Research article

Robust optimal reinsurance strategy with correlated claims and competition

  • Received: 29 January 2023 Revised: 08 April 2023 Accepted: 17 April 2023 Published: 28 April 2023
  • MSC : 62P05, 91B28, 93E20

  • This paper investigates the robust optimal reinsurance strategy, which simultaneously takes into account the ambiguity aversion, the correlated claims and the joint interests of an insurer and a reinsurer. The correlated claims mean that future claims are correlated with historical claims, which are measured by an extrapolative bias. The joint interests of the insurer and the reinsurer are reflected by the competition between them. To better reflect competition, we assume that the insurer and the reinsurer are engaged in related insurance business. The insurer is allowed to purchase proportional reinsurance or acquire a new business. Under ambiguity aversion and the criterion of maximizing the expected utility of terminal wealth, we obtain explicit solutions for the robust optimal reinsurance strategy and the corresponding value function by using the stochastic dynamic programming approach. Furthermore, we obtain the optimal reinsurance strategy under four typical cases. A series of numerical experiments were carried out to illustrate how the robust optimal reinsurance strategy varies with model parameters, and the result analyses reveal some interesting phenomena and provide useful guidance for reinsurance in reality.

    Citation: Peng Yang. Robust optimal reinsurance strategy with correlated claims and competition[J]. AIMS Mathematics, 2023, 8(7): 15689-15711. doi: 10.3934/math.2023801

    Related Papers:

  • This paper investigates the robust optimal reinsurance strategy, which simultaneously takes into account the ambiguity aversion, the correlated claims and the joint interests of an insurer and a reinsurer. The correlated claims mean that future claims are correlated with historical claims, which are measured by an extrapolative bias. The joint interests of the insurer and the reinsurer are reflected by the competition between them. To better reflect competition, we assume that the insurer and the reinsurer are engaged in related insurance business. The insurer is allowed to purchase proportional reinsurance or acquire a new business. Under ambiguity aversion and the criterion of maximizing the expected utility of terminal wealth, we obtain explicit solutions for the robust optimal reinsurance strategy and the corresponding value function by using the stochastic dynamic programming approach. Furthermore, we obtain the optimal reinsurance strategy under four typical cases. A series of numerical experiments were carried out to illustrate how the robust optimal reinsurance strategy varies with model parameters, and the result analyses reveal some interesting phenomena and provide useful guidance for reinsurance in reality.



    加载中


    [1] X. Han, Z. Liang, V. R. Young, Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle, Scand. Actuar. J., 2020 (2020), 879–903. http://doi.org/10.1080/03461238.2020.1788136 doi: 10.1080/03461238.2020.1788136
    [2] H. Yener, Proportional reinsurance and investment in multiple risky assets under borrowing constraint, Scand. Actuar. J., 2020 (2020), 396–418. http://doi.org/10.1080/03461238.2019.1676301 doi: 10.1080/03461238.2019.1676301
    [3] Y. Yuan, Z. Liang, X. Han, Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs, J. Ind. Manag. Optim., 18 (2022), 933–967. http://doi.org/10.3934/jimo.2021003 doi: 10.3934/jimo.2021003
    [4] X. Lin, P. Yang, Optimal investment and reinsurance in a jump diffusion risk model, The ANZIAM Journal, 52 (2011), 250–262. http://doi.org/10.1017/S144618111100068X doi: 10.1017/S144618111100068X
    [5] X. Rong, Y. Yan, H. Zhao, Asymptotic solution of optimal reinsurance and investment problem with correlation risk for an insurer under the CEV model, Int. J. Control, 96 (2023), 839–852. http://doi.org/10.1080/00207179.2021.2015627 doi: 10.1080/00207179.2021.2015627
    [6] C. Ceci, K. Colaneri, A. Cretarola, Optimal reinsurance and investment under common shock dependence between financial and actuarial markets, Insur. Math. Econ., 105 (2022), 252–278. https://doi.org/10.1016/j.insmatheco.2022.04.011 doi: 10.1016/j.insmatheco.2022.04.011
    [7] Z. Liang, J. Bi, K. C. Yuen, C. Zhang, Optimal mean Cvariance reinsurance and investment in a jump-diffusion financial market with common shock dependence, Math. Meth. Oper. Res., 84 (2016), 155–181. http://doi.org/10.1007/s00186-016-0538-0 doi: 10.1007/s00186-016-0538-0
    [8] P. Yang, Z. Chen, L. Wang, Time-consistent reinsurance and investment strategy combining quota-share and excess of loss for mean-variance insurers with jump-diffusion price process, Commun. Stat.-Theor. M., 50 (2021), 2546–2568. https://doi.org/10.1080/03610926.2019.1670849 doi: 10.1080/03610926.2019.1670849
    [9] W. Wang, D. Muravey, Y. Shen, Y. Zeng, Optimal investment and reinsurance strategies under $4/2$ stochastic volatility model, Scand. Actuar. J., in press. http://doi.org/10.1080/03461238.2022.2108335
    [10] D. Li, X. Rong, H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142–162. http://doi.org/10.1016/j.cam.2015.01.038 doi: 10.1016/j.cam.2015.01.038
    [11] J. Cai, C. Lemieux, F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bull., 46 (2016), 815–849. https://doi.org/10.1017/asb.2015.23 doi: 10.1017/asb.2015.23
    [12] Y. Huang, Y. Ouyang, L. Tang, J. Zhou, Robust optimal investment and reinsurance problem for the product of the insurer's and the reinsurer's utilities, J. Comput. Appl. Math., 344 (2018), 532–552. http://doi.org/10.1016/j.cam.2018.05.060 doi: 10.1016/j.cam.2018.05.060
    [13] Y. Zhang, H. Zhao, X. Rong, K. Han, Optimal investment and reinsurance problem toward joint interests of the insurer and the reinsurer under default risk, Commun. Stat.-Theor. M., 51 (2022), 6535–6558. http://doi.org/10.1080/03610926.2020.1862872 doi: 10.1080/03610926.2020.1862872
    [14] Y. Zhang, P. Zhao, H. Zhou, The optimal reinsurance-investment problem considering the joint interests of an insurer and a reinsurer under HARA utility, Acta Math. Sci., 43 (2023), 97–124. http://doi.org/10.1007/s10473-023-0107-6 doi: 10.1007/s10473-023-0107-6
    [15] P. M. DeMarzo, R. Kaniel, I. Kremer, Relative wealth concerns and financial bubbles, Rev. Financ. Stud., 21 (2008), 19–50. https://doi.org/10.1093/rfs/hhm032 doi: 10.1093/rfs/hhm032
    [16] A. Bensoussan, C. C. Siu, S. C. P. Yam, H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50 (2014), 2025–2037. https://doi.org/10.1016/j.automatica.2014.05.033 doi: 10.1016/j.automatica.2014.05.033
    [17] K. Y. Kwok, M. C. Chiu, H. Y. Wong, Demand for longevity securities under relative performance concerns: stochastic differential games with cointegration, Insur. Math. Econ., 71 (2016), 353–366. http://doi.org/10.1016/j.insmatheco.2016.10.005 doi: 10.1016/j.insmatheco.2016.10.005
    [18] J. Zhu, G. Guan, S. Li, Time-consistent non-zero-sum stochastic differential reinsurance and investment game under default and volatility risks, J. Comput. Appl. Math., 374 (2020), 112737. http://doi.org/10.1016/j.cam.2020.112737 doi: 10.1016/j.cam.2020.112737
    [19] X. Dong, X. Rong, H. Zhao, Non-zero-sum reinsurance and investment game with non-trivial curved strategy structure under Ornstein-Uhlenbeck process, Scand. Actuar. J., in press. https://doi.org/10.1080/03461238.2022.2139631
    [20] P. Yang, Z. Chen, Y. Xu, Time-consistent equilibrium reinsurance-investment strategy for n competitive insurers under a new interaction mechanism and a general investment framework, J. Comput. Appl. Math., 374 (2020), 112769. http://doi.org/10.1016/j.cam.2020.112769 doi: 10.1016/j.cam.2020.112769
    [21] P. Yang, Z. Chen, Optimal reinsurance pricing, risk sharing and investment strategies in a joint reinsurer-insurer framework, IMA J. Manag. Math., in press. http://doi.org/10.1093/imaman/dpac002
    [22] G. Niehaus, A. Terry, Evidence on the time series properties of insurance premiums and causes of the underwriting cycle: new support for the capital market imperfection hypothesis, J. Risk Insur., 60 (1993), 466–479. http://doi.org/10.2307/253038 doi: 10.2307/253038
    [23] M. J. Browne, R. E. Hoyt, The demand for flood insurance: empirical evidence, J. Risk Uncertainty, 20 (2000), 291–306. https://doi.org/10.1023/A:1007823631497 doi: 10.1023/A:1007823631497
    [24] R. Ranyard, S. McHugh, Defusing the risk of borrowing: the psychology of payment protection insurance decisions, J. Econ. Psychol., 33 (2012), 738–748. https://doi.org/10.1016/j.joep.2012.02.002 doi: 10.1016/j.joep.2012.02.002
    [25] J. W. Ruser, Workers' compensation insurance, experience-rating, and occupational injuries, Rand J. Econ., 16 (1985), 487–503. http://doi.org/10.2307/2555508 doi: 10.2307/2555508
    [26] S. Chen, D. Hu, H. Wang, Optimal reinsurance problem with extrapolative claim expectation, Optim. Contr. Appl. Met., 39 (2018), 78–94. https://doi.org/10.1002/oca.2335 doi: 10.1002/oca.2335
    [27] D. Hu, H. Wang, Optimal proportional reinsurance with a loss dependent premium principle, Scand. Actuar. J., 2019 (2019), 752–767. http://doi.org/10.1080/03461238.2019.1604426 doi: 10.1080/03461238.2019.1604426
    [28] Z. Chen, P. Yang, Robust optimal reinsurance-investment strategy with price jumps and correlated claims, Insur. Math. Econ., 92 (2020), 27–46. https://doi.org/10.1016/j.insmatheco.2020.03.001 doi: 10.1016/j.insmatheco.2020.03.001
    [29] N. Barberis, R. Greenwood, L. Jin, A. Shleifer, X-CAPM: an extrapolative capital asset pricing model, J. Financ. Econ., 115 (2015), 1–24. https://doi.org/10.1016/j.jfineco.2014.08.007 doi: 10.1016/j.jfineco.2014.08.007
    [30] E. W. Anderson, L. P. Hansen, T. J. Sargent, A quartet of semi-groups for model specification, robustness, prices of risk, and model detection, J. Eur. Econ. Assoc., 1 (2023), 68–123. https://doi.org/10.1162/154247603322256774 doi: 10.1162/154247603322256774
    [31] D. Li, Y. Zeng, H. Yang, Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps, Scand. Actuar. J., 2018 (2018), 145–171. http://doi.org/10.1080/03461238.2017.1309679 doi: 10.1080/03461238.2017.1309679
    [32] W. Zhang, H. Meng, Robust optimal dynamic reinsurance policies under the mean-RVaR premium principle, Commun. Stat.-Theor. M., in press. http://doi.org/10.1080/03610926.2022.2076121
    [33] D. Hu, H. Wang, Robust reinsurance contract with learning and ambiguity aversion, Scand. Actuar. J., 2022 (2022), 794–815. http://doi.org/10.1080/03461238.2022.2030398 doi: 10.1080/03461238.2022.2030398
    [34] Y. Yuan, Z. Liang, X. Han, Robust optimal reinsurance in minimizing the penalized expected time to reach a goal, J. Comput. Appl. Math., 420 (2023), 114816. http://doi.org/10.1016/j.cam.2022.114816 doi: 10.1016/j.cam.2022.114816
    [35] J. Grandell, Aspects of risk theory, New York: Springer, 1991. https://doi.org/10.1007/978-1-4613-9058-9
    [36] N. Bäuerle, Benchmark and mean-variance problems for insurers, Math. Meth. Oper. Res., 62 (2005), 159–165. https://doi.org/10.1007/s00186-005-0446-1 doi: 10.1007/s00186-005-0446-1
    [37] N. Branger, L. S. Larsen, Robust portfolio choice with uncertainty about jump and diffusion risk, J. Bank. Financ., 37 (2013), 5036–5047. https://doi.org/10.1016/j.jbankfin.2013.08.023 doi: 10.1016/j.jbankfin.2013.08.023
    [38] S. Mataramvura, B. Øksendal, Risk minimizing and HJBI equations for stochastic differential games, Stochastics, 80 (2008), 317–337. http://doi.org/10.1080/17442500701655408 doi: 10.1080/17442500701655408
    [39] P. J. Maenhout, Robust portfolio rules and asset pricing, Rev. Financ. Stud., 17 (2004), 951–983. http://doi.org/10.1093/rfs/hhh003 doi: 10.1093/rfs/hhh003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1030) PDF downloads(64) Cited by(2)

Article outline

Figures and Tables

Figures(14)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog