1.
Obviously, bad vertex is not adjacent to bad vertex.
The second step

R20. Every 10+-vertex v sends 1
2 to incident face f through its special edge.

R21. Every 9−-vertex sends its remained positive weight averagely to each incident face.
R22. Every 5+-face sends its remained positive weight averagely to each incident bad vertex.

(1) v is I-vertex, see Figure 1a. Clearly, v is a light 3-vertex. By Lemma 2.1, D (vi) ≥ ∆ + 5, which
means that d

(
v′i
)

= ∆ for 1 ≤ i ≤ 3.
Let f1 = v1vv2xy be a 5-face with d (x) , d (y) ∈ {2,∆}, f2 and f3 be 6+-faces. By Lemma 2.2, at least

one of x and y is not 2-vertex. Note that {d (x) , d (y)} , {2,∆} by Lemma 2.5. Hence, d (x) = d (y) = ∆,
which means that v′1v′2 is a special edge. By R20, f1 receives 1

2 × 2 from v′1, v
′
2. Obviously, f1 is only

incident with a bad vertex v, which together with R22 shows that ω∗ (v) ≥ −1
6 + 1 > 0.

(a)Ⅰ-vertex (b)Ⅱ-vertex (c)Ⅲ-vertex (d)Ⅳ-vertex

Figure 1. The configurations of bad vertices. (The degrees of black nodes are the actual
degrees in the figure)
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(2) v is II-vertex, see Figure 1b. By Lemma 2.1, D (v′i) ≥ ∆ + 2 + d (v′i). Let f1 and f3 be 5-faces.
Case 1. If there is a bad vertex in

{
v′1, v

′
2, v
′
3

}
, then it can not be I, III, IV-vertex. If v′1 is a bad vertex,

then v′2 is a ∆-vertex by Lemma 2.2, which means that v2 is a heavy 2-vertex, a contradiction. Hence,
v′1 can not be a bad vertex. Similarly, v′2 can not be a bad vertex. Next, suppose that v′3 is a bad vertex,
see Figure 2a. If u is a 2-vertex, then u is a heavy 2-vertex. This is contradict with II-vertex v′3 only
adjacent to light 2-vertex. If u is a ∆-vertex, then uv4 is a special edge. By R20, f3 gets 1 from uv4.
Obviously, f3 is only incident with two bad vertices v and v′3, which implies that ω∗ (v) ≥ −1

6 + 1
2 > 0

by R22.

(a) (b)

Figure 2. II-vertex.

Case 2. If v′1, v
′
2, v
′
3 are not bad vertices, then f4 is incident with at most

⌊
d( f4)−3

2

⌋
+ 1 bad vertices.

Case 2.1. Suppose that f4 is a 7+-face. Since d (v4) = ∆, we can get ω′ ( f4) ≥ d( f4)−5
d( f4) . By the first

step and R22, ω∗ (v) ≥ 1 + 3
2 −

5
∆
− 11

12 × 3 +
d( f4)−5

d( f4) + 1
6 +

d( f4)−5
d( f4) ×

1⌊
d( f4)−3

2

⌋
+1
> 0.

Case 2.2. Suppose that f2 is a 7+-face. Since d (v4) = ∆, we can get ω′ ( f4) ≥ d( f4)−5
d( f4) . By the first

step and R22, ω∗ (v) ≥ 1 + 3
2 −

5
∆
− 11

12 × 3 +
d( f4)−5

d( f4) + 2
7 +

d( f4)−5
d( f4) ×

1⌊
d( f4)−3

2

⌋
+1
> 0.

Case 2.3. Suppose that f2 and f4 are all 6-faces, see Figure 2b. It is easy to see that f2 and f3 are
only incident with a bad vertex v, f4 is incident with at most two bad vertices.

If v′1 is a 10+-vertex, thenω′ ( f4) ≥ 1
6×2 by d (v4) = ∆. By R22, ω∗ (v) ≥ −1

6 + 1
6×

1
2 > 0. If v′2 is a 10+-

vertex, then ω′ ( f2) ≥ 1
6 × 2. By d (v4) = ∆, ω′ ( f4) ≥ 1

6 . This means that ω∗ (v) ≥ −1
6 + 1

6 ×
1
2 + 1

6 > 0
by R22. If v′3 is a 10+-vertex, then ω′ ( f2) ≥ 1

6 . By d (v4) = ∆, ω′ ( f4) ≥ 1
6 , which implies that

ω∗ (v) ≥ −1
6 + 1

6 ×
1
2 + 1

6 > 0.
If v′1, v

′
2, v
′
3 are all 9−-vertices, then we discuss the classification of d(x). We can obtain that ω′ ( f4) ≥

1
6 since d (v4) = ∆.

If d (x) ≥ 10, then xv4 is a special edge. By R20, each of x and v4 sends 1
2 to f3. Hence, ω∗ (v) ≥

−1
6 + 1

6×
1
2 +1 > 0 by R22. If 5 ≤ d (x) ≤ 9, then ω∗ (x) ≥ 3

2d (x)−5+
(

3
2 −

5
∆

)
− 11

12 (d (x) − 1)+ 1
6×

⌈
d(x)

2

⌉
≥

2
3d (x) − 17

6 by R10, R11 and R15. This means that f3 gets
(

2
3d (x) − 17

6

)
1

d(x) ≥
1
10 by R21. Hence,

ω∗ (v) ≥ −1
6 + 1

6 ×
1
2 + 1

10 > 0 by R22.
If d (x) = 4, then ω′ (x) ≥ 1 +

(
3
2 −

5
∆

)
− 11

12 × 2 −
(

5
∆−1 −

1
4

)
+ 1

6 × 2 = 14
19 by R10, R11, R12 and R15.

This implies that f3 gets 7
38 by R21. Hence, ω∗ (v) ≥ −1

6 + 1
6 ×

1
2 + 7

38 > 0 by R22. If d (x) = 3, then
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ω′ (x) ≥ −1
2 +

(
3
2 −

5
∆

)
− 11

12 + 1
6 × 2 = 1

6 by R10, R11, R12 and R15. This means that f3 gets 1
18 by R21.

Similarly, we consider the degree of u. If d (u) ≥ 3, then f4 gets at least min
{
1, 1

10 ,
1
18

}
= 1

18 . It follows
from R22 that ω∗ (v) ≥ −1

6 + 1
6 ×

1
2 + 1

18 + 1
18 ×

1
2 = 0. If d(u) = 2, then f4 is only incident with a bad

vertex v. By R22, ω∗ (v) ≥ −1
6 + 1

6 = 0.
(3) v is III-vertex, see Figure 1c. Observe that d

(
v′i
)

= ∆ (i=1,2,3) by Lemma 2.1.
Suppose that f1 or f2 is a 5-face. Without loss of generality, let f1 be a 5-face, then v′1v′2 is a special

edge. By R20, f1 gets at least 1. Clearly, f1 is only incident with a bad vertex v. This together with
R22 implies that ω∗ (v) ≥ − 49

114 + 1 > 0. Next, we consider the case when f1 and f2 are 6+-faces.
Suppose that f3 or f4 is a 5-face. Without loss of generality, let f4 be a 5-face, then f3 is a 6+-face.

After the first step, ω′ (v) ≥ 1 −
(

1
3 + 5

∆

)
× 3 −

(
5

∆−1 −
1
4

)
+

d( f1)−5
d( f1) +

d( f2)−5
d( f2) +

d( f3)−5
d( f3) (observe that v4 is

adjacent to a (∆ − 1)+-vertex if v4 is a 3(1)-vertex). Since d
(
v′i
)

= ∆ for 1 ≤ i ≤ 3, ω′
(

f j

)
≥

2(d( f j)−5)
d( f j)

for 1 ≤ j ≤ 2, ω′ ( f3) ≥ d( f3)−5
d( f3) . It is easy to see that f j is incident with at most

⌊
d( f j)−4

2

⌋
+ 1 bad

vertices for 1 ≤ j ≤ 2, f3 is incident with at most
⌊

d( f3)−3
2

⌋
+ 1 bad vertices. Claim that d( fi) ≥ 6,

d( fi)−5
d( fi)

+
2(d( fi)−5)

d( fi)
× 1⌊

d( fi)−4
2

⌋
+1
≥ 1

3 for i = 1, 2; d( f3)−5
d( f3) +

d( f3)−5
d( f3) ×

1⌊
d( f3)−3

2

⌋
+1
≥ 1

4 . By R22,

ω∗ (v) ≥ 1 −
(
1
3

+
5
∆

)
× 3 −

(
5

∆ − 1
−

1
4

)
+

d ( f1) − 5
d ( f1)

+
d ( f2) − 5

d ( f2)
+

d ( f3) − 5
d ( f3)

+
2 (d ( f1) − 5)

d ( f1)
×

1⌊
d( f1)−4

2

⌋
+ 1

+
2 (d ( f2) − 5)

d ( f2)
×

1⌊
d( f2)−4

2

⌋
+ 1

+
d ( f3) − 5

d ( f3)
×

1⌊
d( f3)−3

2

⌋
+ 1

> 0.
Suppose d( fi) ≥ 6 for 1 ≤ i ≤ 4. After the first step,

ω′ (v) ≥ 1 −
(
1
3

+
5
∆

)
× 3 −

(
5

∆ − 1
−

1
4

)
+

d ( f1) − 5
d ( f1)

+
d ( f2) − 5

d ( f2)
+

d ( f3) − 5
d ( f3)

+
d ( f4) − 5

d ( f4)
.

Since d
(
v′i
)

= ∆ for 1 ≤ i ≤ 3, we can get ω′( fi) ≥
2(d( fi)−5)

d( fi)
for 1 ≤ i ≤ 2, ω′( fk) ≥

d( fk)−5
d( fk) for 3 ≤ k ≤ 4.

It is clear that fi is incident with at most
⌊

d( fi)−4
2

⌋
+ 1 bad vertices (i=1,2), fk is incident with at most⌊

d( fk)−3
2

⌋
+ 1 bad vertices (k=3,4). By R22,

ω∗ (v) ≥ 1−
(
1
3

+
5
∆

)
×3−

(
5

∆ − 1
−

1
4

)
+

d ( f1) − 5
d ( f1)

+
d ( f2) − 5

d ( f2)
+

d ( f3) − 5
d ( f3)

+
d ( f4) − 5

d ( f4)
+

2 (d ( f1) − 5)
d ( f1)

×
1⌊

d( f1)−4
2

⌋
+ 1

+
2 (d ( f2) − 5)

d ( f2)
×

1⌊
d( f2)−4

2

⌋
+ 1

+
d ( f3) − 5

d ( f3)
×

1⌊
d( f3)−3

2

⌋
+ 1

+
d ( f4) − 5

d ( f4)
×

1⌊
d( f4)−3

2

⌋
+ 1

> 0.
(4) v is IV-vertex, see Figure 1d. By Lemma 2.1, d

(
v′i
)

= ∆ for 1 ≤ i ≤ 4.
There is exactly one 5-face in f1, f2, f3 and f4. Without loss of generality, let f1 be a 5-face, then

v′1v′2 is a special edge. By R20, f1 gets at least 1. It is easy to see that f1 is only incident with a bad
vertex v. By R22, ω∗ (v) ≥ −1 + 1 = 0. Next, we consider fi (1 ≤ i ≤ 4) is 6+-face.
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Suppose v is incident with at least a 6-face. Without loss of generality, let f1 be a 6-face. It is clear
that f1 is only incident with a bad vertex v. Since d

(
v′1

)
= d

(
v′2

)
= d

(
v′3

)
= ∆, we can get ω′ ( f1) ≥ 1

6 .
We use m6 to denote the number of 6-faces which is incident with v. After the first step and the second
step, ω∗ (v) ≥ 1 −

(
1
3 + 5

∆

)
× 4 + 1

6 × m6 + 2
7 × (4 − m6) + 2

6 × m6 = − 4
21 + 3

14m6 ≥
5

21 > 0.

Suppose v is incident with four 7+-faces. Note that fi is incident with at most
⌊

d( fi)−4
2

⌋
+1 (1 ≤ i ≤ 4)

bad vertices. Since d
(
v′i
)

= ∆, we can get ω′ ( fi) ≥
2(d( fi)−5)

d( fi)
(1 ≤ i ≤ 4). After the first step,

ω′ (v) ≥ 1 −
(
1
3

+
5
∆

)
× 4 +

d ( f1) − 5
d ( f1)

+
d ( f2) − 5

d ( f2)
+

d ( f3) − 5
d ( f3)

+
d ( f4) − 5

d ( f4)
.

By R22,

ω∗ (v) ≥ 1−
(
1
3

+
5
∆

)
×4+

d ( f1) − 5
d ( f1)

+
d ( f2) − 5

d ( f2)
+

d ( f3) − 5
d ( f3)

+
d ( f4) − 5

d ( f4)
+

2 (d ( f1) − 5)
d ( f1)

×
1⌊

d( f1)−4
2

⌋
+ 1

+
2 (d ( f2) − 5)

d ( f2)
×

1⌊
d( f2)−4

2

⌋
+ 1

+
2 (d ( f3) − 5)

d ( f3)
×

1⌊
d( f3)−4

2

⌋
+ 1

+
2 (d ( f4) − 5)

d ( f4)
×

1⌊
d( f4)−4

2

⌋
+ 1

> 0.
Now we have checked that the final weight w∗(x) ≥ 0 for each x ∈ V ∪ F. Then,

0 ≤
∑

x∈V∪F

w∗(x) =
∑

x∈V∪F

w(x) = −10,

which is a contradiction.

3. Conclusions

In this paper, we consider the injective chromatic index of planar graphs without adjacent 5-cycles
and proved that such graphs have χi(G) ≤ ∆(G) + 2 if g(G) ≥ 5 and ∆ (G) ≥ 20. A natural problem in
context of our main result is the following: What is the optimal constant c such that χi(G) ≤ ∆(G) + 2
for every planar graph G with g(G) ≥ 5 and ∆ (G) ≥ c.

Acknowledgments

This work was supported by National Natural Science Foundations of China (Grant Nos. 11771403,
11871439, 11901243 and 12201569)

Conflict of interest

The authors declare no conflicts of interest.

References
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