Research article

Excess profit relative to the benchmark asset under the $ \alpha $-confidence level

  • Received: 28 July 2023 Revised: 22 October 2023 Accepted: 01 November 2023 Published: 09 November 2023
  • MSC : 91G30, 91G80

  • We introduce a generalized concept of arbitrage, excess profit relative to the benchmark asset under $ \alpha $-confidence level, $ \alpha $-REP, in a single-period market model with proportional transaction costs. We obtain a fundamental theorem of asset pricing with respect to the absence of $ \alpha $-REP. Moreover, we discuss the relationships between classical arbitrage, strong statistical arbitrage and $ \alpha $-REP.

    Citation: Dong Ma, Peibiao Zhao, Minghan Lyu, Jun Zhao. Excess profit relative to the benchmark asset under the $ \alpha $-confidence level[J]. AIMS Mathematics, 2023, 8(12): 30419-30428. doi: 10.3934/math.20231553

    Related Papers:

  • We introduce a generalized concept of arbitrage, excess profit relative to the benchmark asset under $ \alpha $-confidence level, $ \alpha $-REP, in a single-period market model with proportional transaction costs. We obtain a fundamental theorem of asset pricing with respect to the absence of $ \alpha $-REP. Moreover, we discuss the relationships between classical arbitrage, strong statistical arbitrage and $ \alpha $-REP.



    加载中


    [1] J. M. Harrison, S. R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stoch. Proc. Appl., 11 (1981), 215–260. https://doi.org/10.1016/0304-4149(81)90026-0 doi: 10.1016/0304-4149(81)90026-0
    [2] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann., 300 (1994), 463–520. https://doi.org/10.1007/BF01450498 doi: 10.1007/BF01450498
    [3] F. Delbaen, W. Schachermayer, The fundamental theorem of asset pricing for unbounded stochastic processes, Math. Ann., 312 (1998), 215–250. https://doi.org/10.1007/s002080050220 doi: 10.1007/s002080050220
    [4] D. Duffie, Dynamic asset pricing theory, 3 Eds., Princeton: Princeton University Press, 2010.
    [5] X. Deng, Z. Li, S. Wang, On computation of arbitrage for markets with friction, In: Computing and combinatorics, Berlin, Heidelberg: Springer, 2000,310–319. https://doi.org/10.1007/3-540-44968-X_31
    [6] J. H. Cochrane, J. Saa-Requejo, Beyond arbitrage: Good-deal asset price bounds in incomplete markets, J. Polit. Econ., 108 (2000), 79–119. https://doi.org/10.1086/262112 doi: 10.1086/262112
    [7] A. E. Bernardo, O. Ledoit, Gain, loss, and asset pricing, J. Polit. Econ., 108 (2000), 144–172. https://doi.org/10.1086/262114 doi: 10.1086/262114
    [8] O. Bondarenko, Statistical arbitrage and securities prices, Rev. Financ. Stud., 16 (2003), 875–919. https://doi.org/10.1093/rfs/hhg016 doi: 10.1093/rfs/hhg016
    [9] J. Fajardo, A. Lacerda, Statistical arbitrage with default and collateral, Econ. Lett., 108 (2010), 81–84. https://doi.org/10.1016/j.econlet.2010.04.015 doi: 10.1016/j.econlet.2010.04.015
    [10] F. Modigliani, M. H. Miller, The cost of capital, corporation finance and the theory of investment, Am. Econ. Rev., 49 (1959), 655–669.
    [11] Y. Sun, G. Aw, K. L. TeO, G. Zhou, Portfolio optimization using a new probabilistic risk measure, J. Ind. Manag. Optim., 11 (2015), 1275–1283. https://doi.org/10.3934/jimo.2015.11.1275 doi: 10.3934/jimo.2015.11.1275
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(851) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog