We introduce a generalized concept of arbitrage, excess profit relative to the benchmark asset under $ \alpha $-confidence level, $ \alpha $-REP, in a single-period market model with proportional transaction costs. We obtain a fundamental theorem of asset pricing with respect to the absence of $ \alpha $-REP. Moreover, we discuss the relationships between classical arbitrage, strong statistical arbitrage and $ \alpha $-REP.
Citation: Dong Ma, Peibiao Zhao, Minghan Lyu, Jun Zhao. Excess profit relative to the benchmark asset under the $ \alpha $-confidence level[J]. AIMS Mathematics, 2023, 8(12): 30419-30428. doi: 10.3934/math.20231553
We introduce a generalized concept of arbitrage, excess profit relative to the benchmark asset under $ \alpha $-confidence level, $ \alpha $-REP, in a single-period market model with proportional transaction costs. We obtain a fundamental theorem of asset pricing with respect to the absence of $ \alpha $-REP. Moreover, we discuss the relationships between classical arbitrage, strong statistical arbitrage and $ \alpha $-REP.
[1] | J. M. Harrison, S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stoch. Proc. Appl., 11 (1981), 215–260. https://doi.org/10.1016/0304-4149(81)90026-0 doi: 10.1016/0304-4149(81)90026-0 |
[2] | F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann., 300 (1994), 463–520. https://doi.org/10.1007/BF01450498 doi: 10.1007/BF01450498 |
[3] | F. Delbaen, W. Schachermayer, The fundamental theorem of asset pricing for unbounded stochastic processes, Math. Ann., 312 (1998), 215–250. https://doi.org/10.1007/s002080050220 doi: 10.1007/s002080050220 |
[4] | D. Duffie, Dynamic asset pricing theory, 3 Eds., Princeton: Princeton University Press, 2010. |
[5] | X. Deng, Z. Li, S. Wang, On computation of arbitrage for markets with friction, In: Computing and combinatorics, Berlin, Heidelberg: Springer, 2000,310–319. https://doi.org/10.1007/3-540-44968-X_31 |
[6] | J. H. Cochrane, J. Saa-Requejo, Beyond arbitrage: Good-deal asset price bounds in incomplete markets, J. Polit. Econ., 108 (2000), 79–119. https://doi.org/10.1086/262112 doi: 10.1086/262112 |
[7] | A. E. Bernardo, O. Ledoit, Gain, loss, and asset pricing, J. Polit. Econ., 108 (2000), 144–172. https://doi.org/10.1086/262114 doi: 10.1086/262114 |
[8] | O. Bondarenko, Statistical arbitrage and securities prices, Rev. Financ. Stud., 16 (2003), 875–919. https://doi.org/10.1093/rfs/hhg016 doi: 10.1093/rfs/hhg016 |
[9] | J. Fajardo, A. Lacerda, Statistical arbitrage with default and collateral, Econ. Lett., 108 (2010), 81–84. https://doi.org/10.1016/j.econlet.2010.04.015 doi: 10.1016/j.econlet.2010.04.015 |
[10] | F. Modigliani, M. H. Miller, The cost of capital, corporation finance and the theory of investment, Am. Econ. Rev., 49 (1959), 655–669. |
[11] | Y. Sun, G. Aw, K. L. TeO, G. Zhou, Portfolio optimization using a new probabilistic risk measure, J. Ind. Manag. Optim., 11 (2015), 1275–1283. https://doi.org/10.3934/jimo.2015.11.1275 doi: 10.3934/jimo.2015.11.1275 |