Research article

Injective coloring of planar graphs with girth 5

Yuehua Bu ${ }^{1,2}$, Qiang Yang ${ }^{1}$, Junlei Zhu ${ }^{3}$ and Hongguo Zhu ${ }^{1, *}$
${ }^{1}$ Department of Mathematics Sciences, Zhejiang Normal University, Zhejiang, 321004, China
${ }^{2}$ Department of Basics, Zhejiang Guangsha Vocational and Technical University of Construction, Zhejiang, 322100, China
${ }^{3}$ College of Data Science, Jiaxing University, Zhejiang, 314001, China

* Correspondence: Email: zhuhongguo@zjnu.edu.cn.

Abstract

A k-injective-coloring of a graph G is a mapping $c: V(G) \rightarrow\{1,2, \cdots, k\}$ such that $c(u) \neq$ $c(v)$ for any two vertices u and v if u and v have a common vertex. The injective chromatic number of G, denoted by $\chi_{i}(G)$, is the least k such that G has an injective k-coloring. In this paper, we prove that for planar graph G with $g(G) \geq 5, \Delta(G) \geq 20$ and without adjacent 5-cycles, $\chi_{i}(G) \leq \Delta(G)+2$.

Keywords: injective coloring; planar graph; cycle
Mathematics Subject Classification: 05C10, 05C15

1. Introduction

All graphs considered in this paper are finite simple graphs. For a planar graph G, we use $V(G)$, $E(G), F(G), \Delta(G), \delta(G), g(G)$ and $d_{G}(u, v)$ to denote its vertex set, edge set, face set, maximum degree, minimum degree, girth and the distance between u and v in graph G, respectively. For a vertex $v \in$ $V(G)$, we use $k\left(k^{+}\right.$or $\left.k^{-}\right)$-vertex to denote a vertex of degree k (at least k or at most k). A $k\left(k^{+}\right.$or $\left.k^{-}\right)$-face is defined similarly. A k-neighbor of v is a k-vertex adjacent to v. For $f \in F(G)$, we use $b(f)$ to denote the boundary walk of f and write $f=\left[x_{1} x_{2} \cdots x_{k}\right]$ if $x_{1}, x_{2}, \cdots, x_{k}$ are the vertices of $b(f)$ in the clockwise order.

An injective k-coloring of a graph G is a vertex coloring $c: V(G) \rightarrow\{1,2, \cdots, k\}$ such that $c(u) \neq$ $c(v)$ if u and v have a common neighbor. The injective chromatic number of G, denoted by $\chi_{i}(G)$, is the least integer k such that G has an injective k-coloring.

The idea of injective coloring was introduced by Hahn et al. [1]. They proved the inequality $\Delta \leq$ $\chi_{i}(G) \leq \Delta^{2}-\Delta+1$ for any planar graph G with maximum degree Δ. For planar graph G with $g(G) \geq 4$, there are fewer results, Bu et al. [2] proved that $\chi_{i}(G) \leq \Delta+6$ if $\Delta \geq 20$ and 4-cycle and 4-cycle are disjoint. For planar graph G with $g(G) \geq 5$, Bu and Lu [3] proved that $\chi_{i}(G) \leq \Delta+7$; then Dong and

Lin [4] improved this result to $\chi_{i}(G) \leq \Delta+6$; Lužar et al [5] proved that $\chi_{i}(G) \leq \Delta+4$ if $\Delta \geq 439$; recently, Bu and Huang [6] showed that $\chi_{i}(G) \leq \Delta+4$ if $\Delta \geq 11$; Bu and Ye [7] improved this upper bound to $\Delta+3$ when $\Delta \geq 20$. For planar graph G with $g(G) \geq 6$, Dong and Lin [8] proved that $\chi_{i}(G) \leq \Delta+2$ if $\Delta \geq 9$ and $\chi_{i}(G) \leq \Delta+1$ if $\Delta \geq 17$. In [9], Borodin et al proved that for every planar graph $G, \chi_{i}(G)=\Delta$ in each of the following cases (i-iv): (i) $g(G)=7$ and $\Delta \geq 16$; (ii) $8 \leq g(G) \leq 9$ and $\Delta \geq 10$; (iii) $10 \leq g(G) \leq 11$ and $\Delta \geq 6$; (iv) $g(G) \geq 13$ and $\Delta=5$.

In this paper, we consider the injective chromatic number of planar graph G with $g(G) \geq 5$ and prove the following theorem.
Theorem 1.1. If G is a planar graph with $g(G) \geq 5, \Delta(G) \geq 20$ and without adjacent 5 -cycles, then $\chi_{i}(G) \leq \Delta(G)+2$.

2. Proof of Theorem 1.1

2.1. The properties of minimal counterexample

Let G be a graph. If G can not admit any injective coloring with k colors, but any subgraph of G can, then we call G is injective k-critical. In this section, we assume G is injective k-critical. We give some structural properties of G.

For convenience, we give out some notations. For a k-vertex v, let $N(v)=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$ with $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq \cdots \leq d\left(v_{k}\right), D(v)=\sum_{i=1}^{k} d\left(v_{i}\right), N^{2}(v)=\cup_{1 \leq i \leq k}\left(N\left(v_{i}\right) \backslash\{v\}\right)$. We use $n_{k}(v)$ to denote the number k-vertices in $N(v)$. If $d\left(v_{1}\right)=2$, then let $N\left(v_{1}\right)=\left\{v, v^{\prime}{ }_{1}\right\}$. A 2-vertex or 4^{+}-vertex v of G is called a heavy vertex or is heavy if $D(v) \geq \Delta+2+d(v)$, otherwise v is called a light vertex or is light. A 3-vertex v of G is called a heavy vertex or is heavy if $D(v) \geq \Delta+2+d(v)$ and $n_{2}(v)=0$. Conversely, a 3-vertex v is called a light vertex or is light if $D(v) \leq \Delta+1+d(v)$ and $n_{2}(v)=0$. We use $n_{k}^{l}(v)$ and $n_{k}^{h}(v)$ to denote the number of adjacent light and heavy k-vertices of v, respectively. For a partial vertex coloring c of G, we use $F(v)$ to denote the forbidden colors for v. Let $C=\{1,2, \cdots, \Delta+2\}$ be a color set. For integers k and n, a $k(n)$-vertex is a k-vertex adjacent to $n 2$-vertices. Now, we discuss the structures of G.
Lemma 2.1. Let $u v \in E(G)$. If $D(u) \leq \Delta+1+d(u)$, then $D(v) \geq \Delta+2+d(v)$.
Proof. By contradiction, suppose $D(v) \leq \Delta+1+d(v)$. By the minimality of $G, G-u v$ admits an injective coloring with $\Delta+2$ colors. Erase the colors on u and v. Since $D(u) \leq \Delta+1+d(u)$ and $D(v) \leq \Delta+1+d(v)$, we have $|F(u)| \leq \Delta+1,|F(v)| \leq \Delta+1$. Let $c(u) \in C-F(u)$ and $c(v) \in C-F(v)$, then G has an injective ($\Delta+2$)-coloring, a contradiction.

Based on Lemma 2.1, we can obtain the following two lemmas .
Lemma 2.2. $\delta(G) \geq 2$ and G contains no adjacent 2 -vertices.
Lemma 2.3. Let v be a $3(1)$-vertex of G with $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, where $d\left(v_{1}\right)=2$, then $d\left(v_{2}\right)+d\left(v_{3}\right) \geq$ $\Delta+3$.
Lemma 2.4. G contains no adjacent 3(1)-vertices.
Proof. By contradiction, suppose that there exists two adjacent 3(1)-vertices u and v. Let $u_{1} \in N(u)$ and $v_{1} \in N(v)$ be two 2-vertices. By the minimality of $G, G-u u_{1}$ admits an injective coloring with $\Delta+2$ colors. We erase the colors on u, v_{1} and u_{1}. First, we can color u since $|F(u)| \leq \Delta+1$. Then $\left|F\left(v_{1}\right)\right| \leq \Delta+1,\left|F\left(u_{1}\right)\right| \leq \Delta+1$, so we can color v_{1} and u_{1} in turn to get an injective ($\Delta+2$)-coloring of G, a contradiction.

Lemma 2.5. If $f=\left[\cdots u v_{1} v v_{2} x \cdots\right], v$ is a light 3-vertex, v_{1} and v_{2} are 3(1)-vertices, $d(u)=2$, then f is a 6^{+}-face.
Proof. Suppose that the lemma is not true. Assume that $f=\left[u v_{1} \nu v_{2} x\right]$ is a 5 -face, then $d(x)=\Delta$ by Lemmas 2.1 and 2.2. By the minimality of $G, G-v v_{2}$ admits an injective coloring with $\Delta+2$ colors. We erase the colors on v, v_{2} and u. Since $\left|F\left(v_{2}\right)\right| \leq \Delta-2+1+2=\Delta+1$ and $|F(u)| \leq \Delta-1+1=\Delta$, we can color v_{2} and u. Finally, $|F(v)| \leq \Delta+1$ since v is a light 3-vertex, we can color v, a contradiction.

2.2. Discharging

In this section, we prove Theorem 1.1 by contradiction. Let G be a minimal counterexample of Theorem 1.1.

Applying Eulers formula $|V|+|F|-|E|=2$ and the fact $\sum_{v \in V(G)} d(v)=\sum_{f \in F(G)} d(f)=2|E(G)|$ for a plane graph, we have

$$
\sum_{v \in V(G)}\left(\frac{3}{2} d(v)-5\right)+\sum_{f \in F(G)}(d(f)-5)=-10
$$

Design a weight function $\omega(x)$ such that $\omega(x)=\frac{3}{2} d(x)-5$ for each $x \in V(G), \omega(x)=d(x)-5$ for each $x \in F(G)$. Hence, $\sum_{x \in V(G) \cup F(G)} \omega(x)=-10$. Next, we shall transfer weight. Our discharging procedure has two steps. Now, let's look at the structural properties of G, while keeping the total weight sum constant, we obtain a new weight $w^{\prime}(x)$ for all $x \in V \cup F$ by transferring weights after the first step. We shall prove that $w^{*}(x) \geq 0$ for each $x \in V \cup F$ after the second step and then get the following contradiction:

$$
0 \leq \sum_{x \in V(G) \cup F(G)} \omega^{*}(x)=\sum_{x \in V(G) \cup F(G)} \omega(x)=-10 .
$$

This contradiction shows that G does not exist and thus Theorem 1.1 is true.
The first step
We define the following discharging rules.
R10. Every vertex v with $d(v) \geq 10$ sends $\frac{3}{2}-\frac{5}{d(v)}$ to each adjacent 9^{-}-vertex.
R11. Let v be a 2 -vertex with $N(v)=\left\{v_{1}, v_{2}\right\}$. If $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq 9$, then $v_{i}(i=1,2)$ sends $\frac{11}{12}$ to v. If $d\left(v_{1}\right) \leq 9<d\left(v_{2}\right)$, then v_{1} sends $\frac{1}{3}+\frac{5}{d\left(v_{2}\right)}$ to v.
R12. Let v be a $3(1)$-vertex with $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. If $d\left(v_{1}\right)=2,3 \leq d\left(v_{2}\right) \leq 9$, and $d\left(v_{3}\right) \leq 20$, then v_{2} sends $\frac{5}{d\left(v_{3}\right)}-\frac{1}{4}$ to v.
R13. Every heavy vertex v with $3 \leq d(v) \leq 9$ sends $\frac{1}{3}$ to each adjacent light 3-vertex.
R14. Each of 8 -vertex and 9 -vertex sends $\frac{1}{6}$ to every adjacent heavy 3 -vertex.
R15. Every 6^{+}-face sends $\frac{d(f)-5}{d(f)}$ to each incident 9^{-}-vertex.
Let $\omega^{\prime}(x)$ be the new weight of each $x \in V \cup F$ by applying the above rules. Let v be a k-vertex. Note that $k \geq 2$ by Lemma 2.2. By $R 10$, every 10^{+}-vertex sends at least 1 to each adjacent 9^{-}-vertex.
(1) $k=2, w(v)=-2$.

If $d\left(v_{1}\right) \leq d\left(v_{2}\right) \leq 9$, then $v_{i}(i=1,2)$ sends $\frac{11}{12}$ to v. If $d\left(v_{1}\right) \leq 9<d\left(v_{2}\right)$, then v_{1} sends $\frac{1}{3}+\frac{5}{d\left(v_{2}\right)}$ to v, v_{2} sends $\frac{3}{2}-\frac{5}{d\left(v_{2}\right)}$ to v by R10 and R11. If $10 \leq d\left(v_{1}\right) \leq d\left(v_{2}\right)$, then v_{i} sends $\frac{3}{2}-\frac{5}{d\left(v_{i}\right)}(i=1,2)$ to v by

R10. By R15, 6^{+}-face sends at least $\frac{1}{6}$ to v. Hence,

$$
\omega^{\prime}(v) \geq-2+\min \left\{\frac{11}{12}+\frac{11}{12}, \frac{1}{3}+\frac{5}{d\left(v_{2}\right)}+\frac{3}{2}-\frac{5}{d\left(v_{2}\right)}, \frac{3}{2}-\frac{5}{d\left(v_{1}\right)}+\frac{3}{2}-\frac{5}{d\left(v_{2}\right)}\right\}+\frac{1}{6}=0 .
$$

(2) $k=3, \omega(v)=-\frac{1}{2}$.

Case 1. Suppose that v is a $3(1)$-vertex. By Lemma 2.3, $d\left(v_{2}\right)+d\left(v_{3}\right) \geq \Delta+3 \geq 23$. Note that v is adjacent to at least a 12^{+}-vertex and $d\left(v_{2}\right) \geq 3$. If $3 \leq d\left(v_{2}\right) \leq 9$, then $d\left(v_{3}\right) \geq \Delta-6$. By R10, R11, R12 and R15, $\omega^{\prime}(v) \geq-\frac{1}{2}-\frac{11}{12}+\frac{1}{6} \times 2+\frac{5}{d\left(v_{3}\right)}-\frac{1}{4}+\frac{3}{2}-\frac{5}{d\left(v_{3}\right)}=\frac{1}{6}$ when $d\left(v_{3}\right) \leq 20$; $\omega^{\prime}(v) \geq-\frac{1}{2}-\frac{11}{12}+\frac{1}{6} \times 2+\frac{3}{2}-\frac{5}{d\left(v_{3}\right)} \geq \frac{5}{28}$ when $d\left(v_{3}\right) \geq 21$. If $d\left(v_{3}\right) \geq d\left(v_{2}\right) \geq 10$, then $\omega^{\prime}(v) \geq$ $-\frac{1}{2}-\frac{11}{12}+\frac{3}{2}-\frac{5}{d\left(v_{2}\right)}+\frac{3}{2}-\frac{5}{d\left(v_{3}\right)}+\frac{1}{6} \times 2>0$ by R10, R11 and R15.

Case 2. Supose that v is a heavy 3-vertex. Note that $D(v) \geq \Delta+2+3 \geq 25, v$ is a ($8,8,9$)-vertex or ($d_{1}, 9,9$)-vertex $\left(7 \leq d_{1} \leq 9\right)$ or ($\left.d_{1}, d_{2}, 10^{+}\right)$-vertex $\left(d_{1} \leq d_{2} \leq 10\right)$. By R13, a heavy 3 -vertex sends at most $\frac{1}{3}$ to a light 3 -vertex. Hence, $\omega^{\prime}(v) \geq-\frac{1}{2}+\min \left\{\frac{1}{6} \times 3, \frac{1}{6} \times 2,1-\frac{1}{3} \times 2\right\}+\frac{1}{6} \times 2>0$ by R10, R14 and R15.

Case 3. Suppose that v is a light 3-vertex. If v is adjacent to a 3(1)-vertex u, then u is adjacent to a Δ-vertex by Lemma 2.3. If $\Delta=20$, then v sends $\frac{5}{\Delta}-\frac{1}{4}=0$ to u. Otherwise, v sends nothing to u. If v is adjacent to at least one 10^{+}-vertex, then $\omega^{\prime}(v) \geq-\frac{1}{2}-\left(\frac{5}{\Delta}-\frac{1}{4}\right)+1+\frac{1}{6} \times 2>0$ by R10, R12 and R15. If v is adjacent to at most two $3(1)$-vertices and not adjacent to 10^{+}-vertex, then $\omega^{\prime}(v) \geq-\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \times 2>0$ by R12, R13 and R15. Finally, v is adjacent to three $3(1)$-vertices. If v is incident with three 6^{+}-faces or a 5 -face, two 7^{+}-faces or a 5 -face, at least a 8^{+}-face, then $\omega^{\prime}(v) \geq-\frac{1}{2}+\min \left\{\frac{1}{6} \times 3, \frac{2}{7} \times 2, \frac{1}{6}+\frac{3}{8}\right\}>0$ by R15. If v is incident with a 5 -face, two 6 -faces or a 5 -face, a 6 -face and a 7 -face, then $\omega^{\prime}(v)=-\frac{1}{6}$ or $\omega^{\prime}(v)=-\frac{1}{12}$ by R15.
(3) $k=4, \omega(v)=1$.

Case 1. $n_{2}(v)=0$. By Lemma 2.3, the 3(1)-neighbor u of v is adjacent to a $(\Delta-1)^{+}$-vertex. If u is adjacent to a 21^{+}-vertex, then v sends 0 to u. Suppose v is adjacent to a l-vertex with $19 \leq l \leq 20$. By R12, v sends at most $\frac{5}{19}-\frac{1}{4}$ to $3(1)$-vertex. If $D(v) \leq \Delta+1+4$, then v is light. Therefore, $\omega^{\prime}(v) \geq 1-4 \times\left(\frac{5}{19}-\frac{1}{4}\right)+\frac{1}{6} \times 2>0$ by R15. If $D(v) \geq \Delta+6$, then v is heavy. If $n_{3}^{l}(v)=1$, then $\omega^{\prime}(v) \geq 1-2 \times\left(\frac{5}{19}-\frac{1}{4}\right)-\frac{1}{3}+\frac{1}{6} \times 2>0$ by R12, R13 and R15. If $n_{3}^{l}(v) \geq 2$, then $d\left(v_{3}\right)+d\left(v_{4}\right) \geq \Delta$. Hence, v_{4} is a 10^{+}-vertex. This implies that $\omega^{\prime}(v) \geq 1-\frac{1}{3} \times 3+\left(\frac{3}{2}-\frac{5}{d\left(v_{4}\right)}\right)+\frac{1}{6} \times 2>0$ by R10, R13 and R15.

Case 2. $n_{2}(v)=1$. If $D(v) \geq \Delta+6$, then v is heavy. If $n_{3}(v)=0$, then v only sends weight to 2-vertex. By R10, R11 and R15, $\omega^{\prime}(v) \geq 1-\frac{11}{12}+\frac{1}{6} \times 2>0$. If $n_{3}(v)=1$, then $d\left(v_{3}\right)+d\left(v_{4}\right) \geq \Delta+1$. Therefore, v_{4} is a 11^{+}-vertex. It follows from R10, R11, R13 and R15 that $\omega^{\prime}(v) \geq 1-\frac{11}{12}-\frac{1}{3}+$ $\left(\frac{3}{2}-\frac{5}{d\left(v_{4}\right)}\right)+\frac{1}{6} \times 2>0$. If $n_{3}(v)=2$, then $d\left(v_{4}\right) \geq \Delta-2$. This together with R10, R11, R13 and R15 implies that $\omega^{\prime}(v) \geq 1-\frac{11}{12}-\frac{1}{3} \times 2+\left(\frac{3}{2}-\frac{5}{\Delta-2}\right)+\frac{1}{6} \times 2>0$. Otherwise, $D(v) \leq \Delta+5$, then v is light and the vertices adjacent to v are all heavy. So the 2-neighbor u of v is adjacent to a Δ-vertex and the 3(1)neighbor of v is adjacent to a $(\Delta-1)^{+}$-vertex. If the 3(1)-neighbor of v is adjacent to a 21^{+}-vertex, then v sends 0 to this $3(1)$-vertex. This implies that $\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right)-3 \times\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{1}{6} \times 2>0$ by R11, R12 and R15.

Case 3. $n_{2}(v)=2$. If $D(v) \geq \Delta+6$, then v is heavy. It follows from Lemma 2.1 that $d\left(v_{3}\right)+d\left(v_{4}\right) \geq$ $\Delta+2$, which means that v_{4} is a 11^{+}-vertex. Therefore, $\omega^{\prime}(v) \geq 1-\frac{11}{12} \times 2+\min \left\{-\frac{1}{3}+\frac{3}{2}-\frac{5}{\Delta-1}, \frac{3}{2}-\frac{5}{11}\right\}+$
$\frac{1}{6} \times 2>0$ by R10, R11, R13 and R15. Otherwise, $D(v) \leq \Delta+5$, then v is light and the vertices adjacent to v are all heavy. Hence, the 2-neighbor of v is adjacent to a Δ-vertex and the 3(1)-neighbor of v is adjacent to a $(\Delta-1)^{+}$-vertex. If the $3(1)$-neighbor of v is adjacent to a 21^{+}-vertex, then v sends 0 to this $3(1)$-vertex. This together with R11, R12 and R15 yields that $\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 2-$ $\left(\frac{5}{\Delta-1}-\frac{1}{4}\right) \times 2+\frac{1}{6} \times 2>0$.

Case 4. $n_{2}(v)=3$. If $D(v) \geq \Delta+6$, then v is heavy and $d\left(v_{4}\right)=\Delta$. If the 2 -vertices adjacent to v are all light and v is incident with at most a 5 -face, then $\omega^{\prime}(v) \geq 1+\left(\frac{3}{2}-\frac{5}{\Delta}\right)-\frac{11}{12} \times 3+\frac{1}{6} \times 3 \geq 0$ by R10, R11 and R15. If the 2 -vertices adjacent to v are all light and v is incident with two 5 -faces, then $\omega^{\prime}(v) \geq 1+\frac{3}{2}-\frac{5}{4}-\frac{11}{12} \times 3+\frac{1}{6} \times 2 \geq-\frac{1}{6}$ by R10, R11 and R15. If the 2 -vertices adjacent to v are all heavy, then $\omega^{\prime}(v) \geq 1+\left(\frac{3}{2}-\frac{5}{\Delta}\right)-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 3+\frac{1}{6} \times 2 \geq \frac{5}{6}$ by R10, R11 and R15. If the 2 -vertices adjacent to v are not all light, let v_{1} be a light 2-vertex, then we have that $\omega^{\prime}(v) \geq 1+\left(\frac{3}{2}-\frac{5}{\Delta}\right)-\left(\frac{1}{3}+\frac{5}{\Delta}\right)-\frac{11}{12} \times 2+\frac{1}{6} \times 2>0$ by R10, R11 and R15. Otherwise, $D(v) \leq \Delta+5$, then v is light and the vertices adjacent to v are all heavy. Hence, the 2-neighbor of v is adjacent to a Δ-vertex and the 3(1)-neighbor of v is adjacent to a $(\Delta-1)^{+}$-vertex. If the $3(1)$-neighbor of v is adjacent to a 21^{+}-vertex, then v sends 0 to this $3(1)$-vertex. This together with R11, R12 and R15 yields that $\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 3-\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{1}{6} \times 2 \geq-\frac{49}{114}$.

Case 5. $n_{2}(v)=4$. Clearly, $D(v) \leq \Delta+5$, which implies that the 2-neighbor of v is adjacent to a Δ-vertex. By R11 and R15, $\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 4+\frac{1}{6} \times 2 \geq-1$.
(4) $k=5, \omega(v)=\frac{5}{2}$.

Case 1. $n_{2}(v) \leq 2$. It follows from R11, R13 and R15 that $\omega^{\prime}(v) \geq \frac{5}{2}-\frac{11}{12} \times 2-\frac{1}{3} \times 3+\frac{1}{6} \times 3>0$.
Case 2. $n_{2}(v)=3$. If $D(v) \geq \Delta+7$, then v is heavy and $d\left(v_{4}\right)+d\left(v_{5}\right) \geq \Delta+1$. Therefore, v_{5} is a 11^{+}-vertex. This means that $\omega^{\prime}(v) \geq \frac{5}{2}-\frac{11}{12} \times 3+\min \left\{-\frac{1}{3}+\left(\frac{3}{2}-\frac{5}{\Delta-2}\right), \frac{3}{2}-\frac{5}{11}\right\}+\frac{1}{6} \times 3>0$ by R10, R11, R13 and R15. Otherwise, $D(v) \leq \Delta+6$, then v is light and the vertices adjacent to v are all heavy. So the 2-neighbor of v is adjacent to a $(\Delta-1)^{+}$-vertex and the 3(1)-neighbor of v is adjacent to a $(\Delta-2)^{+}$-vertex. If the $3(1)$-neighbor of v is adjacent to a 21^{+}-vertex, then v sends 0 to this $3(1)$-vertex. By R11, R12 and R15, $\omega^{\prime}(v) \geq \frac{5}{2}-\left(\frac{1}{3}+\frac{5}{\Delta-1}\right) \times 3-\left(\frac{5}{\Delta-2}-\frac{1}{4}\right) \times 2+\frac{1}{6} \times 3>0$.

Case 3. $n_{2}(v)=4$. If $D(v) \geq \Delta+7$, then v is heavy and $d\left(v_{5}\right) \geq \Delta-1$. By R10, R11 and R15, $\omega^{\prime}(v) \geq \frac{5}{2}-\frac{11}{12} \times 4+\frac{3}{2}-\frac{5}{\Delta-1}+\frac{1}{6} \times 3>0$. Otherwise, $D(v) \leq \Delta+6$, then v is light and the vertices adjacent to v are all heavy. Hence, the 2-neighbor of v is adjacent to a $(\Delta-1)^{+}$-vertex and the 3(1)-neighbor of v is adjacent to a $(\Delta-2)^{+}$-vertex. If the $3(1)$-neighbor of v is adjacent to a 21^{+}-vertex, then v sends 0 to this 3(1)-vertex. By R11, R12 and R15, $\omega^{\prime}(v) \geq \frac{5}{2}-\left(\frac{1}{3}+\frac{5}{\Delta-1}\right) \times 4-\left(\frac{5}{\Delta-2}-\frac{1}{4}\right)+\frac{1}{6} \times 3>0$.

Case 4. $n_{2}(v)=5$. Clearly, $D(v) \leq \Delta+6$, which means that the 2-neighbor of v is adjacent to a $(\Delta-1)^{+}$-vertex. So $\omega^{\prime}(v) \geq \frac{5}{2}-\left(\frac{1}{3}+\frac{5}{\Delta-1}\right) \times 5+\frac{1}{6} \times 3>0$ by R11 and R15.
(5) $k=6, \omega(v)=4$.

Case 1. $n_{2}(v) \leq 4$. It is clear that $\omega^{\prime}(v) \geq 4-\frac{11}{12} \times 4-\frac{1}{3} \times 2+\frac{1}{6} \times 3>0$ by R11, R13 and R15.
Case 2. $n_{2}(v)=5$. If $D(v) \geq \Delta+8$, then v is heavy and $d\left(v_{6}\right) \geq \Delta-2$. This together with R10, R11 and R15 implies that $\omega^{\prime}(v) \geq 4-\frac{11}{12} \times 5+\frac{3}{2}-\frac{5}{\Delta-2}+\frac{1}{6} \times 3>0$. Otherwise, $D(v) \leq$ $\Delta+7$, then v is light and the vertices adjacent to v are all heavy. Therefore, the 2-neighbor of v is adjacent to a $(\Delta-2)^{+}$-vertex and the $3(1)$-neighbor of v is adjacent to a $(\Delta-3)^{+}$-vertex. If the $3(1)$ neighbor of v is adjacent to a 21^{+}-vertex, then v sends 0 to this $3(1)$-vertex. By R11, R12 and R15, $\omega^{\prime}(v) \geq 4-\left(\frac{1}{3}+\frac{5}{\Delta-2}\right) \times 5-\left(\frac{5}{\Delta-3}-\frac{1}{4}\right)+\frac{1}{6} \times 3>0$.

Case 3. $n_{2}(v)=6$. It is easy to see that $D(v) \leq \Delta+7$, which implies that the 2-neighbor of v is adjacent to a $(\Delta-2)^{+}$-vertex. By R11 and R15, $\omega^{\prime}(v) \geq 4-\left(\frac{1}{3}+\frac{5}{\Delta-2}\right) \times 6+\frac{1}{6} \times 3>0$.
(6) $k=7, \omega(v)=\frac{11}{2}$.

Case 1. $n_{2}(v) \leq 6$. By R11, R13 and R15, $\omega^{\prime}(v) \geq \frac{11}{2}-\frac{11}{12} \times 6-\frac{1}{3}+\frac{1}{6} \times 4>0$.
Case 2. $n_{2}(v)=7$. It is clear that $D(v) \leq \Delta+7$, which means that the 2-neighbor of v is adjacent to a $(\Delta-3)^{+}$-vertex. By R11 and R15, $\omega^{\prime}(v) \geq \frac{11}{2}-\left(\frac{1}{3}+\frac{5}{\Delta-3}\right) \times 7+\frac{1}{6} \times 4>0$.
(7) $k=8, \omega(v)=7$. Observe that $\omega^{\prime}(v) \geq 7-\frac{11}{12} \times 8+\frac{1}{6} \times 4>0$ by R11, R13 and R15.
(8) $k=9, \omega(v)=\frac{17}{2}$. By R11, R13 and R15, $\omega^{\prime}(v) \geq \frac{17}{2}-\frac{11}{12} \times 9+\frac{1}{6} \times 5>0$.
(9) $k \geq 10, \omega(v)=\frac{3}{2} k-5$. By R10, $\omega^{\prime}(v) \geq \frac{3}{2} k-5-\left(\frac{3}{2}-\frac{5}{k}\right) \times k=0$.

After the first step, $\omega^{\prime}(x) \geq 0$ for each $x \in V \cup F$ except some 3 -vertices and 4 -vertices. For $f \in F(G)$, if $d(f) \geq 5$, then $\omega^{\prime}(f) \geq \min \left\{0, d(f)-5-\frac{d(f)-5}{d(f)} \cdot d(f)\right\}=0$ by R15. For convenience, a vertex v is called bad if $\omega^{\prime}(v)<0$. If $u v \in E(G)$ and u, v are all 10^{+}-vertices, then $u v$ is called special edge.

There are four bad vertices:
I-vertex: 3-vertex v is adjacent to three 3(1)-vertices and incident with a 5 -face, two 6 -faces or a 5 -face, a 6 -face and a 7 -face, $\omega^{\prime}(v) \geq-\frac{1}{6}$.

II-vertex: 4 -vertex v is adjacent to three light 2 -vertices, a Δ-vertex and incident with two 5 -faces, $\omega^{\prime}(v) \geq-\frac{1}{6}$.

III-vertex: light 4-vertex v is adjacent to three 2-vertices, $\omega^{\prime}(v) \geq-\frac{49}{114}$.
IV-vertex: 4-vertex v is adjacent to four 2-vertices, $\omega^{\prime}(v) \geq-1$.
Obviously, bad vertex is not adjacent to bad vertex.
The second step
R20. Every 10^{+}-vertex v sends $\frac{1}{2}$ to incident face f through its special edge.
R21. Every 9^{-}-vertex sends its remained positive weight averagely to each incident face.
R22. Every 5^{+}-face sends its remained positive weight averagely to each incident bad vertex.
(1) v is I-vertex, see Figure 1a. Clearly, v is a light 3-vertex. By Lemma 2.1, $D\left(v_{i}\right) \geq \Delta+5$, which means that $d\left(v_{i}^{\prime}\right)=\Delta$ for $1 \leq i \leq 3$.

Let $f_{1}=v_{1} v v_{2} x y$ be a 5 -face with $d(x), d(y) \in\{2, \Delta\}, f_{2}$ and f_{3} be 6^{+}-faces. By Lemma 2.2, at least one of x and y is not 2-vertex. Note that $\{d(x), d(y)\} \neq\{2, \Delta\}$ by Lemma 2.5. Hence, $d(x)=d(y)=\Delta$, which means that $v_{1}^{\prime} v_{2}^{\prime}$ is a special edge. By R20, f_{1} receives $\frac{1}{2} \times 2$ from $v_{1}^{\prime}, v_{2}^{\prime}$. Obviously, f_{1} is only incident with a bad vertex v, which together with R22 shows that $\omega^{*}(v) \geq-\frac{1}{6}+1>0$.

Figure 1. The configurations of bad vertices. (The degrees of black nodes are the actual degrees in the figure)
(2) v is II-vertex, see Figure 1b. By Lemma 2.1, $D\left(v^{\prime}{ }_{i}\right) \geq \Delta+2+d\left(v_{i}^{\prime}\right)$. Let f_{1} and f_{3} be 5 -faces.

Case 1. If there is a bad vertex in $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$, then it can not be I, III, IV-vertex. If v_{1}^{\prime} is a bad vertex, then v_{2}^{\prime} is a Δ-vertex by Lemma 2.2, which means that v_{2} is a heavy 2 -vertex, a contradiction. Hence, v_{1}^{\prime} can not be a bad vertex. Similarly, v_{2}^{\prime} can not be a bad vertex. Next, suppose that v_{3}^{\prime} is a bad vertex, see Figure 2a. If u is a 2 -vertex, then u is a heavy 2 -vertex. This is contradict with II-vertex v_{3}^{\prime} only adjacent to light 2 -vertex. If u is a Δ-vertex, then $u v_{4}$ is a special edge. By R20, f_{3} gets 1 from $u v_{4}$. Obviously, f_{3} is only incident with two bad vertices v and v_{3}^{\prime}, which implies that $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{2}>0$ by R22.

Figure 2. II-vertex.

Case 2. If $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$ are not bad vertices, then f_{4} is incident with at most $\left\lfloor\frac{d\left(f_{4}\right)-3}{2}\right\rfloor+1$ bad vertices.
Case 2.1. Suppose that f_{4} is a 7^{+}-face. Since $d\left(v_{4}\right)=\Delta$, we can get $\omega^{\prime}\left(f_{4}\right) \geq \frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)}$. By the first step and R22, $\omega^{*}(v) \geq 1+\frac{3}{2}-\frac{5}{\Delta}-\frac{11}{12} \times 3+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)}+\frac{1}{6}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)} \times \frac{1}{\left[\frac{d\left(f_{4}\right)-3}{2}\right]+1}>0$.

Case 2.2. Suppose that f_{2} is a 7^{+}-face. Since $d\left(v_{4}\right)=\Delta$, we can get $\omega^{\prime}\left(f_{4}\right) \geq \frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)}$. By the first step and R22, $\omega^{*}(v) \geq 1+\frac{3}{2}-\frac{5}{\Delta}-\frac{11}{12} \times 3+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)}+\frac{2}{7}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)} \times \frac{1}{\left[\frac{d\left(f_{4}\right)-3}{2}\right]+1}>0$.

Case 2.3. Suppose that f_{2} and f_{4} are all 6-faces, see Figure 2 b . It is easy to see that f_{2} and f_{3} are only incident with a bad vertex v, f_{4} is incident with at most two bad vertices.

If v_{1}^{\prime} is a 10^{+}-vertex, then $\omega^{\prime}\left(f_{4}\right) \geq \frac{1}{6} \times 2$ by $d\left(v_{4}\right)=\Delta$. By R $22, \omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}>0$. If v_{2}^{\prime} is a $10^{+}-$ vertex, then $\omega^{\prime}\left(f_{2}\right) \geq \frac{1}{6} \times 2$. By $d\left(v_{4}\right)=\Delta, \omega^{\prime}\left(f_{4}\right) \geq \frac{1}{6}$. This means that $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}+\frac{1}{6}>0$ by R22. If v_{3}^{\prime} is a 10^{+}-vertex, then $\omega^{\prime}\left(f_{2}\right) \geq \frac{1}{6}$. By $d\left(v_{4}\right)=\Delta, \omega^{\prime}\left(f_{4}\right) \geq \frac{1}{6}$, which implies that $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}+\frac{1}{6}>0$.

If $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$ are all 9^{-}-vertices, then we discuss the classification of $d(x)$. We can obtain that $\omega^{\prime}\left(f_{4}\right) \geq$ $\frac{1}{6}$ since $d\left(v_{4}\right)=\Delta$.

If $d(x) \geq 10$, then $x v_{4}$ is a special edge. By R20, each of x and v_{4} sends $\frac{1}{2}$ to f_{3}. Hence, $\omega^{*}(v) \geq$ $-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}+1>0$ by R22. If $5 \leq d(x) \leq 9$, then $\omega^{*}(x) \geq \frac{3}{2} d(x)-5+\left(\frac{3}{2}-\frac{5}{4}\right)-\frac{11}{12}(d(x)-1)+\frac{1}{6} \times\left\lceil\frac{d(x)}{2}\right\rceil \geq$ $\frac{2}{3} d(x)-\frac{17}{6}$ by R10, R11 and R15. This means that f_{3} gets $\left(\frac{2}{3} d(x)-\frac{17}{6}\right) \frac{1}{d(x)} \geq \frac{1}{10}$ by R21. Hence, $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}+\frac{1}{10}>0$ by R 22 .

If $d(x)=4$, then $\omega^{\prime}(x) \geq 1+\left(\frac{3}{2}-\frac{5}{\Delta}\right)-\frac{11}{12} \times 2-\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{1}{6} \times 2=\frac{14}{19}$ by R10, R11, R12 and R15. This implies that f_{3} gets $\frac{7}{38}$ by R21. Hence, $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}+\frac{7}{38}>0$ by R22. If $d(x)=3$, then
$\omega^{\prime}(x) \geq-\frac{1}{2}+\left(\frac{3}{2}-\frac{5}{\Delta}\right)-\frac{11}{12}+\frac{1}{6} \times 2=\frac{1}{6}$ by R10, R11, R12 and R15. This means that f_{3} gets $\frac{1}{18}$ by R21 Similarly, we consider the degree of u. If $d(u) \geq 3$, then f_{4} gets at least $\min \left\{1, \frac{1}{10}, \frac{1}{18}\right\}=\frac{1}{18}$. It follows from R22 that $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6} \times \frac{1}{2}+\frac{1}{18}+\frac{1}{18} \times \frac{1}{2}=0$. If $d(u)=2$, then f_{4} is only incident with a bad vertex v. By R22, $\omega^{*}(v) \geq-\frac{1}{6}+\frac{1}{6}=0$.
(3) v is III-vertex, see Figure 1c. Observe that $d\left(v_{i}^{\prime}\right)=\Delta(\mathrm{i}=1,2,3)$ by Lemma 2.1.

Suppose that f_{1} or f_{2} is a 5 -face. Without loss of generality, let f_{1} be a 5 -face, then $v_{1}^{\prime} v_{2}^{\prime}$ is a special edge. By R20, f_{1} gets at least 1 . Clearly, f_{1} is only incident with a bad vertex v. This together with R22 implies that $\omega^{*}(v) \geq-\frac{49}{114}+1>0$. Next, we consider the case when f_{1} and f_{2} are 6^{+}-faces.

Suppose that f_{3} or f_{4} is a 5 -face. Without loss of generality, let f_{4} be a 5 -face, then f_{3} is a 6^{+}-face. After the first step, $\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 3-\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{d\left(f_{1}\right)-5}{d\left(f_{1}\right)}+\frac{d\left(f_{2}\right)-5}{d\left(f_{2}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}$ (observe that v_{4} is adjacent to a $(\Delta-1)^{+}$-vertex if v_{4} is a $3(1)$-vertex). Since $d\left(v_{i}^{\prime}\right)=\Delta$ for $1 \leq i \leq 3, \omega^{\prime}\left(f_{j}\right) \geq \frac{2\left(d\left(f_{j}\right)-5\right)}{d\left(f_{j}\right)}$ for $1 \leq j \leq 2, \omega^{\prime}\left(f_{3}\right) \geq \frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}$. It is easy to see that f_{j} is incident with at most $\left\lfloor\frac{d\left(f_{j}\right)-4}{2}\right\rfloor+1 \mathrm{bad}$ vertices for $1 \leq j \leq 2, f_{3}$ is incident with at most $\left\lfloor\frac{d\left(f_{3}\right)-3}{2}\right\rfloor+1$ bad vertices. Claim that $d\left(f_{i}\right) \geq 6$, $\frac{d\left(f_{i}\right)-5}{d\left(f_{i}\right)}+\frac{2\left(d\left(f_{i}\right)-5\right)}{d\left(f_{i}\right)} \times \frac{1}{\left[\frac{d\left(f_{i}-4\right.}{2}\right]+1} \geq \frac{1}{3}$ for $i=1,2 ; \frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)} \times \frac{1}{\left[\frac{d\left(f_{3}\right)-3}{2}\right]+1} \geq \frac{1}{4}$. By R22,

$$
\begin{gathered}
\omega^{*}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 3-\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{d\left(f_{1}\right)-5}{d\left(f_{1}\right)}+\frac{d\left(f_{2}\right)-5}{d\left(f_{2}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)} \\
+\frac{2\left(d\left(f_{1}\right)-5\right)}{d\left(f_{1}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{1}\right)-4}{2}\right\rfloor+1}+\frac{2\left(d\left(f_{2}\right)-5\right)}{d\left(f_{2}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{2}\right)-4}{2}\right\rfloor+1}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{3}\right)-3}{2}\right\rfloor+1}
\end{gathered}
$$

$$
>0 \text {. }
$$

Suppose $d\left(f_{i}\right) \geq 6$ for $1 \leq i \leq 4$. After the first step,

$$
\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 3-\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{d\left(f_{1}\right)-5}{d\left(f_{1}\right)}+\frac{d\left(f_{2}\right)-5}{d\left(f_{2}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)} .
$$

Since $d\left(v_{i}^{\prime}\right)=\Delta$ for $1 \leq i \leq 3$, we can get $\omega^{\prime}\left(f_{i}\right) \geq \frac{2\left(d\left(f_{i}\right)-5\right)}{d\left(f_{i}\right)}$ for $1 \leq i \leq 2, \omega^{\prime}\left(f_{k}\right) \geq \frac{d\left(f_{k}\right)-5}{d\left(f_{k}\right)}$ for $3 \leq k \leq 4$. It is clear that f_{i} is incident with at most $\left\lfloor\frac{d\left(f_{i}\right)-4}{2}\right\rfloor+1$ bad vertices ($\mathrm{i}=1,2$), f_{k} is incident with at most $\left\lfloor\frac{d\left(f_{k}\right)-3}{2}\right\rfloor+1$ bad vertices $(k=3,4)$. By R22,

$$
\begin{gathered}
\omega^{*}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 3-\left(\frac{5}{\Delta-1}-\frac{1}{4}\right)+\frac{d\left(f_{1}\right)-5}{d\left(f_{1}\right)}+\frac{d\left(f_{2}\right)-5}{d\left(f_{2}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)}+\frac{2\left(d\left(f_{1}\right)-5\right)}{d\left(f_{1}\right)} \\
\times \frac{1}{\left\lfloor\frac{d\left(f_{1}\right)-4}{2}\right\rfloor+1}+\frac{2\left(d\left(f_{2}\right)-5\right)}{d\left(f_{2}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{2}\right)-4}{2}\right\rfloor+1}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{3}\right)-3}{2}\right\rfloor+1}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{4}\right)-3}{2}\right\rfloor+1}
\end{gathered}
$$

>0.
(4) v is IV-vertex, see Figure 1d. By Lemma 2.1, $d\left(v_{i}^{\prime}\right)=\Delta$ for $1 \leq i \leq 4$.

There is exactly one 5 -face in f_{1}, f_{2}, f_{3} and f_{4}. Without loss of generality, let f_{1} be a 5 -face, then $v_{1}^{\prime} v_{2}^{\prime}$ is a special edge. By R20, f_{1} gets at least 1 . It is easy to see that f_{1} is only incident with a bad vertex v. By R22, $\omega^{*}(v) \geq-1+1=0$. Next, we consider $f_{i}(1 \leq i \leq 4)$ is 6^{+}-face.

Suppose v is incident with at least a 6 -face. Without loss of generality, let f_{1} be a 6 -face. It is clear that f_{1} is only incident with a bad vertex v. Since $d\left(v_{1}^{\prime}\right)=d\left(v_{2}^{\prime}\right)=d\left(v_{3}^{\prime}\right)=\Delta$, we can get $\omega^{\prime}\left(f_{1}\right) \geq \frac{1}{6}$. We use m_{6} to denote the number of 6 -faces which is incident with v. After the first step and the second step, $\omega^{*}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 4+\frac{1}{6} \times m_{6}+\frac{2}{7} \times\left(4-m_{6}\right)+\frac{2}{6} \times m_{6}=-\frac{4}{21}+\frac{3}{14} m_{6} \geq \frac{5}{21}>0$.

Suppose v is incident with four 7^{+}-faces. Note that f_{i} is incident with at most $\left\lfloor\frac{d\left(f_{i}\right)-4}{2}\right\rfloor+1(1 \leq i \leq 4)$ bad vertices. Since $d\left(v_{i}^{\prime}\right)=\Delta$, we can get $\omega^{\prime}\left(f_{i}\right) \geq \frac{2\left(d\left(f_{i}\right)-5\right)}{d\left(f_{i}\right)}(1 \leq i \leq 4)$. After the first step,

$$
\omega^{\prime}(v) \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 4+\frac{d\left(f_{1}\right)-5}{d\left(f_{1}\right)}+\frac{d\left(f_{2}\right)-5}{d\left(f_{2}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)} .
$$

By R22,

$$
\begin{aligned}
\omega^{*}(v) & \geq 1-\left(\frac{1}{3}+\frac{5}{\Delta}\right) \times 4+\frac{d\left(f_{1}\right)-5}{d\left(f_{1}\right)}+\frac{d\left(f_{2}\right)-5}{d\left(f_{2}\right)}+\frac{d\left(f_{3}\right)-5}{d\left(f_{3}\right)}+\frac{d\left(f_{4}\right)-5}{d\left(f_{4}\right)}+\frac{2\left(d\left(f_{1}\right)-5\right)}{d\left(f_{1}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{1}\right)-4}{2}\right\rfloor+1} \\
& +\frac{2\left(d\left(f_{2}\right)-5\right)}{d\left(f_{2}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{2}\right)-4}{2}\right\rfloor+1}+\frac{2\left(d\left(f_{3}\right)-5\right)}{d\left(f_{3}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{3}\right)-4}{2}\right\rfloor+1}+\frac{2\left(d\left(f_{4}\right)-5\right)}{d\left(f_{4}\right)} \times \frac{1}{\left\lfloor\frac{d\left(f_{4}\right)-4}{2}\right\rfloor+1}
\end{aligned}
$$

$$
>0 .
$$

Now we have checked that the final weight $w^{*}(x) \geq 0$ for each $x \in V \cup F$. Then,

$$
0 \leq \sum_{x \in V \cup F} w^{*}(x)=\sum_{x \in V \cup F} w(x)=-10
$$

which is a contradiction.

3. Conclusions

In this paper, we consider the injective chromatic index of planar graphs without adjacent 5-cycles and proved that such graphs have $\chi_{i}(G) \leq \Delta(G)+2$ if $g(G) \geq 5$ and $\Delta(G) \geq 20$. A natural problem in context of our main result is the following: What is the optimal constant c such that $\chi_{i}(G) \leq \Delta(G)+2$ for every planar graph G with $g(G) \geq 5$ and $\Delta(G) \geq c$.

Acknowledgments

This work was supported by National Natural Science Foundations of China (Grant Nos. 11771403, 11871439,11901243 and 12201569)

Conflict of interest

The authors declare no conflicts of interest.

References

1. G. Hahn, J. Kratochvíl, J. Š iráň, D. Sotteau, On the injective chromatic number of graphs, Discrete Math., 256 (2002), 179-192. https://doi.org/10.1016/S0012-365X(01)00466-6
2. Y. Bu, C. Qi, J. Zhu, T. Xu, Injective coloring of planar graphs, Theoret. Comput. Sci., 857 (2021), 114-122. https://doi.org/10.1016/j.tcs.2021.01.007
3. Y. Bu, K. Lu, List injective coloring of planar graphs with girth 5, 6, 8, Discrete Appl. Math., 161 (2013), 1367-1377. https://doi.org/10.1016/j.dam.2012.12.017
4. W. Dong, W. Lin, Injective coloring of planar graphs with girth 5, Discrete Math., 315 (2014), 120-127. https://doi.org/10.1016/j.disc.2013.10.017
5. B. Lužar, R. \breve{S} krekovski, M. Tancer, Injective colorings of planar graphs with few colors, Discrete Math., 309 (2009), 5636-5649. https://doi.org/10.1016/j.disc.2008.04.005
6. Y. Bu, C. Huang, List injective coloring of a class of planar graphs without short cycles, Discrete Math. Algorithms Appl., 10 (2018), 1850068. https://doi.org/10.1142/S1793830918500684
7. Y. Bu, P. Ye, Upper bounds for the injective coloring of planar graphs with girth at least five, $A d v$. Math., 47 (2018), 363-372.
8. W. Dong, W. Lin, Injective coloring of planar graphs with girth 6, Discrete Math., 313 (2013), 1302-1311. https://doi.org/10.1016/j.disc.2013.02.014
9. O. Borodin, A. Ivanova, List injective colorings of planar graphs, Discrete Math., 311 (2011), 154-165. https://doi.org/10.1016/j.disc.2010.10.008

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

