Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Frames associated with an operator in spaces with an indefinite metric

  • In the present paper, we study frames associated with an operator (W-frames) in Krein spaces, and we give the definition of frames associated with an operator depending on the adjoint of the operator in the Krein space (Definition 4.1). We prove that the definition given in [A. Mohammed, K. Samir, N. Bounader, K-frames for Krein spaces, Ann. Funct. Anal., 14 (2023), 10.], which depends on the adjoint of the operator in the associated Hilbert space, is a consequence of our definition. We prove that our definition is independent of the fundamental decomposition (Theorem 4.1) and that having W-frames for the Krein space necessarily gives W-frames for the Hilbert spaces that compose the Krein space (Theorem 4.4). We also prove that orthogonal projectors generate new operators with their respective frames (Theorem 4.2). We prove an equivalence theorem for W-frames (Theorem 4.3), without depending on the fundamental symmetry as usually given in Hilbert spaces.

    Citation: Osmin Ferrer Villar, Jesús Domínguez Acosta, Edilberto Arroyo Ortiz. Frames associated with an operator in spaces with an indefinite metric[J]. AIMS Mathematics, 2023, 8(7): 15712-15722. doi: 10.3934/math.2023802

    Related Papers:

    [1] Yan Ling Fu, Wei Zhang . Some results on frames by pre-frame operators in Q-Hilbert spaces. AIMS Mathematics, 2023, 8(12): 28878-28896. doi: 10.3934/math.20231480
    [2] Gang Wang . Some properties of weaving K-frames in n-Hilbert space. AIMS Mathematics, 2024, 9(9): 25438-25456. doi: 10.3934/math.20241242
    [3] Sezai Kızıltuǧ, Tülay Erişir, Gökhan Mumcu, Yusuf Yaylı . C-partner curves with modified adapted frame and their applications. AIMS Mathematics, 2023, 8(1): 1345-1359. doi: 10.3934/math.2023067
    [4] Beyhan YILMAZ . Some curve pairs according to types of Bishop frame. AIMS Mathematics, 2021, 6(5): 4463-4473. doi: 10.3934/math.2021264
    [5] Ruishen Qian, Xiangling Zhu . Invertible weighted composition operators preserve frames on Dirichlet type spaces. AIMS Mathematics, 2020, 5(5): 4285-4296. doi: 10.3934/math.2020273
    [6] Kemal Eren, Hidayet Huda Kosal . Evolution of space curves and the special ruled surfaces with modified orthogonal frame. AIMS Mathematics, 2020, 5(3): 2027-2039. doi: 10.3934/math.2020134
    [7] Bahar UYAR DÜLDÜL . On some new frames along a space curve and integral curves with Darboux q-vector fields in E3. AIMS Mathematics, 2024, 9(7): 17871-17885. doi: 10.3934/math.2024869
    [8] Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111
    [9] Ohud Alghamdi, Ahmad Al-Omari, Mesfer H. Alqahtani . Novel operators in the frame of primal topological spaces. AIMS Mathematics, 2024, 9(9): 25792-25808. doi: 10.3934/math.20241260
    [10] Xiujiao Chi, Pengtong Li . Characterization of frame vectors for A-group-like unitary systems on Hilbert C-modules. AIMS Mathematics, 2023, 8(9): 22112-22126. doi: 10.3934/math.20231127
  • In the present paper, we study frames associated with an operator (W-frames) in Krein spaces, and we give the definition of frames associated with an operator depending on the adjoint of the operator in the Krein space (Definition 4.1). We prove that the definition given in [A. Mohammed, K. Samir, N. Bounader, K-frames for Krein spaces, Ann. Funct. Anal., 14 (2023), 10.], which depends on the adjoint of the operator in the associated Hilbert space, is a consequence of our definition. We prove that our definition is independent of the fundamental decomposition (Theorem 4.1) and that having W-frames for the Krein space necessarily gives W-frames for the Hilbert spaces that compose the Krein space (Theorem 4.4). We also prove that orthogonal projectors generate new operators with their respective frames (Theorem 4.2). We prove an equivalence theorem for W-frames (Theorem 4.3), without depending on the fundamental symmetry as usually given in Hilbert spaces.



    The frame theory for Hilbert spaces has its origin in [7] and was developed by I. Daubechies in [4,5]. Frames can be considered as "overcomplete bases", and their overcompleteness makes them more flexible than orthonormal bases. They have proven to be a powerful tool, for example, in signal processing and wavelet analysis [10].

    In [8] a definition of frames for Krein spaces was established by replacing the positive definite inner product in the definition of a frame for a Hilbert space by an indefinite inner product, and it is shown that the theory of frames for Krein spaces and the theory of frames for associated Hilbert spaces are analogous. GăvruÅ£a in [9] defined K-frames in Hilbert spaces as a generalization of frames, which allows one to precisely reconstruct the images of a bounded linear operator on a Hilbert space. In [11] Mohammed, Samir and Bounader defined K-frames in Krein spaces using the adjoint of the operator on the Hilbert space associated with the Krein space and presented an equivalence result for K-frames depending on the fundamental symmetry ([11], Proposition 3.14).

    In this paper, we give a definition (Definition 4.1) of W-frames in Krein spaces which does not depend directly on the adjoint of the operator in the associated Hilbert space. Instead, it depends on the adjoint of the operator on the Krein space, and we prove that the definition given in [11] is a consequence of ours. Following Wagner, Ferrer and Esmeral in [8], we prove that the definition given in this investigation is independent of the fundamental decomposition and that having W-frames for the Krein space necessarily gives W-frames for the Hilbert spaces that compose this space. We also prove that the orthogonal projectors generate new operators with their respective associated frames.

    Theorem 2.1. [6] Let (H1,,1),(H2,,2) and (H,,) be Hilbert spaces and W1B(H1,H),W2B(H2,H) be bounded operators. The following statements are equivalent:

    (i) R(W1)R(W2);

    (ii) W1W1λ2W2W2 for some λ0;

    (iii) There exists a bounded operator XB(H1,H2) such that W1=W2X.

    Definition 2.1. [1,2] A space K with an indefinite inner product [,] that admits a fundamental decomposition of the form

    K=K+˙[+]K,

    such that (K+,[,]) and (K,[,]) are Hilbert spaces, is called a Krein space, which we denote as (K,[,]).

    Definition 2.2. [1,2] Let (K,[,]) be a Krein space with a decomposition K=K˙[+]K+, and two operators are defined

    P+:KK+,P:KK,

    naturally, respectively, for P+(x)=x+ and P(x)=x for all xK, where x+K+, xK and x=x++x. The operators P+ and P are known as fundamental projectors.

    The operator J:KK defined by J=P+P, that is,

    Jx=P+xPx=x+x,   forall xK,

    is called the fundamental symmetry of Krein space K.

    Remark 2.1. For a Krein space with fundamental decomposition K=K˙[+]K+ and a fundamental symmetry J, from now on we will write it (K=K+˙[+]K,[,],J).

    Proposition 2.1. [1,2] Let (K=K+˙[+]K,[,],J) be a Krein space, and then J is invertible, J2=I, J1=J, and J is symmetric, isometric and a self-adjoint operator.

    Definition 2.3. [1,2] Let (K=K+˙[+]K,[,],J) be a Krein space. We define the function [,]J:K×KC for

    [x,y]J=[Jx,y],x,yK.

    This function is called the J-inner product.

    Note that if we have another fundamental decomposition, then we will have another fundamental symmetry and consequently another J-inner product.

    Definition 2.4. [1,2] The fundamental symmetry J associated with Krein space (K=K+˙[+]K,[,]) induces a norm in K defined by

    xJ:=[x,x]J,for allxK,

    and this norm is called the J-norm of K. Explicitly,

    xJ=([x+,x+][x,x])1/2,for allxK.

    Remark 2.2. It defines

    x++=[x+,x+],  x+K+      and      x=[x,x],  xK.

    From now on, the topology studied in Krein spaces will be directly related to the J-norm of K.

    Theorem 2.2. [1] Let (K,[,]) be a Krein space and let

    K=K+1˙[+]K1,K=K+2˙[+]K2, 

    be two fundamental decompositions. If J1 and J2 are the respective fundamental symmetries, it follows that J1 and J2 are equivalent norms.

    Theorem 2.3. [2] Let (K=K+˙[+]K,[,],J) be a Krein space. Then, (K,[,]J) is a Hilbert space.

    Definition 2.5. [1] Let (K1=K+1˙[+]K1,[,]1) and (K2=K+2˙[+]K2,[,]2) be Krein spaces. The adjoint of the linear operator W:K1K2, is the unique linear operator W[]:Dom(W[])K2K1 such that

    [Wk1,k2]2=[k1,W[]k2]1,  for all  k1K1,

    k2Dom(W[]), and WJ:Dom(WJ)K2K1 such that

    [Wk1,k2]J2=[k1,WJk2]J1,  for all  k1K1 and k2Dom(WJ).

    Theorem 2.4. [1] Let (K=K+˙[+]K,[,],J) be a Krein space and WL(K) be a bounded linear operator. If W[] and WJ are the adjoints in the Krein and Hilbert spaces, respectively, then W[]=JWJJ.

    From the above result we get WJ=IWJI=JJWJJJ=J(JWJJ)J=JW[]J.

    Lemma 2.1. [8] Let (K=K+˙[+]K,[,],J) be a Krein space and P be an orthogonal projector that commutes with J. Then, the spaces PK and (IP)K are Krein spaces with fundamental symmetries PJ and (IP)J, respectively.

    Example 2.1. [8] Now, 2(N) can also be seen as a Krein space with an inner product whose inner J-product coincides with the usual one. In this sense we define the following mapping:

    [,]2:2(N)×2(N)C,[{αn}nN,{βn}nN]2:=nN(1)nαn¯βn,

    for all{αn}nN,{βn}nN2(N). Thus, if {en}nN is the canonical orthonormal basis of 2(N), then 2(N) accepts the following fundamental decomposition:

    2(N)=+2(N)˙[+]2(N),

    where +2(N)=¯span{e2n:nN} and 2(N)=¯span{e2n+1:nN} with associated fundamental symmetry

    J2:(2(N),[,]2)(2(N),[,]2),

    given by J2({αn}nN)={(1)nαn}nN for all {αn}nN2(N). Therefore, [,]J2=,2.

    From now on whenever we see 2(N) as Krein space we will understand that it is endowed with a fundamental symmetry J2 such that [,]J2=,2. An example of such is the one developed above, and more trivial is the symmetry given by the identity operator on 2(N). Thus we will write £2(N) instead of 2(N) when viewed as Krein space with such properties and the fundamental symmetry by J£2, to avoid confusion.

    The following results were established in [8] for Wagner, Ferrer and Esmeral.

    Definition 3.1. Let (K=K+˙[+]K,[,], J) be a Krein space and NN. A sequence {xn}nNK is called a frame for K if there exist constants 0<AB< such that

    A x2JnN|[x,xn]|2B x2J for xK.

    Definition 3.2. Let (K=K+˙[+]K,[,], J) and (£2(N), [,]J£2, J£2) be Krein spaces, such that [,]J£2 coincides with the standard inner product , defined in 2(N). Given a frame {xn}nN for K, the linear mapping

    T:£2(N)K,T({αn}nN)=nNαnxn

    is called a pre-frame operator.

    Remark 3.1. The adjoint of T is given by

    T[]k=J£2({[k,xn]}nN), for kK.

    In fact, for all {αn}nN£2(N) and kK, we have

    [T({αn}nN),k]=[nNαnxn,k]=nN[αnxn,k]=nNαn[xn,k]=nNαn¯[k,xn]={αn}nN,{[k,xn]}nN2=[{αn}nN,J£2({[k,xn]}nN)].

    Definition 3.3. Let (K=K+˙[+]K,[,], J) and (£2(N), [,]J£2, J£2) be Krein spaces, so that [,]J£2 coincides with the standard inner product , defined in 2(N), and {xn}nNK is a frame for K. The operator

    S:=T J£2T[]

    is called the frame operator.

    Following the definition of frames in spaces with an indefinite metric introduced in [8] by Wagner, Ferrer and Esmeral, in [11] the K-frames in Krein spaces are defined as follows.

    Definition 3.4. Let (K=K+˙[+]K,[,],J) be a Krein space and W:KK be a bounded operator. It is said that {xn}nN is a W-frame for K if there exist constants A,B>0 such that

    AWJx2JnN| [x,xn]|2Bx2J,   for all  xK.

    WJ is the adjoint in the Hilbert space associated with the Krein space (K=K+˙[+]K,[,],J).

    In this section we give a definition similar to the previous one, using the adjoint of Krein space and showing that the one given in [11] is a consequence of our own.

    Definition 4.1. Let (K=K+˙[+]K,[,],J) be a Krein space and W:KK be a bounded operator. It is said that {xn}nN is a W-frame for K if there exist constants A,B>0 such that

    AW[]x2JnN| [x,xn]|2Bx2J,   for all  xK.

    Remark 4.1.

    AWJx2J=AJW[]Jx2J=AW[]Jx2JnN| [Jx,xn]|2=nN| [x,xn]J|2BJx2J=Bx2J.

    Therefore,

    AWJx2JnN| [x,xn]|2Bx2J,   for all  xK.

    Example 4.1. We consider the vector space C2 over C, with the usual sum and product and the function [,]:C2×C2C given by

    [(x1,y1),(x2,y2)]=x1¯x2y1¯y2. (4.1)

    Well, it turns out that the space with inner product (C2,[,]) is a Krein space with fundamental decomposition \mathbb{C}^{2} = \mathcal{K}^{+} [\dotplus] \mathcal{K}^{-} , where \mathcal{K}^{+} = \{(x, 0): \ \ x\in \mathbb{C}\} and \mathcal{K}^{-} = \{(0, y): \ \ y\in \mathbb{C}\} . Then, the fundamental symmetry is given by

    \mathcal{J} ((x, y)) = \mathcal{P} ^ + (x, y) -\mathcal{P} ^ - (x, y) = (x, -y).

    Let us consider the operator \mathcal{W}:\mathbb{C}^2\to\mathbb{C}^2 defined by \mathcal{W}((x, y)) = (y, -x), which is self-adjoint, and \{x_n\}_{n = 1}^5 = \{ (i, 0), (i, 0), (0, -i), (0, -i), (0, -i)\}.

    Let x = (m, r)\in \mathbb{C}^2 , and then, \Vert (m, r)\Vert_{\mathcal{J}} ^{2} = [(m, r), (m, r)]_\mathcal{J} = [\mathcal{J}(m, r), (m, r)] = [(m, -r), (m, r) = m\overline{m}- (-r)\overline{r} = |m|^2 + |r|^2 .

    Then,

    \begin{align*} \sum \limits_{n = 1}^{5} \vert [x, x_{n}]\vert ^{2} & = 2\vert [(m, r), (i, 0)]\vert ^{2} + 3\vert [(m, r), (0, -i)]\vert ^{2} = 2\vert -mi\vert ^{2} + 3\vert -ri \vert ^{2}\\ & = 2|m|^{2}+3\vert r\vert^{2} \leq 3(|m|^{2}+|r|^{2}) = 3\Vert (m, r)\Vert_{{J}} ^{2} = 3\Vert x\Vert_{\mathcal{J}} ^{2}. \end{align*}

    Also,

    \begin{align*} \Vert \mathcal{W}^{[*]}x\Vert_\mathcal{J}^{2} & = [\mathcal{W}^{[*]}x, \mathcal{W}^{[*]}x]_\mathcal{J} = [\mathcal{W}^{[*]}(m, r), \mathcal{W}^{[*]}(m, r)]_\mathcal{J} = [(r, -m), (r, -m)]_\mathcal{J} = [\mathcal{J}(r, -m), (r, -m)] \\ & = [(r, m), (r, -m)] = r\overline{r}-m(\overline{-m}) = |r|^2 + |m|^2\leq 2|m|^{2}+3|r|^{2}. \end{align*}

    Thus, \Vert \mathcal{W}^{[*]}x\Vert_\mathcal{J}^{2} = |m|^{2}+|r|^{2}\leq 2|m|^{2}+3|r|^{2} = \sum \limits_{n = 1}^{4} \vert [x, x_{n}]\vert ^{2}\leq 3(|m|^{2}+|r|^{2}) = 3\Vert x\Vert_{\mathcal{J}} ^{2}.

    Consequently, \{x_n\}_{n = 1}^5 = \{ (i, 0), (i, 0), (0, -i), (0, -i), (0, -i)\} is a \mathcal{W} -frame for \mathbb{C}^2.

    The definition of K -frames given in [11], which is an adaptation of the definition of frames given in [8], was presented apparently depending on the fundamental symmetry. We will show below that the \mathcal{W} -frames according to the definition given in this paper are independent of the fundamental decomposition of the Krein space in question.

    Theorem 4.1. Let (\mathcal{K}, [\cdot, \cdot]) be a Krein space with fundamental decompositions \mathcal{K} = \mathcal{K} _{1} ^{+} \dot{[+]} \mathcal{K} _{1} ^{-} , \mathcal{K} = \mathcal{K} _{2} ^{+} \dot{[+]} \mathcal{K} _{2} ^{-} and fundamental symmetries \mathcal{J}_1 , \mathcal{J}_2 , respectively, and \mathcal{W}:\mathcal{K} \rightarrow \mathcal{K} is a bounded operator. If \{x_n\} _ {n \in \mathbb {N}} is a frame for \mathcal{W} with respect to \mathcal{J}_1 , then \{x_n\} _ {n \in \mathbb {N}} is a frame for \mathcal{W} with respect to \mathcal{J}_2.

    Proof. Let \{x_n\}_{n \in \mathbb {N}} \subset {\mathcal{K}} be a frame for \mathcal{W}, in (\mathcal{K} = \mathcal{K}_1^{+} \dot{[+]}\mathcal{K}_1^{-}, [\cdot, \cdot], \mathcal{J}_1) , and then there exist constants A, B > 0 such that A\Vert \mathcal{W}^{[*]}x\Vert^{2}_{\mathcal{J}_1}\leq \sum\limits_{n\in\mathbb{N}}\vert [x, x_{n}]\vert^{2}\leq B\Vert x\Vert^{2}_{\mathcal{J}_1}, \forall x\in\mathcal{K}.

    Since the norms \Vert\cdot\Vert_{\mathcal{J}_1} and \Vert \cdot \Vert_{\mathcal{J}_2} are equivalents, there exist constants C, D > 0 such that

    \begin{equation} C\Vert x\Vert_{\mathcal{J}_1} \leq \Vert x\Vert_{\mathcal{J}_2} \leq D\Vert x\Vert_{\mathcal{J}_1} \ \text{for all} \ x\in \mathcal{K}. \end{equation} (4.2)

    Since \mathcal{W}^{[*]}x\in \mathcal{K} for all x\in \mathcal{K},

    \begin{equation} C\Vert \mathcal{W}^{[*]}x\Vert_{\mathcal{J}_1} \leq \Vert\mathcal{W}^{[*]}x\Vert_{\mathcal{J}_2} \leq D\Vert \mathcal{W}^{[*]}x\Vert_{\mathcal{J}_1} \ \ \text{for all} \ x\in \mathcal{K}. \end{equation} (4.3)

    Thus,

    \begin{equation*} \frac{A}{D}\Vert \mathcal{W}^{[*]}x\Vert_{\mathcal{J}_2} \leq A\Vert \mathcal{W}^{[*]}x\Vert_{\mathcal{J}_1}^{2}\leq \sum\limits_{n\in\mathbb{N}}\vert \ [x, x_{n} ]\vert^{2}\leq B\Vert x\Vert_{\mathcal{J}_1}^{2}\leq \frac{B}{C}\Vert x\Vert_{\mathcal{J}_2}^{2}, \forall x\in\mathcal{K}. \end{equation*}

    Consequently \{x_n\} _ {n \in \mathbb {N}} is a frame for \mathcal{W} in (\mathcal{K} = \mathcal{K}_{2}^{+} \dot{[+]}\mathcal{K}_{2}^{-}, [\cdot, \cdot], \mathcal{J}_{2}).

    Proposition 4.1. Let (\mathcal{K} = \mathcal{K}^{+} \dot{[+]} \mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) be a Krein space and \mathcal{P} be an orthogonal projection that commutes with \mathcal{J} . Then, \| \mathcal{P} x\|_{\mathcal{P}\mathcal {J}} = \| x \|_{\mathcal{J}} \ \ for \ all \ x\in \mathcal{K}.

    Proof. Let x \in\mathcal{K} , and then \| \mathcal{P} x \|_{\mathcal{P}\mathcal {J}}^{2} = [\mathcal{P}x, \mathcal{P}x]_{\mathcal{P}\mathcal {J}} = [\mathcal{P}\mathcal{J}\mathcal{P}x, \mathcal{P}x] = [\mathcal{J}\mathcal{P}\mathcal{P}x, \mathcal{P}x] = [\mathcal{J}\mathcal{P}^{2}x, \mathcal{P}x] = [\mathcal{J}\mathcal{P}x, \mathcal{P}x] = [\mathcal{P}x, \mathcal{P}x]_\mathcal{J} = [x, x]_\mathcal{J} = \| x \|_{\mathcal {J}}^{2}. Consequently, \| \mathcal{P} x \|_{\mathcal{P}\mathcal {J}} = \| x \|_{\mathcal{J}} \text{ for all } x\in \mathcal{K}.

    The following result shows that orthogonal projectors in spaces of indefinite metric preserve \mathcal{W} -frames.

    Theorem 4.2. Let (\mathcal{K} = \mathcal{K}^{+} \dot{[+]} \mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) be a Krein space, \mathcal{W}:\mathcal{K} \rightarrow \mathcal{K} is a bounded operator in \mathcal{K} , and \mathcal{P} is an orthogonal projection that commutes with \mathcal{J} . If \{x_{n}\}_{n\in\mathbb{N}} is a \mathcal{W} - frame for \mathcal{K} , then \{\mathcal{P}x_{n}\}_{n\in\mathbb{N}} is a \mathcal{W}\mathcal{P} -frame for \mathcal{P}\mathcal{K}.

    Proof. The subspace \mathcal{P}\mathcal{K} of \mathcal{K} is a Krein space with fundamental symmetry \mathcal{P}\mathcal{J} (see [8]). Since \{x_{n}\}_{n\in\mathbb{N}} is a \mathcal{W} -frame for \mathcal{K} , there exist constants A, B > 0 such that

    \begin{equation} A\Vert \mathcal{W}^{[*]}x\Vert^2_{\mathcal{J}} \leq \sum\limits_{n\in\mathbb{N}} |[ x, x_n]|^2 \leq B\Vert x \Vert^2_{\mathcal{J}}, \ \ \text{for all} \ \ x\in \mathcal{K}. \end{equation} (4.4)

    Also, if t belongs to \mathcal{P}\mathcal{K} , then there exists k\in\mathcal{K} such that t = \mathcal{P}k .

    Since \mathcal{P}k\in \mathcal{K} for (4.4), we have A\Vert \mathcal{W}^{[*]}\mathcal{P}k\Vert^2_{\mathcal{J}} \leq \sum\limits_{n\in\mathbb{N}} |[\mathcal{P}k, x_n]|^2 \leq B\Vert \mathcal{P}k \Vert^2_{\mathcal{J}}. So,

    \begin{align*} A\Vert (\mathcal{W}\mathcal{P})^{[*]}t\Vert_{\mathcal{P}\mathcal{J}}^2 & = A\Vert \mathcal{P}^{[*] } \mathcal{W}^{[*] }t\Vert_{\mathcal{P}\mathcal{J}}^2 = A\Vert \mathcal{P}\mathcal{W}^{[*] }t\Vert_{\mathcal{P}\mathcal{J}}^2 = A\Vert \mathcal{W}^{[*] }t\Vert_{\mathcal{J}}^2 = A\Vert \mathcal{W}^{[*] }\mathcal{P}k\Vert_{\mathcal{J}}^2 \\ & \leq \sum\limits_{n\in{\mathbb{N}}}|[\mathcal{P}k, x_n]|^2 = \sum\limits_{n\in{\mathbb{N}}}|[\mathcal{P}^2k, x_n]|^2 = \sum\limits_{n\in{\mathbb{N}}}|[\mathcal{P}k, \mathcal{P}x_n]|^2 = \sum\limits_{n\in{\mathbb{N}}}|[t, \mathcal{P}x_n]|^2\leq B\Vert \mathcal{P}k\Vert_\mathcal{J}^2 \\ & = B\Vert \mathcal{P}\mathcal{P}k\Vert_{\mathcal{P}\mathcal{J}}^2 = B\Vert \mathcal{P}^{2}k\Vert_{\mathcal{P}\mathcal{J}}^2 = B\Vert \mathcal{P}k\Vert_{\mathcal{P}\mathcal{J}}^2 = B\Vert t\Vert_{\mathcal{P}\mathcal{J}}^2, \ \ \text{for} \ \ \text{all} \ \ t\in \mathcal{P}\mathcal{K}. \end{align*}

    Thus, A\Vert (\mathcal{W}\mathcal{P})^{[*]}t\Vert_{\mathcal{P}\mathcal{J}}^2\leq \sum_{n\in{\mathbb{N}}}|[t, \mathcal{P}x_n]|^2 \leq B\Vert t\Vert_{\mathcal{P}\mathcal{J}}^2, \ \ for \ \ all \ \ t\in \mathcal{P}\mathcal{K}.

    Proposition 4.2. Let (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) be a Krein space. If \{x_n = x_n^++x_n^-\}_{n\in\mathbb{N}} \subset \mathcal{K} is a Bessel sequence for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]} \mathcal{K}^{-}, [\cdot, \cdot]) , then \{x_n^+\}_{n\in\mathbb{N}} and \{x_n^-\}_{n\in\mathbb{N}} are Bessel sequences for (\mathcal{K}^+, \left[\cdot, \cdot\right]) and (\mathcal{K}^-, -\left[\cdot, \cdot\right]) , respectively.

    Proof. Since \{x_n = x_n^++x_n^-\}_{n\in\mathbb{N}} is a Bessel sequence for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]} \mathcal{K}^{-}, [\cdot, \cdot]), there exists a constant B > 0 such that

    \begin{equation} \sum\limits_{n\in\mathbb{N}} \left\vert [ x, x_{n}] \right\vert ^{2} \leq B\left\Vert x\right\Vert_{\mathcal{J}} ^{2}, \ \text{for all} \ x\in \mathcal{K}. \end{equation} (4.5)

    Let x^{+}\in \mathcal{K}^{+}\subset \mathcal{K} and x^{-}\in \mathcal{K}^{-}\subset \mathcal{K} , and then for (4.5) we have that

    \begin{equation*} \sum\limits_{n\in\mathbb{N}} \left\vert [ x^{+}, x_{n}] \right\vert ^{2} \leq B\left\Vert x^{+}\right\Vert_{\mathcal{J}} ^{2} \ \ and \ \ \sum\limits_{n\in\mathbb{N}} \left\vert [ x^{-}, x_{n}] \right\vert ^{2} \leq B\left\Vert x^{-}\right\Vert_{\mathcal{J}} ^{2}. \end{equation*}

    As [x^+, x_{n}] = [x^+, x^{+}_{n}+x^{-}_{n}] = [x^+, x^{+}_{n}]+[x^+, x^{-}_{n}] = [x^+, x^{+}_{n}]+0 = [x^+, x^{+}_{n}] and [x^-, x_{n}] = [x^-, x^{+}_{n}+x^{-}_{n}] = [x^-, x^{+}_{n}]+[x^-, x^{-}_{n}] = 0+[x^-, x^{-}_{n}] = [x^-, x^{-}_{n}], then,

    \sum\limits_{n\in\mathbb{N}} \left\vert [ x^{+}, x_{n}^+] \right\vert ^{2} = \sum\limits_{n\in\mathbb{N}} \left\vert [ x^{+}, x_{n}] \right\vert ^{2} \leq B\left\Vert x^{+}\right\Vert_{\mathcal{J}} ^{2}, \ \ for \ all \ \ x^{+}\in \mathcal{K}^{+},

    and

    \sum\limits_{n\in\mathbb{N}} \left\vert -[ x^{-}, x_{n}^-] \right\vert ^{2} = \sum\limits_{n\in\mathbb{N}} \left\vert [ x^{-}, x_{n}^-] \right\vert ^{2} = \sum\limits_{n\in\mathbb{N}} \left\vert [ x^{-}, x_{n}] \right\vert ^{2} \leq B\left\Vert x^{-}\right\Vert_{\mathcal{J}} ^{2}, \ \ for \ all \ \ x^{-}\in \mathcal{K}^{-} .

    Thus, \{x_n^+\}_{n\in\mathbb{N}} and \{x_n^-\}_{n\in\mathbb{N}} are Bessel sequences for (\mathcal{K}^+, \left[\cdot, \cdot\right]) and (\mathcal{K}^-, -\left[\cdot, \cdot\right]) , respectively.

    The following result was presented in [11] with the restriction on the images of a sequence, under the fundamental symmetry.

    In this paper we present and show a result where it is observed that such a restriction is not necessary. The result holds as usual in the Hilbert spaces for any sequence of Krein space.

    Theorem 4.3. Let (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) be a Krein space, \{x_n\}_{n\in{\mathbb{N}}}\subset \mathcal{K} , and \mathcal{W}:\mathcal{K}\to \mathcal{K} is a bounded operator. Then, the following statements are equivalent.

    (i) \{x_n\}_{n\in{\mathbb{N}}} is a Bessel sequence for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) , and there exists a sequence of Bessel \{y_n\}_{n\in{\mathbb{N}}} for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) , such that {\mathcal{W}x = \sum_{n\in{\mathbb{N}}} [x, y_n] x_n} for all x\in \mathcal{K}.

    (ii) \{x_n\}_{n\in{\mathbb{N}}} is a \mathcal{W}- frame for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}).

    Proof. (i)\to (ii)

    Suppose that \{x_n\}_{n\in{\mathbb{N}}} is a Bessel sequence for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) and that there exists a Bessel sequence \{y_n\}_{n\in{\mathbb{N}}} for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) , such that {\mathcal{W}x = \sum\limits_{n\in{\mathbb{N}}} [x, y_n] x_n} for all x\in \mathcal{K}.

    Since \{x_n\}_{n\in{\mathbb{N}}} , \{y_n\}_{n\in{\mathbb{N}}} are Bessel sequences for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) , there exist M, B > 0 such that

    \begin{equation} {\sum\limits_{n\in\mathbb{N}}\left|\left[x, x_n\right]\right|^2\leq B \ \Vert x\Vert^2_{\mathcal{J}}} \ \ \ and \ \ \ {\sum\limits_{n\in\mathbb{N}}\left|\left[x, y_n\right]\right|^2\leq M \ \Vert x\Vert^2_{\mathcal{J}}}\ \ \ \text{for all } \ \ x\in \mathcal{K}. \end{equation} (4.6)

    It remains to prove that there exists A > 0 such that {A\Vert \mathcal{W}^{[*]}x\Vert^2_{\mathcal{J}}\leq \sum\limits_{n\in\mathbb{N}} \left|\left[x, x_n\right]\right|^2} for all x\in \mathcal{K}.

    Since \mathcal{J} is an isometry in the Hilbert space (\mathcal{K}, [\cdot, \cdot]_{\mathcal{J}}) , we have

    \begin{align*} \Vert \mathcal{W}^{[*]}x\Vert_{\mathcal{J}} = &\Vert \mathcal{J}\mathcal{W}^{[*]}x\Vert_\mathcal{J} = \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\left[\mathcal{J}\mathcal{W}^{[*]}x, y\right]_{\mathcal{J}}\right|\right\} = \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\left[\mathcal{J}^2\mathcal{W}^{[*]}x, y\right]\right|\right\} = \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\left[I\mathcal{W}^{[*]}x, y\right]\right|\right\} \\ = &\sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\left[\mathcal{W}^{[*]}x, y\right]\right|\right\} = \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\left[x, \mathcal{W}y\right]\right|\right\} = \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\left[x, \sum\limits_{n\in\mathbb{N}}\left[y, y_n\right]x_n\right]\right|\right\}\\ = & \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left|\sum\limits_{n\in\mathbb{N}}\overline{\left[y, y_n\right]}\left[x, x_n\right]\right|\right\} \leq \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\sum\limits_{n\in\mathbb{N}}\left|\overline{\left[y, y_n\right]}\left[x, x_n\right]\right|\right\}\\ \leq& \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left[\sum \left|\left[y_n, y\right]\right|^2\right]^{1/2} \left[\sum \left|\left[x, x_n\right]\right|^2\right]^{1/2}\right\} \leq \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\left[M\Vert y \Vert_{\mathcal{J}}^2\right]^{1/2} \left[\sum \left|\left[x, x_n\right]\right|^2\right]^{1/2}\right\}\\ \leq & \sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{M^{1/2}\Vert y \Vert_{\mathcal{J}} \left[\sum \left|\left[x, x_n\right]\right|^2\right]^{1/2}\right\} = M^{1/2} \left[\sum \left|\left[x, x_n\right]\right|^2\right]^{1/2}\sup\limits_{\Vert y \Vert_{\mathcal{J}} = 1}\left\{\Vert y \Vert_{\mathcal{J}}\right\}\\ = & M^{1/2} \left[\sum \left|\left[x, x_n\right]\right|^2\right]^{1/2}. \end{align*}

    So, \Vert \mathcal{W}^{[*]}x\Vert^2_{\mathcal{J}}\leq M\sum\limits_{n\in\mathbb{N}} \left|\left[x, x_n\right]\right|^2 for all x\in \mathcal{K}. This implies

    \begin{equation} \dfrac{1}{M}\Vert \mathcal{W}^{[*]}x\Vert^2_{\mathcal{J}}\leq \sum \left|\left[x, x_n\right]\right|^2\ \ \text{for all}\ \ x\in \mathcal{K}. \end{equation} (4.7)

    We consider 0 < \dfrac{1}{M} = A , and using (4.6 and 4.7) we have

    A\Vert \mathcal{W}^{[*]}x\Vert^2_{\mathcal{J}}\leq \sum\limits_{n\in\mathbb{N}}|\left[ x, x_n\right]|^2 \leq B\Vert x\Vert^2_{\mathcal{J}}, \ \ \text{for} \ \ \text{all} \ \ x\in \mathcal{K}.

    ii)\to i) Suppose that \{x_n\}_{n\in{\mathbb{N}}} is a \mathcal{W}- frame for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) , and then there exist constants A, B > 0 such that

    A\Vert \mathcal{W}^{[*]}x\Vert^2_{\mathcal{J}} \leq \sum\limits_{n\in\mathbb{N}} | [x, x_n]|^2 \leq B\Vert x \Vert^2_{\mathcal{J}}, \ \ \ \text{for all} \ \ x\in \mathcal{K}.

    From the above inequality we have that \sum\limits_{n\in\mathbb{N}} |[x, x_n]|^2 \leq B\Vert x \Vert^2_{\mathcal{J}} for all x\in \mathcal{K} , i.e., \{x_n\}_{n\in{\mathbb{N}}} is a Bessel sequence for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) .

    In [8] the authors showed that the operator T:£_{2}(\mathbb{N}) \to \mathcal{K} given by T(\left\{ a_n \right\}_{n\in\mathbb{N}}) = \sum\limits_{n\in\mathbb{N}}a_n x_n , is well defined and bounded, and also \Vert T \Vert_{\mathcal{J}} \leq \sqrt{B}. Since \mathcal{W} and T are bounded operators, and T is an epimorphism (see [3]), R(\mathcal{W})\subset R(T) = \mathcal{K} . By Theorem 2.1 there exists the bounded linear operator M: (\mathcal{K}, [\cdot, \cdot]_{J}) \to \ell_2(\mathbb{N}) such that \mathcal{W} = TM.

    We consider

    F_n: (\mathcal{K}, [\cdot, \cdot]_{\mathcal{J}})\to \mathbb{C}, \quad F_n(x) = (Mx)_n = a_n^{x}.

    Since Mx\in \ell_2(\mathbb{N}), and we write (Mx)_n to indicate the terms of the sequence Mx.

    We define a^{x} = Mx. We have

    |F_{n}(x)| = |a_n^{x}|\leq \left( \sum\limits_{n\in\mathbb{N}}|a_n^{x}|^2\right)^{1/2} = \Vert a^{x}\Vert_{\ell^2} = \Vert Mx\Vert_{\ell_2} \leq \Vert M\Vert \ \Vert x\Vert_{\mathcal{J}}.

    Therefore, for each n\in\mathbb{N}, \ \ F_n: \mathcal{K}\to \mathbb{C} are continuous linear functionals. From the Riesz representation theorem for Krein spaces (see [1]), it follows that there exists \{y_n\}_{n\in{\mathbb{N}}} \subset \mathcal{K} such that a_n^{x} = F_n(x) = [x, y_n] for all x\in \mathcal{K}.

    Then, for x\in \mathcal{K}, {\mathcal{W}x = TMx = T(Mx) = T(\{a_n^{x}\}_{n\in\mathbb{N}}) = \sum\limits_{n\in\mathbb{N}}a_n^{x}x_n = \sum\limits_{n\in\mathbb{N}} [x, y_n] x_n.} So, \mathcal{W}x = \sum\limits_{n\in\mathbb{N}} [x, y_n] x_n for all x\in \mathcal{K}.

    It remains to prove that \{ y_n \}_{n\in\mathbb{N}}\subset \mathcal{K} is a Bessel sequence. In effect, {\sum\limits_{n\in\mathbb{N}}\left|\left[x, y_n\right]\right|^2 = \sum\limits_{n\in\mathbb{N}}|a_n^{x}|^2 = \Vert a^{x}\Vert_{\ell_2}^2\leq \Vert M\Vert^2 \Vert x\Vert^2_{\mathcal{J}}}, and therefore, \{y_n\}_{n\in\mathbb{N}} is a Bessel sequence for (\mathcal{K} = \mathcal{K}^{+} \dot{[+]}\mathcal{K}^{-}, [\cdot, \cdot], \mathcal{J}) .

    As an application of the previous theorem, using the fundamental projectors below, we obtain frames associated with these projectors for the subspaces that compose the Krein space.

    Theorem 4.4. Let (\mathcal{K} = \mathcal{K}^{+} \dot{[+]} \mathcal{K}^{-}, [\cdot, \cdot]) be a Krein space with fundamental symmetry \mathcal{J} , and \mathcal{W}:\mathcal{K}\to \mathcal{K} is a bounded operator. If the sequence \{x_n = x_n^++x_n^-\}_{n\in\mathbb{N}} is a \mathcal{W} -frame for \mathcal{K}, then \{x_n^+\}_{n\in\mathbb{N}} and \{x_n^-\}_{n\in\mathbb{N}} are \mathcal{P}^+\mathcal{W} and \mathcal{P}^-\mathcal{W} frames for (\mathcal{K}^{+}, [\cdot, \cdot]) and (\mathcal{K}^{+}, -[\cdot, \cdot]) , respectively.

    Proof. Since \{x_n = x_n^++x_n^-\}_{n\in\mathbb{N}} is a \mathcal{W} -frame for \mathcal{K} , then there exists a Bessel sequence \{y_n = y_n^+ +y_n^-\}_{n\in\mathbb{N}} for \mathcal{K} such that for all x\in \mathcal{K} we have that \mathcal{W}x = \sum \limits_{n\in\mathbb{N}} [x, y_{n}]x_{n}.

    Since \{x_n = x_n^++x_n^-\}_{n\in\mathbb{N}} and \{y_n = y_n^+ +y_n^-\}_{n\in\mathbb{N}} are Bessel sequences for \mathcal{K} by Proposition 4.2 \{x_n^+\}_{n\in\mathbb{N}} , \{y_n^+\}_{n\in\mathbb{N}} are Bessel sequences for (\mathcal{K}^+, \left[\cdot, \cdot\right]) . \{x_n^-\}_{n\in\mathbb{N}} , \{y_n^-\}_{n\in\mathbb{N}} are Bessel sequences for (\mathcal{K}^-, - \left[\cdot, \cdot\right]).

    Let x^+\in{\mathcal{K}^+}\subset \mathcal{K} \ \ and \ \ x^-\in{\mathcal{K}^-}\subset \mathcal{K} , and then

    \mathcal{W}x^{+} = \sum \limits_{n\in\mathbb{N}} [x^{+}, y_{n}]x_{n} = \sum \limits_{n\in\mathbb{N}} [x^{+}, y^{+}_{n}]x_{n} \ \ \ and \ \ \ \mathcal{W}x^{-} = \sum \limits_{n\in\mathbb{N}} [x^{-}, y_{n}]x_{n} = \sum \limits_{n\in\mathbb{N}} [x^{-}, y^{-}_{n}]x_{n}.

    Additionally,

    \mathcal{P}^+\mathcal{W}x^{+} = \mathcal{P}^+(\mathcal{W}x^{+}) = \mathcal{P}^{+}\left(\sum \limits_{n\in\mathbb{N}} [x^{+}, y^{+}_{n}]x_{n}\right) = \sum \limits_{n\in\mathbb{N}} [x^{+}, y^{+}_{n}]\mathcal{P}^{+}(x_{n}) = \sum \limits_{n\in\mathbb{N}} [x^{+}, y^{+}_{n}]x^{+}_{n},

    and,

    \mathcal{P}^-\mathcal{W}x^{-} = \mathcal{P}^{-}(\mathcal{W}x^{-}) = \mathcal{P}^{-}\left(\sum \limits_{n\in\mathbb{N}} [x^{-}, y^{-}_{n}]x_{n}\right) = \sum \limits_{n\in\mathbb{N}} [x^{-}, y^{-}_{n}]\mathcal{P}^{-}(x_{n}) = \sum \limits_{n\in\mathbb{N}} ([x^{-}, y^{-}_{n}])x^{-}_{n}.

    Theorem 4.3 ensures that \{x_n^+\}_{n\in\mathbb{N}} and \{x_n^-\}_{n\in\mathbb{N}} are \mathcal{P}^+\mathcal{W} and \mathcal{P}^-\mathcal{W} frames for (\mathcal{K}^+, [\cdot, \cdot]) and ( \mathcal{K}^-, -[\cdot, \cdot] ), respectively.

    The \mathcal{W} -frames in Krein spaces are well defined, and they are a generalization of the K -frames in Hilbert spaces introduced by GăvruÅ£a in [9]. The \mathcal{W} -frames are independent of the decomposition of the Krein space. By having \mathcal{W} -frames for a Krein space one necessarily has \mathcal{W} -frames for the Hilbert spaces that compose the Krein space, and the orthogonal projectors project \mathcal{W} -frames on \mathcal{W}\mathcal{P} -frames.

    The authors declare that they have no conflict of interest in this work.



    [1] T. Azizov, I. S. Iokhvidov, Linear operators in spaces with an indefinite metric, John Wiley & Sons, 1989.
    [2] J. Bognár, Indefinite inner product spaces, Berlin: Springer, 1974.
    [3] O. Christensen, An introduction to frames and riesz bases, Boston: Birkhäuser, 2003.
    [4] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388 doi: 10.1063/1.527388
    [5] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE T. Inform. Theory, 36 (1990), 961–1005. https://doi.org/10.1109/18.57199 doi: 10.1109/18.57199
    [6] R. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413–415. https://doi.org/10.2307/2035178 doi: 10.2307/2035178
    [7] R. Duffin, A. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6 doi: 10.1090/S0002-9947-1952-0047179-6
    [8] K. Esmeral, O. Ferrer, E. Wagner, Frames in Krein spaces arising from a non-regular W-metric, Banach J. Math. Anal., 9 (2015), 1–16. http://doi.org/10.15352/bjma/09-1-1 doi: 10.15352/bjma/09-1-1
    [9] L. GăvruÅ£a, Frames for operators, Appl. Comput. Harmon. A., 32 (2012), 139–144. https://doi.org/10.1016/j.acha.2011.07.006
    [10] K. Gröchenig, Foundations of time-frequency analysis, Springer Science & Business Media, 2001.
    [11] A. Mohammed, K. Samir, N. Bounader, K-frames for Krein spaces, Ann. Funct. Anal., 14 (2023), 10. https://doi.org/10.1007/s43034-022-00223-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1995) PDF downloads(108) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog