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Abstract: In the present paper, we study frames associated with an operator (W-frames) in Krein
spaces, and we give the definition of frames associated with an operator depending on the adjoint of
the operator in the Krein space (Definition 4.1). We prove that the definition given in [A. Mohammed,
K. Samir, N. Bounader, K-frames for Krein spaces, Ann. Funct. Anal., 14 (2023), 10.], which depends
on the adjoint of the operator in the associated Hilbert space, is a consequence of our definition. We
prove that our definition is independent of the fundamental decomposition (Theorem 4.1) and that
havingW-frames for the Krein space necessarily givesW-frames for the Hilbert spaces that compose
the Krein space (Theorem 4.4). We also prove that orthogonal projectors generate new operators with
their respective frames (Theorem 4.2). We prove an equivalence theorem forW-frames (Theorem 4.3),
without depending on the fundamental symmetry as usually given in Hilbert spaces.
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1. Introduction

The frame theory for Hilbert spaces has its origin in [7] and was developed by I. Daubechies
in [4, 5]. Frames can be considered as “overcomplete bases”, and their overcompleteness makes them
more flexible than orthonormal bases. They have proven to be a powerful tool, for example, in signal
processing and wavelet analysis [10].

In [8] a definition of frames for Krein spaces was established by replacing the positive definite inner
product in the definition of a frame for a Hilbert space by an indefinite inner product, and it is shown
that the theory of frames for Krein spaces and the theory of frames for associated Hilbert spaces are
analogous. GăvruÅ£a in [9] defined K-frames in Hilbert spaces as a generalization of frames, which
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allows one to precisely reconstruct the images of a bounded linear operator on a Hilbert space. In [11]
Mohammed, Samir and Bounader defined K-frames in Krein spaces using the adjoint of the operator
on the Hilbert space associated with the Krein space and presented an equivalence result for K-frames
depending on the fundamental symmetry ( [11], Proposition 3.14).

In this paper, we give a definition (Definition 4.1) of W-frames in Krein spaces which does not
depend directly on the adjoint of the operator in the associated Hilbert space. Instead, it depends on
the adjoint of the operator on the Krein space, and we prove that the definition given in [11] is a
consequence of ours. Following Wagner, Ferrer and Esmeral in [8], we prove that the definition given
in this investigation is independent of the fundamental decomposition and that havingW-frames for
the Krein space necessarily givesW-frames for the Hilbert spaces that compose this space. We also
prove that the orthogonal projectors generate new operators with their respective associated frames.

2. Preliminaries

Theorem 2.1. [6] Let (H1, 〈·, ·〉1), (H2, 〈·, ·〉2) and (H, 〈·, ·〉) be Hilbert spaces and W1 ∈ B(H1,H),W2 ∈

B(H2,H) be bounded operators. The following statements are equivalent:

(i) R(W1) ⊂ R(W2);
(ii) W1W∗

1 ≤ λ
2W2W∗

2 for some λ ≥ 0 ;
(iii) There exists a bounded operator X ∈ B(H1,H2) such that W1 = W2X.

Definition 2.1. [1, 2] A space K with an indefinite inner product [·, ·] that admits a fundamental
decomposition of the form

K = K+ ˙[+]K−,

such that (K+, [·, ·]) and (K−,−[·, ·]) are Hilbert spaces, is called a Krein space, which we denote
as (K , [·, ·]).

Definition 2.2. [1, 2] Let (K , [·, ·]) be a Krein space with a decomposition K = K− ˙[+]K+, and two
operators are defined

P+ : K −→ K+, P− : K −→ K−,

naturally, respectively, for P+(x) = x+ and P−(x) = x− for all x ∈ K , where x+ ∈ K+, x− ∈ K− and
x = x+ + x−. The operators P+ and P− are known as fundamental projectors.

The operator J : K −→ K defined by J = P+ − P−, that is,

J x = P+x − P−x = x+ − x−, for all x ∈ K ,

is called the fundamental symmetry of Krein space K .

Remark 2.1. For a Krein space with fundamental decomposition K = K− ˙[+]K+ and a fundamental
symmetry J , from now on we will write it (K = K+ ˙[+]K−, [·, ·],J).

Proposition 2.1. [1, 2] Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space, and then J is invertible,
J2 = I, J−1 = J , and J is symmetric, isometric and a self-adjoint operator.
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Definition 2.3. [1, 2] Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space. We define the function [·, ·]J :
K ×K −→ C for

[x, y]J = [J x, y], x, y ∈ K .

This function is called the J-inner product.

Note that if we have another fundamental decomposition, then we will have another fundamental
symmetry and consequently another J-inner product.

Definition 2.4. [1,2] The fundamental symmetryJ associated with Krein space (K = K+ ˙[+]K−, [·, ·])
induces a norm in K defined by

‖x‖J :=
√

[x, x]J , for all x ∈ K ,

and this norm is called the J-norm of K . Explicitly,

‖x‖J = ([x+, x+] − [x−, x−])1/2, for all x ∈ K .

Remark 2.2. It defines

‖x+‖+ =
√

[x+, x+], x+ ∈ K+ and ‖x−‖− =
√
−[x−, x−], x− ∈ K−.

From now on, the topology studied in Krein spaces will be directly related to the J-norm of K .

Theorem 2.2. [1] Let (K , [·, ·]) be a Krein space and let

K = K+
1

˙[+]K−1 , K = K+
2

˙[+]K−2 ,

be two fundamental decompositions. IfJ1 andJ2 are the respective fundamental symmetries, it follows
that ‖ · ‖J1 and ‖ · ‖J2 are equivalent norms.

Theorem 2.3. [2] Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space. Then, (K , [·, ·]J ) is a Hilbert space.

Definition 2.5. [1] Let (K1 = K+
1

˙[+]K−1 , [·, ·]1) and (K2 = K+
2

˙[+]K−2 , [·, ·]2) be Krein spaces. The
adjoint of the linear operator W : K1 −→ K2, is the unique linear operator W [∗] : Dom(W[∗]) ⊂
K2 −→ K1 such that

[Wk1, k2]2 = [k1,W [∗]k2]1, for all k1 ∈ K1,

k2 ∈ Dom(W[∗]), andW∗J : Dom(W∗J ) ⊂ K2 −→ K1 such that

[Wk1, k2]J2 = [k1,W∗Jk2]J1 , for all k1 ∈ K1 and k2 ∈ Dom(W∗J ).

Theorem 2.4. [1] Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space and W ∈ L(K) be a bounded
linear operator. If W [∗] and W∗J are the adjoints in the Krein and Hilbert spaces, respectively, then
W [∗] = JW∗JJ .

From the above result we get W∗J = IW∗J I = JJW∗JJJ = J(JW∗JJ)J = JW [∗]J .

Lemma 2.1. [8] Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space and P be an orthogonal projector that
commutes with J . Then, the spaces PK and (I − P)K are Krein spaces with fundamental symmetries
PJ and (I − P)J , respectively.
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Example 2.1. [8] Now, `2(N) can also be seen as a Krein space with an inner product whose inner
J-product coincides with the usual one. In this sense we define the following mapping:

[·, ·]`2 : `2(N) × `2(N)→ C,
[
{αn}n∈N, {βn}n∈N

]
`2

:=
∑
n∈N

(−1)nαnβn,

for all {αn}n∈N, {βn}n∈N ∈ `2(N). Thus, if {en}n∈N is the canonical orthonormal basis of `2(N), then `2(N)
accepts the following fundamental decomposition:

`2(N) = `+
2 (N) ˙[+]`−2 (N),

where `+
2 (N) = span{e2n : n ∈ N} and `−2 (N) = span{e2n+1 : n ∈ N} with associated fundamental

symmetry
J`2 :

(
`2(N), [·, ·]`2

)
→

(
`2(N), [·, ·]`2

)
,

given by J`2({αn}n∈N) = {(−1)nαn}n∈N for all {αn}n∈N ∈ `2(N). Therefore, [·, ·]J`2 = 〈·, ·〉`2 .

From now on whenever we see `2(N) as Krein space we will understand that it is endowed with a
fundamental symmetry J`2 such that [·, ·]J`2 = 〈·, ·〉`2 . An example of such is the one developed above,
and more trivial is the symmetry given by the identity operator on `2(N). Thus we will write £2(N)
instead of `2(N) when viewed as Krein space with such properties and the fundamental symmetry
by J£2 , to avoid confusion.

3. Frames in indefinite metric spaces

The following results were established in [8] for Wagner, Ferrer and Esmeral.

Definition 3.1. Let (K = K+ ˙[+]K−, [·, ·], J) be a Krein space and N ⊆ N. A sequence {xn}n∈N ⊂ K

is called a frame for K if there exist constants 0 < A ≤ B < ∞ such that

A ‖x‖2J ≤
∑
n∈N

|[x, xn]|2 ≤ B ‖x‖2J for x ∈ K .

Definition 3.2. Let (K = K+ ˙[+]K−, [·, ·], J) and (£2(N), [·, ·]J£2
, J£2) be Krein spaces, such

that [·, ·]J£2
coincides with the standard inner product 〈·, ·〉 defined in `2(N). Given a frame {xn}n∈N for

K , the linear mapping
T : £2(N) −→ K , T ({αn}n∈N) =

∑
n∈N

αnxn

is called a pre-frame operator.

Remark 3.1. The adjoint of T is given by

T [∗]k = J£2 ({[k, xn]}n∈N) , for k ∈ K .

In fact, for all {αn}n∈N ∈ £2(N) and k ∈ K , we have

[T ({αn}n∈N) , k] =

∑
n∈N

αnxn, k

 =
∑
n∈N

[αnxn, k] =
∑
n∈N

αn[xn, k] =
∑
n∈N

αn[k, xn]

= 〈{αn}n∈N , {[k, xn]}n∈N〉`2 = [{αn}n∈N ,J£2 ({[k, xn]}n∈N)].
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Definition 3.3. Let (K = K+ ˙[+]K−, [·, ·], J) and (£2(N), [·, ·]J£2
, J£2) be Krein spaces, so that [·, ·]J£2

coincides with the standard inner product 〈·, ·〉 defined in `2(N), and {xn}n∈N ⊂ K is a frame forK . The
operator

S := T J£2T
[∗]

is called the frame operator.

Following the definition of frames in spaces with an indefinite metric introduced in [8] by Wagner,
Ferrer and Esmeral, in [11] the K-frames in Krein spaces are defined as follows.

Definition 3.4. Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space and W : K → K be a bounded
operator. It is said that {xn}n∈N is aW-frame for K if there exist constants A, B > 0 such that

A‖W∗J x‖2J ≤
∑
n∈N

| [x, xn]|2 ≤ B‖x‖2J , for all x ∈ K .

W∗J is the adjoint in the Hilbert space associated with the Krein space (K = K+ ˙[+]K−, [·, ·],J).

4. Frames associated with an operator in spaces of indefinite metrics

In this section we give a definition similar to the previous one, using the adjoint of Krein space and
showing that the one given in [11] is a consequence of our own.

Definition 4.1. Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space and W : K → K be a bounded
operator. It is said that {xn}n∈N is aW-frame for K if there exist constants A, B > 0 such that

A‖W[∗]x‖2J ≤
∑
n∈N

| [x, xn]|2 ≤ B‖x‖2J , for all x ∈ K .

Remark 4.1.

A‖W∗J x‖2J = A‖JW[∗]J x‖2J = A‖W[∗]J x‖2J ≤
∑
n∈N

| [J x, xn]|2 =
∑
n∈N

| [x, xn]J |2 ≤ B‖J x‖2J = B‖x‖2J .

Therefore,
A‖W∗J x‖2J ≤

∑
n∈N

| [x, xn]|2 ≤ B‖x‖2J , for all x ∈ K .

Example 4.1. We consider the vector space C2 over C, with the usual sum and product and the
function [·, ·] : C2 × C2 −→ C given by[

(x1, y1), (x2, y2)
]

= x1x2 − y1y2. (4.1)

Well, it turns out that the space with inner product (C2, [·, ·]) is a Krein space with fundamental
decomposition C2 = K+[u]K−, where K+ = {(x, 0) : x ∈ C} and K− = {(0, y) : y ∈ C}. Then, the
fundamental symmetry is given by

J((x, y)) = P+(x, y) − P−(x, y) = (x,−y).

Let us consider the operator W : C2 → C2 defined by W((x, y)) = (y,−x), which is self-adjoint,
and {xn}

5
n=1 = {(i, 0), (i, 0), (0,−i), (0,−i), (0,−i)}.

AIMS Mathematics Volume 8, Issue 7, 15712–15722.



15717

Let x = (m, r) ∈ C2, and then, ‖(m, r)‖2
J

= [(m, r), (m, r)]J = [J(m, r), (m, r)] = [(m,−r), (m, r) =

mm − (−r)r = |m|2 + |r|2.
Then,

5∑
n=1

|[x, xn]|2 = 2|[(m, r), (i, 0)]|2 + 3|[(m, r), (0,−i)]|2 = 2| − mi|2 + 3| − ri|2

= 2|m|2 + 3|r|2 ≤ 3(|m|2 + |r|2) = 3‖(m, r)‖2J = 3‖x‖2J .

Also,

‖W[∗]x‖2J = [W[∗]x,W[∗]x]J = [W[∗](m, r),W[∗](m, r)]J = [(r,−m), (r,−m)]J = [J(r,−m), (r,−m)]
= [(r,m), (r,−m)] = rr − m(−m) = |r|2 + |m|2 ≤ 2|m|2 + 3|r|2.

Thus, ‖W[∗]x‖2
J

= |m|2 + |r|2 ≤ 2|m|2 + 3|r|2 =
4∑

n=1
|[x, xn]|2 ≤ 3(|m|2 + |r|2) = 3‖x‖2

J
.

Consequently, {xn}
5
n=1 = {(i, 0), (i, 0), (0,−i), (0,−i), (0,−i)} is aW-frame for C2.

The definition of K-frames given in [11], which is an adaptation of the definition of frames given
in [8], was presented apparently depending on the fundamental symmetry. We will show below that
the W-frames according to the definition given in this paper are independent of the fundamental
decomposition of the Krein space in question.

Theorem 4.1. Let (K , [·, ·]) be a Krein space with fundamental decompositions K = K+
1

˙[+]K−1 , K =

K+
2

˙[+]K−2 and fundamental symmetries J1, J2, respectively, andW : K → K is a bounded operator.
If {xn}n∈N is a frame forW with respect to J1, then {xn}n∈N is a frame forW with respect to J2.

Proof. Let {xn}n∈N ⊂ K be a frame for W, in (K = K+
1

˙[+]K−1 , [·, ·],J1), and then there exist
constants A, B > 0 such that A‖W[∗]x‖2

J1
≤

∑
n∈N
|[x, xn]|2 ≤ B‖x‖2

J1
,∀x ∈ K .

Since the norms ‖ · ‖J1 and ‖ · ‖J2 are equivalents, there exist constants C,D > 0 such that

C‖x‖J1 ≤ ‖x‖J2 ≤ D‖x‖J1 for all x ∈ K . (4.2)

SinceW[∗]x ∈ K for all x ∈ K ,

C‖W[∗]x‖J1 ≤ ‖W
[∗]x‖J2 ≤ D‖W[∗]x‖J1 for all x ∈ K . (4.3)

Thus,
A
D
‖W[∗]x‖J2 ≤ A‖W[∗]x‖2J1

≤
∑
n∈N

| [x, xn]|2 ≤ B‖x‖2J1
≤

B
C
‖x‖2J2

,∀x ∈ K .

Consequently {xn}n∈N is a frame forW in (K = K+
2

˙[+]K−2 , [·, ·],J2).

Proposition 4.1. Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space and P be an orthogonal projection
that commutes with J . Then, ‖Px‖PJ = ‖x‖J for all x ∈ K .

Proof. Let x ∈ K , and then ‖Px‖2
PJ

= [Px,Px]PJ = [PJPx,Px] = [JPPx,Px] = [JP2x,Px] =

[JPx,Px] = [Px,Px]J = [x, x]J = ‖x‖2
J
. Consequently, ‖Px‖PJ = ‖x‖J for all x ∈ K .
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The following result shows that orthogonal projectors in spaces of indefinite metric preserve W-
frames.

Theorem 4.2. Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space, W : K → K is a bounded operator
in K , and P is an orthogonal projection that commutes with J . If {xn}n∈N is a W - frame for K ,
then {Pxn}n∈N is aWP-frame for PK .

Proof. The subspace PK of K is a Krein space with fundamental symmetry PJ (see [8]).
Since {xn}n∈N is aW-frame for K , there exist constants A, B > 0 such that

A‖W[∗]x‖2J ≤
∑
n∈N

|[x, xn]|2 ≤ B‖x‖2J , for all x ∈ K . (4.4)

Also, if t belongs to PK , then there exists k ∈ K such that t = Pk.
Since Pk ∈ K for (4.4), we have A‖W[∗]Pk‖2

J
≤

∑
n∈N
|[Pk, xn]|2 ≤ B‖Pk‖2

J
.

So,

A‖(WP)[∗]t‖2PJ = A‖P[∗]W[∗]t‖2PJ = A‖PW[∗]t‖2PJ = A‖W[∗]t‖2J = A‖W[∗]Pk‖2J
≤

∑
n∈N

|[Pk, xn]|2 =
∑
n∈N

|[P2k, xn]|2 =
∑
n∈N

|[Pk,Pxn]|2 =
∑
n∈N

|[t,Pxn]|2 ≤ B‖Pk‖2J

= B‖PPk‖2PJ = B‖P2k‖2PJ = B‖Pk‖2PJ = B‖t‖2PJ , for all t ∈ PK .

Thus, A‖(WP)[∗]t‖2
PJ
≤

∑
n∈N |[t,Pxn]|2 ≤ B‖t‖2

PJ
, f or all t ∈ PK .

Proposition 4.2. Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space. If {xn = x+
n + x−n }n∈N ⊂ K is a Bessel

sequence for (K = K+ ˙[+]K−, [·, ·]), then {x+
n }n∈N and {x−n }n∈N are Bessel sequences for (K+, [·, ·])

and (K−,− [·, ·]), respectively.

Proof. Since {xn = x+
n + x−n }n∈N is a Bessel sequence for (K = K+ ˙[+]K−, [·, ·]), there exists a

constant B > 0 such that ∑
n∈N

|[x, xn]|2 ≤ B ‖x‖2J , for all x ∈ K . (4.5)

Let x+ ∈ K+ ⊂ K and x− ∈ K− ⊂ K , and then for (4.5) we have that∑
n∈N

∣∣∣[x+, xn]
∣∣∣2 ≤ B

∥∥∥x+
∥∥∥2

J
and

∑
n∈N

∣∣∣[x−, xn]
∣∣∣2 ≤ B

∥∥∥x−
∥∥∥2

J
.

As [x+, xn] = [x+, x+
n + x−n ] = [x+, x+

n ]+ [x+, x−n ] = [x+, x+
n ]+0 = [x+, x+

n ] and [x−, xn] = [x−, x+
n + x−n ] =

[x−, x+
n ] + [x−, x−n ] = 0 + [x−, x−n ] = [x−, x−n ], then,∑

n∈N

∣∣∣[x+, x+
n ]

∣∣∣2 =
∑
n∈N

∣∣∣[x+, xn]
∣∣∣2 ≤ B

∥∥∥x+
∥∥∥2

J
, for all x+ ∈ K+,

and ∑
n∈N

∣∣∣−[x−, x−n ]
∣∣∣2 =

∑
n∈N

∣∣∣[x−, x−n ]
∣∣∣2 =

∑
n∈N

∣∣∣[x−, xn]
∣∣∣2 ≤ B

∥∥∥x−
∥∥∥2

J
, for all x− ∈ K−.

Thus, {x+
n }n∈N and {x−n }n∈N are Bessel sequences for (K+, [·, ·]) and (K−,− [·, ·]), respectively.
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The following result was presented in [11] with the restriction on the images of a sequence, under
the fundamental symmetry.

In this paper we present and show a result where it is observed that such a restriction is not necessary.
The result holds as usual in the Hilbert spaces for any sequence of Krein space.

Theorem 4.3. Let (K = K+ ˙[+]K−, [·, ·],J) be a Krein space, {xn}n∈N ⊂ K , and W : K → K is a
bounded operator. Then, the following statements are equivalent.

(i) {xn}n∈N is a Bessel sequence for (K = K+ ˙[+]K−, [·, ·],J), and there exists a sequence of Bessel
{yn}n∈N for (K = K+ ˙[+]K−, [·, ·],J), such thatWx =

∑
n∈N

[x, yn]xn for all x ∈ K .

(ii) {xn}n∈N is aW−frame for (K = K+ ˙[+]K−, [·, ·],J).

Proof. (i)→ (ii)
Suppose that {xn}n∈N is a Bessel sequence for (K = K+ ˙[+]K−, [·, ·],J) and that there exists a

Bessel sequence {yn}n∈N for (K = K+ ˙[+]K−, [·, ·],J), such thatWx =
∑
n∈N

[x, yn]xn for all x ∈ K .

Since {xn}n∈N, {yn}n∈N are Bessel sequences for (K = K+ ˙[+]K−, [·, ·],J), there exist M, B > 0 such
that ∑

n∈N

|[x, xn]|2 ≤ B ‖x‖2J and
∑
n∈N

∣∣∣[x, yn
]∣∣∣2 ≤ M ‖x‖2J for all x ∈ K . (4.6)

It remains to prove that there exists A > 0 such that A‖W[∗]x‖2J ≤
∑
n∈N

|[x, xn]|2 for all x ∈ K .

Since J is an isometry in the Hilbert space (K , [·, ·]J ), we have

‖W[∗]x‖J =‖JW[∗]x‖J = sup
‖y‖J=1

{∣∣∣∣[JW[∗]x, y
]
J

∣∣∣∣} = sup
‖y‖J=1

{∣∣∣∣[J2W[∗]x, y
]∣∣∣∣} = sup

‖y‖J=1

{∣∣∣∣[IW[∗]x, y
]∣∣∣∣}

= sup
‖y‖J=1

{∣∣∣∣[W[∗]x, y
]∣∣∣∣} = sup

‖y‖J=1

{∣∣∣[x,Wy
]∣∣∣} = sup

‖y‖J=1


∣∣∣∣∣∣∣
x,

∑
n∈N

[
y, yn

]
xn


∣∣∣∣∣∣∣


= sup
‖y‖J=1


∣∣∣∣∣∣∣∑n∈N [

y, yn
]
[x, xn]

∣∣∣∣∣∣∣
 ≤ sup

‖y‖J=1

∑
n∈N

∣∣∣∣[y, yn
]
[x, xn]

∣∣∣∣
≤ sup
‖y‖J=1

{[∑∣∣∣[yn, y
]∣∣∣2]1/2 [∑

|[x, xn]|2
]1/2

}
≤ sup
‖y‖J=1

{[
M‖y‖2J

]1/2 [∑
|[x, xn]|2

]1/2
}

≤ sup
‖y‖J=1

{
M1/2‖y‖J

[∑
|[x, xn]|2

]1/2
}

= M1/2
[∑
|[x, xn]|2

]1/2
sup
‖y‖J=1

{
‖y‖J

}
=M1/2

[∑
|[x, xn]|2

]1/2
.

So, ‖W[∗]x‖2
J
≤ M

∑
n∈N
|[x, xn]|2 for all x ∈ K . This implies

1
M
‖W[∗]x‖2J ≤

∑
|[x, xn]|2 for all x ∈ K . (4.7)

We consider 0 <
1
M

= A, and using (4.6 and 4.7) we have

A‖W[∗]x‖2J ≤
∑
n∈N

| [x, xn] |2 ≤ B‖x‖2J , for all x ∈ K .
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ii) → i) Suppose that {xn}n∈N is a W−frame for (K = K+ ˙[+]K−, [·, ·],J), and then there exist
constants A, B > 0 such that

A‖W[∗]x‖2J ≤
∑
n∈N

|[x, xn]|2 ≤ B‖x‖2J , for all x ∈ K .

From the above inequality we have that
∑

n∈N
|[x, xn]|2 ≤ B‖x‖2

J
for all x ∈ K , i.e., {xn}n∈N is a Bessel

sequence for (K = K+ ˙[+]K−, [·, ·],J).
In [8] the authors showed that the operator T : £2(N) → K given by T ({an}n∈N) =

∑
n∈N

anxn, is

well defined and bounded, and also ‖T‖J ≤
√

B. SinceW and T are bounded operators, and T is an
epimorphism (see [3]), R(W) ⊂ R(T ) = K . By Theorem 2.1 there exists the bounded linear operator
M : (K , [·, ·]J)→ `2(N) such thatW = T M.

We consider
Fn : (K , [·, ·]J )→ C, Fn(x) = (Mx)n = ax

n.

Since Mx ∈ `2(N), and we write (Mx)n to indicate the terms of the sequence Mx.
We define ax = Mx. We have

|Fn(x)| = |ax
n| ≤

∑
n∈N

|ax
n|

2

1/2

= ‖ax‖`2 = ‖Mx‖`2 ≤ ‖M‖ ‖x‖J .

Therefore, for each n ∈ N, Fn : K → C are continuous linear functionals. From the Riesz
representation theorem for Krein spaces (see [1]), it follows that there exists {yn}n∈N ⊂ K such that
ax

n = Fn(x) = [x, yn] for all x ∈ K .
Then, for x ∈ K , Wx = T Mx = T (Mx) = T ({ax

n}n∈N) =
∑
n∈N

ax
nxn =

∑
n∈N

[x, yn]xn. So,

Wx =
∑

n∈N
[x, yn]xn for all x ∈ K .

It remains to prove that {yn}n∈N ⊂ K is a Bessel sequence. In effect,∑
n∈N

∣∣∣[x, yn
]∣∣∣2 =

∑
n∈N

|ax
n|

2 = ‖ax‖2`2
≤ ‖M‖2‖x‖2J , and therefore, {yn}n∈N is a Bessel sequence

for (K = K+ ˙[+]K−, [·, ·],J).

As an application of the previous theorem, using the fundamental projectors below, we obtain
frames associated with these projectors for the subspaces that compose the Krein space.

Theorem 4.4. Let (K = K+ ˙[+]K−, [·, ·]) be a Krein space with fundamental symmetry J , and W :
K → K is a bounded operator. If the sequence {xn = x+

n + x−n }n∈N is aW-frame for K , then {x+
n }n∈N

and {x−n }n∈N are P+W and P−W frames for (K+, [·, ·]) and (K+,−[·, ·]), respectively.

Proof. Since {xn = x+
n +x−n }n∈N is aW-frame forK , then there exists a Bessel sequence {yn = y+

n +y−n }n∈N
for K such that for all x ∈ K we have thatWx =

∑
n∈N

[x, yn]xn.

Since {xn = x+
n + x−n }n∈N and {yn = y+

n + y−n }n∈N are Bessel sequences for K by Proposition 4.2 {x+
n }n∈N,

{y+
n }n∈N are Bessel sequences for (K+, [·, ·]). {x−n }n∈N, {y−n }n∈N are Bessel sequences for (K−,− [·, ·]).
Let x+ ∈ K+ ⊂ K and x− ∈ K− ⊂ K , and then

Wx+ =
∑
n∈N

[x+, yn]xn =
∑
n∈N

[x+, y+
n ]xn and Wx− =

∑
n∈N

[x−, yn]xn =
∑
n∈N

[x−, y−n ]xn.
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Additionally,

P+Wx+ = P+(Wx+) = P+

∑
n∈N

[x+, y+
n ]xn

 =
∑
n∈N

[x+, y+
n ]P+(xn) =

∑
n∈N

[x+, y+
n ]x+

n ,

and,

P−Wx− = P−(Wx−) = P−

∑
n∈N

[x−, y−n ]xn

 =
∑
n∈N

[x−, y−n ]P−(xn) =
∑
n∈N

([x−, y−n ])x−n .

Theorem 4.3 ensures that {x+
n }n∈N and {x−n }n∈N are P+W and P−W frames for (K+, [·, ·])

and (K−,−[·, ·]), respectively.

5. Conclusions

TheW-frames in Krein spaces are well defined, and they are a generalization of the K-frames in
Hilbert spaces introduced by GăvruÅ£a in [9]. TheW-frames are independent of the decomposition of
the Krein space. By havingW-frames for a Krein space one necessarily hasW-frames for the Hilbert
spaces that compose the Krein space, and the orthogonal projectors projectW-frames onWP-frames.
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