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Abstract: This paper investigates the robust optimal reinsurance strategy, which simultaneously takes
into account the ambiguity aversion, the correlated claims and the joint interests of an insurer and a
reinsurer. The correlated claims mean that future claims are correlated with historical claims, which
are measured by an extrapolative bias. The joint interests of the insurer and the reinsurer are reflected
by the competition between them. To better reflect competition, we assume that the insurer and the
reinsurer are engaged in related insurance business. The insurer is allowed to purchase proportional
reinsurance or acquire a new business. Under ambiguity aversion and the criterion of maximizing
the expected utility of terminal wealth, we obtain explicit solutions for the robust optimal reinsurance
strategy and the corresponding value function by using the stochastic dynamic programming approach.
Furthermore, we obtain the optimal reinsurance strategy under four typical cases. A series of numerical
experiments were carried out to illustrate how the robust optimal reinsurance strategy varies with model
parameters, and the result analyses reveal some interesting phenomena and provide useful guidance for
reinsurance in reality.
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1. Introduction

Nowadays, with the rapid development of economy and society, more and more individuals and
institutions are beginning to buy insurance. This leads to a rapid increase in the premium income
of the insurer; meanwhile, the claim risks faced by the insurer also increase. However, it is usually
difficult to undertake claim risks for an insurer only depending upon his premium. Therefore, the
insurer is likely to purchase reinsurance in order to transfer claim risks. The technique of stochastic
control theory and the stochastic dynamic programming approach are widely used to cope with the
optimal reinsurance problem. Different optimization criteria have been proposed in the literature,
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e.g., minimizing the probability of ruin criterion (see [1–3]), maximizing the expected utility criterion
(see [4–6]) and maximizing or minimizing mean-variance (MV) criterion (see [7–9]).

The above studies only considered the interest of the insurer, and did not pay attention to the
reinsurer’s interest. In fact, the reinsurance problem involves the interests of both the insurer and
the reinsurer. An insurer pays a reinsurance premium to a reinsurer in order to obtain compensation
from the reinsurer in case a claim occurs, while a reinsurer is willing to bear the insurer’s claims in
exchange for the reinsurance premium. The authors of [10] considered the joint interests of an insurer
and a reinsurer by maximizing the weighted sum of the insurer’s and the reinsurer’s MV utilities. The
authors of [11] studied the optimal reinsurance problem that minimizes the convex combination of the
value-at-risk measures of the insurer’s loss and the reinsurer’s loss under two types of constraints. The
authors of [12] considered the joint interests of an insurer and a reinsurer by maximizing the product
of the insurer’s and the reinsurer’s utilities. The authors of [13] and [14] considered the joint interests
of an insurer and a reinsurer by maximizing the expected utility of the weighted sum of the insurer’s
wealth and the reinsurer’s wealth. And the difference is that [13] considered the exponential utility,
while [14] considered the hyberbolic absolute risk aversion utility. However, none of these studies
considered competition.

With the development of economy and society, competition exists widely among investors,
managers, insurers and reinsurers. However, it is a difficult issue to quantify competition. The
authors of [15] demonstrated that relative performance can be used to quantify competition, which
has recently been used to describe the competition between two insurers. The authors of [16] studied
the competition between two insurers, where all of the surplus process parameters and asset price
parameters were modeled by a common random factor and Markov chain. The authors of [17]
investigated the competition between two insurers in the longevity risk transfer market. The authors
of [18] studied the competition between two MV insurers, where the stock’s price process is the
constant elasticity of variance model. The authors of [19] considered the competition between two
insurers under different classes of premium principles, and the price of the risky asset follows an
Ornstein-Uhlenbeck process. In practice, there are often many, say n > 2, insurers whose reinsurance
strategies are related. It is more reasonable to study the reinsurance problem among n insurers. The
authors of [20] first considered the competition among n insurers.

At present, few scholars study the competition between an insurer and a reinsurer. The authors
of [21] recently studied the competition between an insurer and a reinsurer. Generally speaking, the
insurer competes with the reinsurer in terms of insurance business or reinsurance business. As what
was explained in [21], a Swiss reinsurance company engaged the property insurance business in China,
and Ping An insurance company of China engaged the reinsurance business. Nevertheless, the authors
of [21] did not consider this form of competition. This paper intends to extend the competition form
of the results in [21].

In practice, insurers usually renew the terms of insurance contract based on policy-holders’
past claims. The authors of [22–24] have shown that future claims are correlated with historical
claims. Regarding discrete time models, the authors of [25] empirically studied the effect of firms’
past loss on premium, and they demonstrated that the premium is paid according to the formula
(1 + $)(θAL + (1 − θ)EL). Here θ ∈ (0, 1) is the weight factor, $ > 0 is the safety factor and AL
and EL respectively represent the firm’s past yearly loss and the yearly expected loss. However, it is
difficult to quantify the correlation between future claims and historical claims for a continuous time
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model. The authors of [26–28] established the correlation between future claims and historical claims
by using an extrapolative bias model, which was pioneered in [29]. Furthermore, the discrete premium
in [25] above-mentioned is extended to the continuous case. However, these studies did not consider
the interest of the reinsurer. In practice, people expect to know the insurer’s reinsurance decision when
taking into account the joint interests of the insurer and the reinsurer.

Insurers often face an uncertain environment when making reinsurance decisions. It is well accepted
that insurers are generally ambiguity-averse. This is because they must have enough funds to pay the
claim of the policy-holders. The authors of [30] first proposed a robust control approach under the
continuous-time framework to study ambiguity aversion. Nowadays, there are many studies on robust
reinsurance and/or investment under ambiguity aversion. The authors of [31] investigated the robust
optimal excess-of-loss reinsurance and investment problem with jumps. The authors of [32] considered
the robust optimal dynamic reinsurance problem under the mean-RVaR premium principle. The authors
of [33] investigated the robust reinsurance under a learning framework. The authors of [34] studied the
robust optimal reinsurance problem for an ambiguity-averse insurer (AAI), where the insurer cannot
obtain the perfect information of the claim. To the best of our knowledge, only the authors of [28]
studied the robust optimal reinsurance problem under correlated claims; however, they did not consider
the interest of the reinsurer.

In view of the aforementioned state-of-the-art work, we will study the robust optimal reinsurance
problem and simultaneously take into account the ambiguity aversion, the joint interests of an insurer
and a reinsurer and the correlated claims. The insurer and the reinsurer can also engage in insurance
business, and their insurance businesses are correlated. The insurer can reduce his claim risk by
purchasing proportional reinsurance or acquiring a new business, which includes playing the role of
a reinsurer. The joint interests of the insurer and the reinsurer are reflected by their competition. We
construct the competition model through a relative wealth process. The interests of the insurer and
the reinsurer are reflected through their respective wealth in the relative wealth process. That is, the
relative wealth process includes the joint interests of the insurer and the reinsurer. Furthermore, the
insurer determines the optimal reinsurance strategy under the relative wealth process. Considering the
uncertainty of model, we assume that the insurer is ambiguity-averse. By maximizing the expected
exponential utility of terminal wealth, we obtain explicit solutions for the robust optimal reinsurance
strategy and the corresponding value function under the worst-case market scenario. To analyze the
effects of key model features on the robust optimal reinsurance strategy, we consider four special cases,
i.e., the no-competition case, the uncorrelated insurance businesses case, the no-ambiguity-aversion
case and the uncorrelated claims case. Finally, we conduct numerical experiments to examine the
effects of key model features on the robust optimal reinsurance strategy.

Compared to the existing literature, the main contributions of this paper are as follows:

• We simultaneously take into account the ambiguity aversion, the joint interests of an insurer and
a reinsurer, and the correlated claims.
• The insurer can reduce his claim risk by purchasing proportional reinsurance or acquiring a new

business, and the reinsurer can also engage in insurance business; furthermore, we quantify the
competition between the insurer and the reinsurer.
• We obtain the explicit robust optimal reinsurance strategy, which can guide the actual reinsurance

activities more effectively.
• We systematically analyze the influences of time, the correlated claims, the dependence of
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insurance business, the competition degree and the ambiguity aversion coefficient on the robust
optimal reinsurance strategy through numerical experiments. Furthermore, the result analyses
reveal some interesting phenomena, extending the result of [28], and provide useful guidance for
reinsurance in reality.

The rest of the paper is organized as follows. The model settings and assumptions are given in
Section 2. In Section 3, we introduce the robust reinsurance problem with correlated claims and
competition. In Section 4, we obtain explicit solutions for the robust optimal reinsurance strategy and
the corresponding value function, and we also provide the verification theorem. Section 5 illustrates
our theoretical results through numerical experiments. The final section summarizes the paper.

2. Model setting

Throughout this paper, we assume that all random variables and processes are defined on a filtered
probability space (Ω,F , {Ft}t∈[0,T ],P) satisfying the usual conditions, i.e., Ft is right continuous and
P-complete; Ft stands for the information available until time t; T is the terminal time of reinsurance;
P is the reference measure.

Without losing generality, suppose that there are two kinds of insurance businesses in the insurance
market, which are named as insurance businesses 1 and 2. The insurance business i’s, i = 1, 2,
cumulative claims in the time interval [0, t] is denoted by

Li(t) =

Gi(t)∑
k=1

Y i
k.

Here Y i
k is the size of the insurance business i’s kth claim, and {Y i

k, k = 1, 2, . . .} forms a sequence
of independent and nonnegative random variables following a common distribution. The common
random variable of {Y i

k, k = 1, 2, . . .} is denoted as Y i. Y i has a finite mean µi1 = E(Y i) and second-order
moment µi2 = E[(Y i)2]. Ni(t) and N(t) are mutually independent Poisson processes with intensities
of λi ≥ 0 and λ ≥ 0, respectively. N(t) is the number of claims caused by the common shock of the
two insurance businesses, which reflects the interdependence of the two insurance businesses. Ni(t) is
the number of claims independent of the common shock. Gi(t) = N(t) + Ni(t) is the counting process,
representing the number of claims of business i up to time t. According to the additivity of the Poisson
process, Gi(t) is a Poisson process with an intensity of λi + λ.

It is known from [35] that the aggregate claims process
∑Gi(t)

k=1 Y i
k can be approximated by the

following Brownian motion with drift

Gi(t)∑
k=1

Y i
k ≈ (λ + λi)µi1t −

√
(λ + λi)µi2Wi(t), (2.1)

where {Wi(t), t ∈ [0,T ]} is the standard Brownian motion. The two Brownian motions W1(t) and W2(t)
are correlated with the correlation coefficient of

ρ :=
λµ11µ21√

(λ + λ1)(λ + λ2)µ12µ22

.

For presentation convenience, we define notations pi = (λ + λi)µi1 and qi =
√

(λ + λi)µi2, i = 1, 2.
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In reality, future claims are usually correlated with historical claims. Therefore, the insurers always
take the occurred claims, especially the recent claims into consideration when renewing the insurance
contracts. Considering this and inspired by [29], especially by [26] and [28], we define the exponential
weighted average of historical losses as follows

ν(t) =

∫ t

0
δe−δ(t−s)dL1(s − ds), 0 < δ < 1, (2.2)

which is an exponential weighted average of historical claims. ν(0) = ν0 = 0, δ is the extrapolation
intensity and dL1(s−ds) = L1(s)−L1(s−ds) represents the claim amount occurred from time s−ds to
time s. Equation (2.2) means that the insurer uses the exponential weighted average of historical claims
to forecast the expected future claim. By using model (2.2), we quantify the correlation between future
claims and historical claims.

To ensure that the weighted average of historical claims is finite, we introduce the following
assumption.
Assumption 2.1. We assume that

|ν(t)| ≤ M, for ∀t ∈ [0,T ],P-a.s.,

where M is a positive constant.
Substituting (2.1) into (2.2) and according to the derivative of the definite integral with a variable

upper limit, we derive the differential form of ν(t) as

dν(t) = δp1e−δt − δq1dW1(t). (2.3)

Suppose that there exists one insurer in the insurance market who is engaged in insurance business 1.
His premium rate c1 can be determined according to the exponential weighted average of historical
losses and the expected future claims. By the exponential weighted average of historical losses, we can
easily obtain the total weight of the past claims is

∫ t

0
δe−δ(t−s)ds = 1 − e−δt, which is always less than

one. Hence, a weight e−δt is naturally given to the expectation of the future claims. Then, the premium
rate c1 is given by c1 = (1 + η1)(v(t) + p1e−δt), where η1 > 0 is the safety loading of the insurer.

To transfer claim risks, the insurer adopts reinsurance. For each t ∈ [0,T ], the reinsurance level is
associated with the parameter a(t), where a(t) ∈ [0,+∞) is the retention level of the insurer. 0 ≤ a(t) ≤
1 corresponds to a proportional reinsurance. a(t) > 1 corresponds to a new business requirement;
for example, the insurer plays the role of a reinsurer. By acquiring a new business, the insurer will
increase his income to hedge the claim risks. For more information about this reinsurance pattern,
please see [36]. For this reinsurance pattern, the insurer only needs to pay a(t) of each claim, and the
reinsurer pays the rest (1 − a(t)). Let (1 + η2)(1 − a(t))(v(t) + p1e−δt) be the reinsurance premium rate,
where η2 > 0 is the safety loading of the reinsurer. To exclude the insurer’s arbitrage behavior, we
require η2 > η1. The insurer can invest his surplus in a risk-free money account with a constant interest
rate r > 0. With the reinsurance and money account being incorporated, the wealth process X1(t) of
the insurer satisfies the following stochastic differential equation

dX1(t) =
[
rX1(t) + c1 − (1 + η2)(1 − a(t))(v(t) + p1e−δt)

]
dt

− a(t)
[
(v(t) + p1e−δt)dt − q1dW1(t)

]
=

[
rX1(t) + c1 − (1 + η2)(v(t) + p1e−δt) + a(t)η2(v(t) + p1e−δt)

]
dt

+ a(t)q1dW1(t).

(2.4)
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Considering the insurance business in practice, we assume that the reinsurer not only accepts the
reinsurance business of the insurer, but also engages in insurance business 2. The premium rate
received by the reinsurer from insurance business 2 is c2. Similar to that of the insurer, the reinsurer
can also invest his surplus in the risk-free money account with the constant interest rate r > 0. With the
reinsurance and money account being incorporated, the wealth process X2(t) of the reinsurer satisfies
the following stochastic differential equation

dX2(t) =
[
rX2(t) + c2 + (1 + η2)(1 − a(t))(v(t) + p1e−δt)

]
dt

− (1 − a(t))
[
(v(t) + p1e−δt)dt − q1dW1(t)

]
−

[
p2dt − q2dW2(t)

]
=

[
rX2(t) + c2 − p2 + (1 − a(t))η2(v(t) + p1e−δt)

]
dt

+ (1 − a(t))q1dW1(t) + q2dW2(t).

(2.5)

From the above discussion, it is obvious that the interdependence of the insurer’s insurance business
and the reinsurer’s insurance business is due to the common Poisson process N(t). When signing a
reinsurance contract, it is clear that both the insurer and reinsurer are concerned about the reinsurance
premium (1+η2)(1−a(t))(v(t)+p1e−δt). The insurer wants (1+η2)(1−a(t))(v(t)+p1e−δt) to be as small as
possible, while the reinsurer wants (1+η2)(1−a(t))(v(t)+ p1e−δt) to be as large as possible. In addition,
the insurer and the reinsurer are engaged in dependent insurance business. Therefore, competition
between the insurer and the reinsurer exists both in insurance business and in the formulation of the
reinsurance premium. In insurance practice, after signing a reinsurance contract, the insurer not only
cares about his own wealth X1(t), but he also cares about the wealth X2(t) obtained by the reinsurer
from the reinsurance contract. In practice, since the reinsurer may also sign reinsurance contracts with
other insurers, the wealth of the reinsurer is generally greater than X2(t). However, for this insurer, he
may most care about the wealth X2(t) of the reinsurer. This is because the decision of this insurer will
only affect X2(t), and will not affect other wealth assets of the reinsurer. If X1(t) > X2(t), the insurer
will continue to perform the reinsurance contract. If X1(t) < X2(t), the insurer may consider amending
the reinsurance contract, i.e., increasing the proportion of claims paid by himself, thus reducing the
reinsurer’s wealth obtained from the reinsurance contract. Therefore, after signing the reinsurance
contract, the insurer will always simultaneously pay attention to X1(t) and X2(t). To this end, similar
to [21], we introduce the following relative performance model

(1 − τ)X1(t) + τ
(
X1(t) − X2(t)

)
.

Here τ ∈ [0, 1] captures the competition intensity between the insurer and the reinsurer, and measures
the insurer’s sensitivities to the performance of the other party. A large τ means that the insurer puts
more weight on the performance of the reinsurer and cares more about his relative wealth increase.
When τ = 0, the insurer only cares about his own wealth.

Let
Xa(t) := (1 − τ)X1(t) + τ

(
X1(t) − X2(t)

)
be the relative wealth process of the insurer. Then Xa(t) can be described as

dXa(t) =
[
rXa(t) + c1 − τc2 + τp2 − (1 + η2)(v(t) + p1e−δt)

+ η2(v(t) + p1e−δt)((1 + τ)a(t) − τ)
]
dt

+ [(1 + τ)a(t) − τ]q1dW1(t) − τq2dW2(t).
(2.6)
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We quantify the competition between the insurer and the reinsurer through the relative wealth. In the
relative wealth process (2.6), X1(t) embodies the interest of the insurer and X2(t) embodies the interest
of the reinsurer. In what follows, the insurer will determine the optimal reinsurance strategy based on
the relative wealth process (2.6). That is, the insurer determines the optimal reinsurance strategy by
simultaneously takeing into account the joint interests of the insurer and the reinsurer.

The above-mentioned model corresponds to a traditional framework. It is assumed that the insurer is
ambiguity-neutral, and that he has complete confidence in the model (2.6) provided by the probability
distribution P. However, in many situations, the insurer cannot know exactly the true P; thus,
any particular probability distribution used to describe the model would lead to potential model
misspecification. For this reason, we shall incorporate the probability distribution uncertainty into the
reinsurance problem for an AAI. We assume that the AAI uses the model (2.6) as his reference model
for the wealth process. Nevertheless, he is sceptical about this reference model and takes alternative
models into consideration to determine a robust optimal strategy. Parallel to [30], the alternative models
are defined by a class of probability distributions which are equivalent to P:

Q := {Q|Q ∼ P}.

In what follows, we transform model (2.6) from probability distributionP to probability distribution
Q. First, we introduce a process {θ(t) = (θ1(t), θ2(t))|t ∈ [0,T ]} satisfying the following:

• θ1(t) and θ2(t) are {Ft}t≥0-measurable, for each t ∈ [0,T ];
• θ1(t) and θ2(t) satisfy the following Novikov’s condition

E
[
exp

{
1
2

∫ T

0

[
(θ1(t))2 + (θ2(t))2]dt

}]
< +∞.

We denote the space of all such processes θ(t) by Θ.
To change the probability distribution fromP toQ, we define for each θ(t) ∈ Θ a real-valued process

{Λθ(t)|t ∈ [0,T ]} on (Ω,F , {Ft}t≥0,P) by

Λθ(t) = exp
{
−

∫ t

0
θ1(s)dW1(s) −

∫ t

0
(θ1(s))2ds −

∫ t

0
θ2(s)dW2(s) −

∫ t

0
(θ2(s))2ds

}
.

Under the Novikov’s condition, similar to that in [37], we can prove that Λθ(t) is a P-martingale.
Hence, E[Λθ(t)] = 1. For each θ(t) ∈ Θ, we apply the Radon-Nikodym derivative to define a new
probability distribution Qθ that is absolutely continuous with respect to P on FT as

dQθ

dP

∣∣∣∣
FT

:= Λθ(T ),

and the set of all Qθ is denoted by Q.
According to Girsanov’s theorem, under the alternative measure Qθ, the stochastic processes Wθ

1(t)
and Wθ

2(t) are standard Brownian motions, where

dWθ
1(t) = dW1(t) + θ1(t)dt, dWθ

2(t) = dW2(t) + θ2(t)dt.

Since Brownian motions W1(t) and W2(t) are correlated with the correlation coefficient of ρ,
Brownian motions Wθ

1(t) and Wθ
2(t) are correlated with the correlation coefficient of ρ. Furthermore,
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the dynamics of the wealth process Xa(t) in (2.6) under Qθ becomes

dXa(t) =
[
rXa(t) + c1 − τc2 + τp2 − (1 + η2)(ν(t) + p1e−δt)

+ η2(ν(t) + p1e−δt)((1 + τ)a(t) − τ)
− θ1((1 + τ)a(t) − τ)q1 + θ2τq2

]
dt

+ [(1 + τ)a(t) − τ]q1dWθ
1(t) − τq2dWθ

2(t),

(2.7)

with Xa(0) = x0. Correspondingly, the measure of extrapolative bias ν(t) in (2.3) becomes

dν(t) =
[
δp1e−δt + θ1(t)δq1

]
ds − δq1dWθ

1(t). (2.8)

In order to introduce the robust reinsurance problem, we define the admissible strategy under the
probability distribution Qθ as follows.
Definition 2.1. (Admissible Strategy). For any fixed t ∈ T , a reinsurance strategy a(t) is said to be
admissible if it satisfies the following conditions:

(i) a(t) is progressively measurable with respect to {Ft}t≥0 for each t ∈ [0,T ];
(ii) ∀ t ∈ [0,T ], a(t) ∈ [0,+∞);
(iii) Et,x,ν{

∫ T

0
a2(t)dt} < +∞, where Et,x,ν[·] = E[·|Xa(t) = x, ν(t) = ν].

The set of all admissible reinsurance strategies is denoted byA.
In this section, we have proposed a new reinsurance model with correlated claims and competition.

Compared with [28], our model has the following characteristics.

• The reinsurer can engage in insurance business.
• We quantify the competition between the insurer and the reinsurer.
• We simultaneously take into account the ambiguity aversion, the joint interests of the insurer and

the reinsurer, and the correlated claims.

Therefore, we extend the model of [28].

3. Robust reinsurance problem with correlated claims and competition

In this section, we construct the robust optimal reinsurance problem. We first introduce the
following penalty function:

Φ(t, Xa(t), ν(t), θ(t)) =
(θ1(t))2

2φ1(t, Xa(t), ν(t))
+

(θ2(t))2

2φ2(t, Xa(t), ν(t))
, (3.1)

where φ1(t, Xa(t), ν(t)) and φ2(t, Xa(t), ν(t)) are nonnegative and capture the AAI’s ambiguity aversions.
This penalty function can effectively reflect the penalty due to the deviation from the reference

model, i.e., the model under the probability distribution P. The first and second terms describe the
penalty caused by W1(t) and W2(t), respectively. The larger the φ1(t, Xa(t), ν(t)) and φ2(t, Xa(t), ν(t)),
the less the insurer will be penalized, the less faith in the reference model had by the insurer, i.e.,
the insurer is more likely to consider the alternative model, which is the model under the probability
distribution Qθ.
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On the basis of the penalty function Φ(t, Xa(t), ν(t), θ(t)), we formulate a robust optimal reinsurance
problem which chooses the optimal strategy in the worst-case scenario as follows:

sup
a∈A

inf
θ∈Θ

Et,x,ν

{∫ T

t
Φ(s, Xa(s), ν(s), θ(s))ds + U(Xa(T ))

}
, (3.2)

where the expectation is with respect to the alternative probability distributionQθ, and U(·) is the utility
function which is assumed to be continuous, increasing and strictly concave.

To solve problem (3.2), we define the optimal value function as

V(t, x, ν) = sup
a∈A

inf
θ∈Θ

Et,x,ν

{∫ T

t
Φ(s, Xa(s), ν(s), θ(s))ds + U(Xa(T ))

}
. (3.3)

Let C1,2,2([0,T ]×R×R+) denote the space of ϕ(t, x, ν) such that ϕ(t, x, ν) and its derivatives ϕt(t, x, ν),
ϕx(t, x, ν), ϕxx(t, x, ν), ϕν(t, x, ν) and ϕνν(t, x, ν) are continuous on [0,T ] × R × R+. For any function
ϕ(t, x, ν) ∈ C1,2,2([0,T ] × R × R+) and any fixed a(t) ∈ A, the usual infinitesimal generator Bθ,a for the
wealth process Xa(t) in (2.7) is defined as

Bθ,aϕ(t, x, ν) = ϕt(t, x, ν) +
[
rx + c1 − τc2 + τp2 − (1 + η2)(ν + p1e−δt)

+ η2(ν(t) + p1e−δt)((1 + τ)a(t) − τ) − θ1((1 + τ)a(t) − τ)q1 + θ2τq2

]
ϕx(t, x, ν)

+
1
2

[
((1 + τ)a(t) − τ)2q2

1 + τ2q2
2 − 2((1 + τ)a(t) − τ)τρq1q2

]
ϕxx(t, x, ν)

+
[
δp1e−δt + θ1(t)δq1

]
ϕν(t, x, ν) +

1
2
δ2q2

1ϕνν(t, x, ν) (3.4)

+
[
− δq1((1 + τ)a(t) − τ)q1 + 2ρδq1q2τ

]
ϕxν(t, x, ν).

According to the optimality principle of dynamic programming, we can derive the Hamilton-Jacobi-
Bellman-Isaacs equation for problem (3.3) as

sup
a∈A

inf
θ∈Θ

{
Bθ,aV(t, x, ν) + Φ(t, x, ν, θ)

}
= 0, (3.5)

with the boundary condition being V(T, x, ν) = U(x).
The following proposition is essential in solving the associated stochastic control problem.

Proposition 3.1. Suppose that there exist a function H(t, x, ν) ∈ C1,2,2([0,T ] × R × R+) and a control
strategy (θ∗, a∗) ∈ (Θ,A) such that

(1) Bθ,a
∗

H(t, x, ν) + Φ(t, x, ν, θ) ≥ 0 for all θ ∈ Θ;
(2) Bθ

∗,aH(t, x, ν) + Φ(t, x, ν, θ∗) ≤ 0 for all a ∈ A;
(3) Bθ

∗,a∗H(t, x, ν) + Φ(t, x, ν, θ∗) = 0;
(4) for all (θ, a) ∈ (Θ,A), limt→T− H(t, Xa(t), ν(t)) = U(Xa(T ));
(5) {H(ε, Xa(ε), ν(ε))}ε∈ Ξ and {Φ(ε, Xa(ε), ν(ε), θ(ε))}ε∈ Ξ are uniformly integrable, where Ξ denotes

the set of stopping times ε ≤ Ξ.
Then H(t, x, ν) = V(t, x, ν) and (θ∗, a∗) is an optimal control strategy.
The proof of this proposition is similar to that of Theorem 3.2 in [38], so we omit it here.
In the next section, we shall apply Proposition 3.1 to verify that the candidate reinsurance strategy

and the corresponding value function are indeed optimal.

AIMS Mathematics Volume 8, Issue 7, 15689–15711.



15698

4. Robust optimal reinsurance strategy and verification theorem

In this section, the aim is to derive the robust optimal reinsurance strategy for problem (3.3). We
assume that the AAI has an exponential utility function, i.e.,

U(x) = −
1
m

e−mx, (4.1)

where m > 0 is the absolute risk aversion parameter. Inspired by [39], we define the ambiguity
preference functions as

φi(t, x, ν) = −
βi

mV(t, x, ν)
, i = 1, 2. (4.2)

Here βi, i = 1, 2, are positive constants and stand for the ambiguity aversion parameters.
The following theorem provides the candidate robust optimal reinsurance strategy and the

corresponding value function for problem (3.3) .
Theorem 4.1. For problem (3.3) with the exponential utility function (4.1) and the ambiguity aversion
coefficients specified in (4.2), the candidate robust optimal reinsurance strategy is given by

a∗(t) =
1

1 + τ

[
τ +

η2(ν + p1e−δt) + (m + β1)δq2
1(2A(t) + B(t)) + mq1q2τρer(T−t)

(m + β1)q2
1er(T−t)

]
∨ 0, (4.3)

and the candidate worst-case measure is determined byθ∗1(t) = −β1q1

[
δ(2A(t) + B(t)) − ((1 + τ)a∗(t) − τ)er(T−t)

]
,

θ∗2(t) = −β2τq2er(T−t),
(4.4)

where A(t) and B(t) are defined by (4.7) and (4.8), respectively. For a∗(t) > 0, the candidate optimal
value function is given by

H(t, x, ν) = −
1
m

e−m[xer(T−t)+ f (t,ν)], (4.5)

where
f (t, ν) = A(t)ν2 + B(t)ν + D(t), (4.6)

and
A(t) =

η2

4λ1µ12δ(m + β1)

[
e2δη2(T−t) − 1

]
, (4.7)

B(t) = eη2δ(T−t)
∫ T

t

{
2A(s)

[
δp1e−δs − 2ρδq1q2τmer(T−s) + δmq1q2τρer(T−s)

+ η2δp1e−δs
]
− (1 + η2)er(T−s) +

η2 p1e−δs

(m + β1)q2
1

+
η2mq2τρer(T−s)

(m + β1)q1

}
e−η2δ(T−s)ds,

(4.8)

D(t) =

∫ T

t

{[
δp1e−δs − 2mρδq1q2τer(T−s) + η2 p1δe−δs + δmq1q2τρer(T−s)

]
B(s)

+
[
c1 − τc2 − (1 + η2)p1e−δs + τp2

]
er(T−s) −

m + β2

2
τ2q2

2e2r(T−s) +
1

2q2
1(m + β1)

×
(
η2

2 p2
1e−2δs + m2q2

1q2
2τ

2ρ2e2r(T−s) + 2η2mq1q2τρp1e−δser(T−s)
) }

ds.

(4.9)
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Proof. According to boundary condition V(T, x, ν) = U(x), we conjecture that the candidate value
function has the following structure

H(t, x, ν) = −
1
m

e−m[xer(T−t)+ f (t,ν)], (4.10)

where f (t, ν) is a function to be determined. It satisfies the boundary condition f (T, ν) = 0. The partial
derivatives of H(t, x, ν) are then given by

Ht(t, x, ν) =
[
rxer(T−t) − ft(t, ν)

]
mH(t, x, ν),

Hx(t, x, ν) = −mer(T−t)H(t, x, ν),Hν(t, x, ν) = −m fνH(t, x, ν),
Hxx(t, x, ν) = m2e2r(T−t)H(t, x, ν),
Hxν(t, x, ν) = m2 fνer(T−t)H(t, x, ν),
Hνν(t, x, ν) = m2( fν)2H(t, x, ν) − m fννH(t, x, ν).

(4.11)

Substituting (4.11) into (3.5), we obtain after some simplifications that

sup
a∈A

inf
θ∈Θ

{
θ2

1(t)
2β1

+
θ2

2(t)
2β2

+ ft +
[
rx + c1 − τc2 + τp2 − (1 + η2)(ν + p1e−δt)

+ η2(ν(t) + p1e−δt)((1 + τ)a(t) − τ) − θ1((1 + τ)a(t) − τ)q1 + θ2τq2

]
er(T−t)

−
m
2

[
((1 + τ)a(t) − τ)2q2

1 + τ2q2
2 − 2((1 + τ)a(t) − τ)τρq1q2

]
e2r(T−t)

+
[
δp1e−δt + θ1(t)δq1

]
fν +

1
2
δ2q2

1(−m f 2
ν + fνν)

−
[
− δq1((1 + τ)a(t) − τ)q1 + 2ρδq1q2τ

]
m fνer(T−t)

}
= 0,

(4.12)

where f is a short notation for f (t, ν).
According to the first-order optimality conditions, the processes θ1(t) and θ2(t) solving the inner

infimum problem in (4.12) are given byθ∗1(t) = −β1q1

[
δ fν − ((1 + τ)a(t) − τ)er(T−t)

]
,

θ∗2(t) = −β2τq2er(T−t).
(4.13)

Inserting (4.13) into (4.12), we obtain

sup
a∈A

{
−

q2
1β1

2

[
δ fν − ((1 + τ)a(t) − τ)er(T−t)

]2
−
β2

2
τ2q2

2e2r(T−t) + ft +
[
c1 − τc2

+ τp2 − (1 + η2)(ν + p1e−δt) + η2(ν(t) + p1e−δt)((1 + τ)a(t) − τ)
]
er(T−t)

−
m
2

[
((1 + τ)a(t) − τ)2q2

1 + τ2q2
2 − 2((1 + τ)a(t) − τ)τρq1q2

]
e2r(T−t) + δp1e−δt fν

+
1
2
δ2q2

1(−m f 2
ν + fνν) −

[
− δq1((1 + τ)a(t) − τ)q1 + 2ρδq1q2τ

]
m fνer(T−t)

}
= 0.

(4.14)
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According to the first-order optimality condition for a(t) with respect to the superemum problem
in (4.14), we have

â(t) =
1

1 + τ

[
τ +

η2(ν + p1e−δt) + (m + β1)δq2
1 fν + mq1q2τρer(T−t)

(m + β1)q2
1er(T−t)

]
. (4.15)

Substituting (4.15) into (4.14), we have

ft +
[
δp1e−δt − 2ρδq1q2τmer(T−t) + η2δ(ν + p1e−δt) + δmq1q2τρer(T−t)

]
fν

+
1
2
δ2q2

1 fνν + ν2 η2
2

2(m + β1)q2
1

+ ν

[
η2 p1e−δt

(m + β)q2
1

+
η2mq2τρer(T−t)

(m + β)q1
− (1 + η2)er(T−t)

]
+

[
c1 − τc2 − (1 + η2)p1e−δt + τp2

]
er(T−t) −

m + β2

2
τ2q2

2e2r(T−t) +
1

2q2
1(m + β1)

×
(
η2

2 p2
1e−2δt + m2q2

1q2
2τ

2ρ2e2r(T−t) + 2η2mq1q2τρp1e−δter(T−t)
)

= 0, f (T, ν) = 0.

(4.16)

We assume that the solution of (4.16) is

f (t, ν) = A(t)ν2 + B(t)ν + D(t).

Then, we obtain

ft = A′(t)ν2 + B′(t)ν + D′(t), fν = 2A(t)ν + B(t), fνν = 2A(t). (4.17)

Substituting (4.17) into (4.16), we have after some simplifications that

ν2
{

A′(t) + 2η2δA(t) +
η2

2

2(m + β1)q2
1

}
+ν

{
B′(t) + η2δB(t) + 2A(s)

[
δp1e−δt − 2ρδq1q2τmer(T−t) + δmq1q2τρer(T−t)

+η2δp1e−δt
]
− (1 + η2)er(T−t) +

η2 p1e−δt

(m + β1)q2
1

+
η2mq2τρer(T−t)

(m + β1)q1

}
+

{
D′(t) +

[
δp1e−δt − 2mρδq1q2τer(T−t) + η2 p1δe−δt + δmq1q2τρer(T−t)

]
B(t) (4.18)

+
[
c1 − τc2 − (1 + η2)p1e−δt + τp2

]
er(T−t) −

m + β2

2
τ2q2

2e2r(T−t) +
1

2q2
1(m + β1)

×
(
η2

2 p2
1e−2δt + m2q2

1q2
2τ

2ρ2e2r(T−t) + 2η2mq1q2τρp1e−δter(T−t)
) }
.

To solve (4.18), we separate the terms with ν2, ν and the constant term, respectively. It can then be
seen that the following system of ordinary differential equations should hold

A′(t) + 2η2δA(t) +
η2

2

2(m + β1)q2
1

, A(T ) = 0, (4.19)
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B′(t) + η2δB(t) + 2A(s)
[
δp1e−δt − 2ρδq1q2τmer(T−t) + δmq1q2τρer(T−t) + η2δp1e−δt

]
−(1 + η2)er(T−t) +

η2 p1e−δt

(m + β1)q2
1

+
η2mq2τρer(T−t)

(m + β1)q1
, B(T ) = 0,

(4.20)

D′(t) +
[
δp1e−δt − 2mρδq1q2τer(T−t) + η2 p1δe−δt + δmq1q2τρer(T−t)

]
B(t)

+
[
c1 − τc2 − (1 + η2)p1e−δt + τp2

]
er(T−t) −

m + β2

2
τ2q2

2e2r(T−t) +
1

2q2
1(m + β1)

×
(
η2

2 p2
1e−2δt + m2q2

1q2
2τ

2ρ2e2r(T−t) + 2η2mq1q2τρp1e−δter(T−t)
)

= 0, D(T ) = 0.

(4.21)

Solving these ordinary differential equations gives us A(t), B(t) and D(t) as those shown in (4.7),
(4.8) and (4.9).

Combining (4.6) and (4.10), we can obtain the candidate optimal value function in (4.5).
Inserting (4.6) into (4.15), we have

â(t) =
1

1 + τ

[
τ +

η2(ν + p1e−δt) + (m + β1)δq2
1(2A(t)ν + B(t)) + mq1q2τρer(T−t)

(m + β1)q2
1er(T−t)

]
. (4.22)

If the reinsurance strategy â(t) > 0, then the candidate robust optimal reinsurance strategy is a∗(t) =

â(t), and the corresponding optimal value function is given by (4.5). If â(t) ≤ 0, the supa{· · · } in (4.14)
is achieved at the point 0 since the function in the interior of supa{· · · } is a decreasing function with
respect to a(t) in the interval [0,+∞). This implies that the candidate robust optimal reinsurance
strategy must be a∗(t) = 0. Then, inserting a∗(t) = 0 into (4.14), we can obtain the optimal value
function as we did for the case a∗(t) = â(t). This case means that the insurer transfers all of the claims
to the reinsurer, which hardly occurs in practice. Therefore, we do not calculate the value function in
this case. �

In what follows, we shall apply Proposition 3.1 to verify that the candidate robust optimal
reinsurance strategy and the corresponding candidate value function given in Theorem 4.1 are indeed
optimal.
Theorem 4.2. (Verification theorem). The candidate robust optimal strategies a∗(t) and θ∗(t) =

(θ∗1(t), θ∗2(t)) given by (4.3) and (4.4) respectively are indeed robust optimal strategies, and the candidate
value function H(t, x, ν) given by (4.5) is the optimal value function V(t, x, ν) defined by (3.3).
Proof. From Theorem 4.1, it is easy to see that the conditions (2)–(4) in Proposition 3.1 hold
for H(t, x, ν). Because H(t, x, ν) is a smooth function, it is generally assumed in the literature (for
example, [39] and [37]) that the optimization problem

inf
θ∈Θ

sup
u∈U

Et,x,ν

{∫ T

t
Φ(s, Xu

s , ν(s), θ(s))ds + U(Xu
T )

}
, (4.23)

is equivalent to problem (3.5). Hence, the condition (1) in Proposition 3.1 holds. To verify that
the condition (5) in Proposition 3.1 holds, the candidate strategy (a∗(t), θ∗(t)) and the candidate value
function H(t, x, ν) under the probability distribution Qθ∗ need to satisfy the following three properties:

(i) E
(
supt∈[0,T ] |H(t, Xa∗(t), ν(t))|4

)
< ∞;

(ii) a∗(t) is an admissible strategy;

(iii) E
(
supt∈[0,T ]

∣∣∣∣ (θ∗1(t))2

2φ1(t,Xa∗ (t),ν(t)) +
(θ∗2(t))2

2φ2(t,Xa∗ (t),ν(t))

∣∣∣∣2) < ∞.
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Similar to inequality (91) in [28], we can find that property (i) holds. From the solution
process of the Hamilton-Jacobi-Bellman-Isaacs equation (3.5), we know that conditions (i) and (ii)
in Definition 2.1 are satisfied, and that the strategy a∗(t) is deterministic and state-independent; thus,
condition (iii) in Definition 2.1 holds. Thus, a∗(t) is an admissible strategy. To prove property (iii), let

Γ̄(t) =
m(θ∗1(t))2

2β1
+

m(θ∗2(t))2

2β2
.

Obviously, Γ̄(t) is bounded. According to (4.2) with H(t, x, ν) instead of V(t, x, ν), we obtain

E

 sup
t∈[0,T ]

∣∣∣∣∣∣ (θ∗1(t))2

2φ1(t, Xa∗(t), ν(t))
+

(θ∗2(t))2

2φ2(t, Xa∗(t), ν(t))

∣∣∣∣∣∣
2

=E
(

sup
t∈[0,T ]

∣∣∣Γ̄(t)
∣∣∣2 ∣∣∣H(t, Xa∗(t), ν(t))

∣∣∣2)
≤E

(
sup

t∈[0,T ]

∣∣∣Γ̄(t)
∣∣∣4) 1

2
(

sup
t∈[0,T ]

∣∣∣H(t, Xa∗(t), ν(t))
∣∣∣4) 1

2

< ∞.

The first inequality follows from the Cauchy-Schwarz inequality, and the second inequality follows
from property (i). Thus, Theorem 4.2 holds. �

To more intuitively analyze the effects of key model features on the robust optimal reinsurance
strategy, we consider four special cases: the no-competition case, the uncorrelated insurance businesses
case, the no-ambiguity-aversion case and the uncorrelated claims case. The resulting robust optimal
reinsurance strategies for these four special cases can be directly derived from Theorem 4.1. The
corresponding value functions can also be similarly obtained. However, their expressions are rather
complicated and are thus omitted here.
Corollary 4.1. If we do not consider the competition between the insurer and reinsurer (that is, only
consider the interest of the insurer), i.e., τ = 0, the robust optimal reinsurance strategy is given by

a∗(t) =
η2(ν + p1e−δt) + (m + β1)δq2

1(2A(t) + B̃(t))
(m + β1)q2

1er(T−t)
∨ 0, (4.24)

where

B̃(t) = eη2δ(T−t)
∫ T

t

{
2A(s)

[
δp1e−δs + η2δp1e−δs

]
− (1 + η2)er(T−s)

+
η2 p1e−δs

(m + β1)q2
1

}
e−η2δ(T−s)ds,

(4.25)

and A(t) is given by (4.7).
The robust optimal reinsurance strategy (4.24) is similar to (28) in [28]. In other words, our

model extends the robust optimal reinsurance strategy in [28] to the competition case, i.e., the case
of simultaneously considering the joint interests of the insurer and the reinsurer.
Corollary 4.2. If we do not consider the interdependence between insurance businesses, i.e., ρ = 0,
the robust optimal reinsurance strategy is given by

a∗(t) =
1

1 + τ

[
τ +

η2(ν + p1e−δt) + (m + β1)δq2
1(2A(t) + B̃(t))

(m + β1)q2
1er(T−t)

]
∨ 0, (4.26)
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where A(t) and B̃(t) are given by (4.7) and (4.25), respectively. Furthermore, if we do not consider
correlated claims, i.e., δ = ν(t) = 0, then (4.26) reduces to

a∗(t) =
1

1 + τ

[
τ +

η2 p1

(m + β1)q2
1er(T−t)

]
. (4.27)

We can see that the robust optimal reinsurance strategy (4.27) is similar to (3.5) in [21]. This shows
that our model extends the robust optimal reinsurance strategy in [21] to a more general case.
Corollary 4.3. If we do not consider ambiguity aversion, i.e., β1 = β2 = 0, the robust optimal
reinsurance strategy is given by

a∗(t) =
1

1 + τ

τ +
η2(ν + p1e−δt) + mδq2

1(2Â(t) + B̂(t)) + mq1q2τρer(T−t)

mq2
1er(T−t)

 ∨ 0, (4.28)

where
Â(t) =

η2

4λ1µ12δm

[
e2δη2(T−t) − 1

]
, (4.29)

B̂(t) = eη2δ(T−t)
∫ T

t

{
2A(s)

[
δp1e−δs − 2ρδq1q2τmer(T−s) + δmq1q2τρer(T−s)

+ η2δp1e−δs
]
− (1 + η2)er(T−s) +

η2 p1e−δs

mq2
1

+
η2mq2τρer(T−s)

mq1

}
e−η2δ(T−s)ds.

(4.30)

We find that (4.3) and (4.28) have very similar forms. However, we cannot arbitrarily say that
ambiguity aversion has no significant influence on the robust optimal reinsurance strategy. In the
next section, we will concretely analyze the influence of ambiguity aversion on the robust optimal
reinsurance strategy through numerical experiments.
Corollary 4.4. If we do not consider correlation among claims, i.e., ν(t) = δ = 0, the robust optimal
reinsurance strategy is given by

a∗(t) =
1

1 + τ

[
τ +

η2 p1 + mq1q2τρer(T−t)

(m + β1)q2
1er(T−t)

]
. (4.31)

Comparing (4.3) and (4.31), we find that (4.31) becomes simpler. This shows that the correlated
claims have a significant impact on the robust optimal reinsurance strategy. However, the specific
forms of influence will be further discussed in the next section.

5. Numerical experiment

In this section, we will conduct a series of numerical experiments to illustrate the effects of time,
the correlated claims, the dependence of insurance business, the competition degree and the ambiguity-
aversion coefficient on the robust optimal reinsurance strategy. We also analyze the similarities and
differences between the robust optimal reinsurance strategy obtained when the correlated claims,
the dependence of insurance business and the competition are considered and are not considered,
respectively.

By referring to the relevant studies such as [6, 21, 27, 28], we set the basic parameters as those in
Table 1.
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Table 1. Values of model parameters.

t T λ1 λ2 λ µ11 µ12 µ21 µ22 m β1 β2 r δ ν η1 η2 τ

0 10 0.8 0.5 0.04 2.2 2.7 1.6 2.3 0.2 0.2 0.4 0.02 0.25 0.4 0.15 0.5 0.5

5.1. The effects of model parameters and dependence on the robust optimal reinsurance strategy

In this subsection, we examine the effects of time, the correlated claims, the competition degree
and the ambiguity aversion coefficient on the robust optimal reinsurance strategy when the dependence
between the insurer’s insurance business and the reinsurer’s insurance business is considered and is not
considered, respectively.

Figure 1 illustrates the effect of time t on a∗(t) when the dependence of the insurance business is
considered (λ > 0) and is not considered (λ = 0). From Figure 1, we can see that a∗(t) is increasing
with respect to t, regardless of whether the dependence of the insurance business is considered or not.
Since we consider the correlated claims, the insurer can obtain more claim information as time goes
on. Therefore, as time passes, the insurer would reduce his reinsurance willingness.

For given time t = 0, Figure 2 shows the influence of the extrapolation intensity δ on the robust
optimal reinsurance strategy a∗(0) when the dependence of the insurance business is considered (λ > 0)
and is not considered (λ = 0). The larger the δ, the larger the weighted average ν(t). The weighted
average ν(t) is negatively correlated with the risk of the wealth process; hence, ν(t) can offset more
risk of the wealth process as δ increases. And then, the insurer decreases his reinsurance demand as δ
increases. Therefore, in Figure 2, we see that a∗(0) is an increasing function of δ, regardless of whether
the dependence of insurance businesses is considered or not.

t
3 4 5 6 7 8 9 10

a
* (t

)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91
λ>0
λ=0

Figure 1. Effect of t on a∗(t).

δ

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

a
* (0

)

0

1

2

3

4

5

6

7

8

9

10
λ>0
λ=0

Figure 2. Effect of δ on a∗(0).

For given time t = 0, Figure 3 illustrates the effect of τ on the robust optimal reinsurance strategy
a∗(0) when the dependence of the insurance business is considered (λ > 0) and is not considered
(λ = 0). From Figure 3, we can see that a∗(0) is increasing with respect to τ, regardless of whether the
dependence of the insurance business is considered or not. A larger τ means that the insurer becomes
more concerned about his relative wealth. This makes the insurer become more eager to surpass the
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reinsurer’s wealth. Hence, the insurer increases the value of a∗(0) in order to reduce the reinsurance
premium.

For given time t = 0, Figure 4 discloses the effect of β1 on the robust optimal reinsurance strategy
a∗(0) when the dependence of the insurance business is considered (λ > 0) and is not considered
(λ = 0). From Figure 4, we can see that a∗(0) decreases with respect to β1, regardless of whether
the dependence of the insurance business is considered or not. This is intuitive, as β1 stands for the
ambiguity-aversion coefficient. With the increase of β1, the insurer would purchase more reinsurance
to disperse the underlying distribution uncertainty risk.

From Figures 1–4, we can also see that when considering the dependence of an insurance business,
the insurer keeps a larger a∗(t) and a∗(0). This is because, when considering the dependence of an
insurance business, the insurer can simultaneously grasp the claims of multiple insurance businesses.
Therefore, the insurer can more efficiently grasp the potential claims’ risk. This directly leads to the
increase of his retention level and the decrease of his reinsurance premium expenditure.
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Figure 3. Effect of τ on a∗(0).
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Figure 4. Effect of β1 on a∗(0).

5.2. The effects of model parameters and correlated claims on the robust optimal reinsurance strategy

In this subsection, we examine the effect of time, the competition degree and the ambiguity aversion
coefficient on the robust optimal reinsurance strategy when the correlated claims are considered and
not considered, respectively.

Figure 5 shows the effect of t on a∗(t) when the correlated claims are considered (δ > 0, ν(t) > 0) and
not considered (δ = ν(t) = 0), where we set η2 = 0.3. For given time t = 0, Figures 6 and 7 respectively
show the effects of τ and β1 on a∗(0) when the correlated claims are considered (δ > 0, ν(t) > 0) and
not considered (δ = ν(t) = 0). Similar to Figure 1, we see in Figure 5 that a∗(t) is increasing with
respect to t, regardless of whether the correlated claims are considered or not. Similar to Figures 3
and 4, we see in Figures 6 and 7 that a∗(0) is increasing and decreasing with respect to τ and β1,
respectively, regardless of whether the correlated claims are considered or not. More importantly, we
find from Figures 5–7, that, when the correlated claims are considered, the insurer keeps a larger a∗(t)
and a∗(0). This is because, when the correlated claims are considered, the insurer can infer future claim
information based on historical claim information. Therefore, the insurer can better grasp the claim
risk. Hence, at this time, the insurer reduces his reinsurance willingness. Thus, this directly causes him
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to keep a large a∗(t) and a∗(0) to reduce the expenditure of the reinsurance premium.
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Figure 5. Effect of t on
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5.3. The effects of model parameters and competition on the robust optimal reinsurance strategy

In this subsection, we examine the effects of time, the correlated claims and the ambiguity aversion
coefficient on the robust optimal reinsurance strategy when the competition between the insurer and
the reinsurer is considered and is not considered, respectively.
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Figure 8. Effect of t on
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Figure 8 shows the effect of t on a∗(t) when the competition between the insurer and the reinsurer
is considered (τ > 0) and is not considered (τ = 0). For given time t = 0, Figures 9 and 10 respectively
illustrate the effects of δ and β1 on a∗(0) when the competition between the insurer and the reinsurer
is considered (τ > 0) and is not considered (τ = 0). Similar to Figure 1, we see in Figure 8 that a∗(t)
is increasing with respect to t, regardless of whether the competition is considered or not. Similar to
Figures 2 and 4, we see in Figures 9 and 10 that a∗(0) is increasing and decreasing with respect to δ and
β1, respectively, regardless of whether the competition is considered or not. More importantly, we find
from Figures 8–10, that, when the competition is considered, the insurer keeps a larger a∗(t) and a∗(0).
The reason is similar to that for Figure 3. That is, when considering competition, the insurer hopes
to surpass the reinsurer’s wealth. While purchasing reinsurance can reduce his risk, it is nonetheless
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costly because the insurer needs to pay the reinsurance premium to the reinsurer for the reinsurance
protection. This would decrease his wealth value relative to that of his competitor. Hence, the insurer
keeps a larger a∗(t) and a∗(0) when the competition is considered.

5.4. Joint effects of model parameters on the robust optimal reinsurance strategy

Above, we have analyzed the effects of time, the correlated claims, the dependence of the
insurance business, the competition degree and the ambiguity aversion coefficient on the robust optimal
reinsurance strategy. To further analyze which of these model parameters has a more significant
influence on the robust optimal reinsurance strategy, for given time t = 0, we examine some joint
effects of these model parameters on a∗(0) under the general situation, i.e., all the of above-mentioned
model features are considered. The results are shown in Figures 11–14.
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From Figures 11–14, we can see that the influence of the extrapolation intensity δ has the most
significant influence on a∗(0). This means that the correlated claims have the most significant influence
on the insurer’s reinsurance decision. This may be because the insurer can better grasp the possible
claim risk when considering the correlated claims. This shows the necessity and importance of
considering the correlated claims.

6. Conclusions

A robust optimal reinsurance strategy selection problem was studied in this paper. To reduce
claim risk, the insurer can purchase proportional reinsurance or acquire a new business; to increase
wealth, the reinsurer can engage in insurance business. The interdependence between the insurance
businesses of both the insurer and the reinsurer is considered. Meanwhile, the correlation between the
insurer’s future claims and historical claims is also considered. Furthermore, we have quantified the
competition between the insurer and the reinsurer through relative wealth. These model settings extend
the model in [28]. Under ambiguity aversion and the criterion of maximizing the expected utility of
terminal wealth, we have obtained explicit solutions for the robust optimal reinsurance strategy and the
corresponding value function by using the stochastic dynamic programming approach. Finally, a series
of numerical experiments were carried out to examine the influences of the model parameters on the
robust optimal reinsurance strategy.

There are still some issues worthy of investigation in the future. First, we considered the joint
interests of the insurer and the reinsurer through competition, but we did not consider the decision of
the reinsurer. It is interesting to consider the decision of the reinsurer. Second, it is also interesting
to consider other reinsurance patterns, e.g., the excess-of-loss reinsurance and per-loss reinsurance.
Third, it is worthwhile to consider other forms of competition between the insurer and the reinsurer.
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