Correctly determining a company's market worth during an entire year or a certain period presents a difficulty to decision-makers. In the case of the merger of companies, the need performs heavier when both the companies' owners are attracted to establishing a fair price at the optimal time to merge. The effectiveness of representing, connecting and manipulating both uncertainty and periodicity information becomes highly required. Hence, study and nhance some properties and conditions of the algebraic structure of complex hesitant fuzzy graphs. Therefore, the degree of composition between two complex hesitant fuzzy graphs is proposed. Also, the formal definitions of union, joint and complement are presented to be covered in the realm of complex hesitant fuzzy graphs. A real-life application is illustrated to show the relation between vertices and edges in the form of complex hesitant fuzzy graphs.
Citation: AbdUlazeez Alkouri, Eman A. AbuHijleh, Ghada Alafifi, Eman Almuhur, Fadi M. A. Al-Zubi. More on complex hesitant fuzzy graphs[J]. AIMS Mathematics, 2023, 8(12): 30429-30444. doi: 10.3934/math.20231554
Correctly determining a company's market worth during an entire year or a certain period presents a difficulty to decision-makers. In the case of the merger of companies, the need performs heavier when both the companies' owners are attracted to establishing a fair price at the optimal time to merge. The effectiveness of representing, connecting and manipulating both uncertainty and periodicity information becomes highly required. Hence, study and nhance some properties and conditions of the algebraic structure of complex hesitant fuzzy graphs. Therefore, the degree of composition between two complex hesitant fuzzy graphs is proposed. Also, the formal definitions of union, joint and complement are presented to be covered in the realm of complex hesitant fuzzy graphs. A real-life application is illustrated to show the relation between vertices and edges in the form of complex hesitant fuzzy graphs.
[1] | V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418 |
[2] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | J. C. R. Alcantud, V. Torra, Decomposition theorems and extension principles for hesitant fuzzy sets, Inf. Fusion, 41 (2018), 48–56. https://doi.org/10.1016/j.inffus.2017.08.005 doi: 10.1016/j.inffus.2017.08.005 |
[4] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[5] | R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989 |
[6] | R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting, 2013. http://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[7] | T. Senapti, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intell. Hum. Comput., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0 |
[8] | R. R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 25 (2017), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005 |
[9] | J. C. R. Alcantud, Complemental fuzzy sets: a semantic justification of $q$-rung orthopair fuzzy sets, IEEE Trans. Fuzzy Syst., 2023 (2023), 1–9. https://doi.org/10.1109/TFUZZ.2023.3280221 doi: 10.1109/TFUZZ.2023.3280221 |
[10] | A. U. M. Alkouri, M. Massa'deh, M. Ali, On bipolar complex fuzzy sets and its application, J. Intell. Fuzzy Syst., 39 (2020), 383–397. https://doi.org/10.3233/JIFS-191350 doi: 10.3233/JIFS-191350 |
[11] | A. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515 |
[12] | A. M. kram, K. Zahid, J. C. R. Alcantud, A new outranking method for multicriteria decision making with complex Pythagorean fuzzy information, Neural Comput. Appl., 34 (2022), 8069–8102. https://doi.org/10.1007/s00521-021-06847-1 doi: 10.1007/s00521-021-06847-1 |
[13] | K. Chao, H. Zhao, Z. Xu, F. Cui, Robust hesitant fuzzy partitional clustering algorithms and their applications in decision making, Appl. Soft Comput., 145 (2023), 110212. https://doi.org/10.1016/j.asoc.2023.110212 doi: 10.1016/j.asoc.2023.110212 |
[14] | M. Xia, Z. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002 |
[15] | N. Chen, Z. Xu, M. Xia, Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis, Appl. Math. Modell., 37 (2013), 2197–2211. https://doi.org/10.1016/j.apm.2012.04.031 doi: 10.1016/j.apm.2012.04.031 |
[16] | N. Chen, Z. Xu, M. Xia, Interval-valued hesitant preference relations and their applications to group decision making, Knowl. Based Syst., 37 (2013), 528–540. https://doi.org/10.1016/j.knosys.2012.09.009 doi: 10.1016/j.knosys.2012.09.009 |
[17] | R. M. Rodriguez, L. Martinez, F. Herrera, Hesitant fuzzy linguistic term sets for decision making, IEEE Trans. Fuzzy Syst., 20 (2012), 109–119. https://doi.org/10.1109/TFUZZ.2011.2170076 doi: 10.1109/TFUZZ.2011.2170076 |
[18] | B. Zhu, Z. Xu, M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., 2012 (2012), 879629. https://doi.org/10.1155/2012/879629 doi: 10.1155/2012/879629 |
[19] | A. Kauffman, L. A. Zadeh, Introduction à la théorie des sous-ensembles flous à l'usage des ingénieurs: fuzzy sets theory, 2 Eds., Masson, 1977. |
[20] | A. Rosenfeld, Fuzzy graphs, Academic Press, 1975, 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6 |
[21] | T. Pathinathan, J. J. Arockiaraj, J. J. Rosline, Hesitancy fuzzy graphs, Indian J. Sci. Technol., 8 (2015), 1–5. https://doi.org/10.17485/ijst/2015/v8i35/86672 doi: 10.17485/ijst/2015/v8i35/86672 |
[22] | F. Karaaslan, Hesitant fuzzy graphs and their applications in decision making, J. Intell. Fuzzy Syst., 36 (2019), 2729–2741. https://doi.org/10.3233/JIFS-18865 doi: 10.3233/JIFS-18865 |
[23] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119 |
[24] | M. Talafha, A. Alkouri, S. Alqaraleh, H. Zureigat, A. Aljarrah. Complex hesitant fuzzy sets and its applications in multiple attributes decision-making problems, J. Intell. Fuzzy Syst., 41 (2021), 7299–7327. https://doi.org/10.3233/JIFS-211156 |
[25] | M. Akram, U. Amjad, J. C. R. Alcantud, G. Santos-García, Complex fermatean fuzzy $N$-soft sets: a new hybrid model with applications, J. Amb. Intell. Hum. Comput., 14 (2023), 8765–8798. https://doi.org/10.1007/s12652-021-03629-4 doi: 10.1007/s12652-021-03629-4 |
[26] | L. T. Giang, L. H. Son, N. L. Giang, T. M. Tuan, N. V. Luong, M. D. Sinh, et al., A new co-learning method in spatial complex fuzzy inference systems for change detection from satellite images, Neural Comput. Appl., 35 (2023), 4519–4548. https://doi.org/10.1007/s00521-022-07928-5 doi: 10.1007/s00521-022-07928-5 |
[27] | J. Gwak, H. Garg, N. Jan, Investigation of robotics technology based on bipolar complex intuitionistic fuzzy soft relation, Int. J. Fuzzy Syst., 25 (2023), 1834–1852. https://doi.org/10.1007/s40815-023-01487-0 doi: 10.1007/s40815-023-01487-0 |
[28] | J. Gwak, H. Garg, N. Jan, Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy and soft sets, Alex. Eng. J., 67 (2023), 473–487. https://doi.org/10.1016/j.aej.2022.12.003 doi: 10.1016/j.aej.2022.12.003 |
[29] | T. Mahmood, Z. Ali, Multi-attribute decision-making methods based on Aczel-Alsina power aggregation operators for managing complex intuitionistic fuzzy sets, Comput. Appl. Math., 42 (2023), 87. https://doi.org/10.1007/s40314-023-02204-1 doi: 10.1007/s40314-023-02204-1 |
[30] | N. Jan, J. Gwak, J. Choi, S. W. Lee, C. S. Kim, Transportation strategy decision-making process using interval-valued complex fuzzy soft information, AIMS Math., 8 (2023), 3606–3633. https://doi.org/10.3934/math.2023182 doi: 10.3934/math.2023182 |
[31] | T. Mahmood, U. ur Rehman, Z. Ali, Analysis and application of Aczel-Alsina aggregation operators based on bipolar complex fuzzy information in multiple attribute decision making, Inf. Sci., 619 (2023), 817–833. https://doi.org/10.1016/j.ins.2022.11.067 doi: 10.1016/j.ins.2022.11.067 |
[32] | D. E. Tamir, N. D. Rishe, M. Last, A. Kandel, Soft computing based epidemical crisis prediction, 1 Ed., Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-08624-8_2 |
[33] | N. Yaqoob, M. Gulistan, S. Kadry, H. A. Wahab, Complex intuitionistic fuzzy graphs with application in Cellular network provider companies, Matematics, 7 (2019), 35. https://doi.org/10.3390/math7010035 doi: 10.3390/math7010035 |
[34] | E. A. AbuHijleh, Complex hesitant fuzzy graph, Fuzzy Inf. Eng., 15 (2023), 149–161. https://doi.org/10.26599/FIE.2023.9270010 doi: 10.26599/FIE.2023.9270010 |
[35] | M. Akram, Bipolar fuzzy graphs with applications, Knowl. Based Syst., 39 (2013), 1–8. https://doi.org/10.1016/j.knosys.2012.08.022 doi: 10.1016/j.knosys.2012.08.022 |
[36] | R. Verma, J. M. Merigó, M. Sahni, Pythagorean fuzzy graphs: some results, arXiv, 2018. https://doi.org/10.48550/arXiv.1806.06721 |
[37] | R. Nandhini, D. Amsaveni, Bipolar complex pythagorean fuzzy graphs, Springer, 2022. https://doi.org/10.1007/978-981-19-0471-4-1 |
[38] | R. Nandhini, D. Amsaveni, On bipolar complex intuitionistic fuzzy graphs, TWMS J. Appl. Eng. Math., 12 (2022), 92–106. |
[39] | K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2020), 15–27. https://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6 |
[40] | M. Javaid, A. Kashif, T. Rashid, Hesitant fuzzy graphs and their products, Fuzzy Inf. Eng., 12 (2020), 238–252. https://doi.org/10.1080/16168658.2020.1817658 doi: 10.1080/16168658.2020.1817658 |
[41] | M. Xia, Z. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 359–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002 |
[42] | B. Zhu, Studies on consistency measure of hesitant fuzzy preference relations, Proc. Comput. Sci., 17 (2013), 457–464. https://doi.org/10.1016/j.procs.2013.05.059 doi: 10.1016/j.procs.2013.05.059 |