The Banzhaf value with grey data is a solution concept in cooperative grey games that has been extensively studied in the context of operations research. The author aims to define the traits of the Banzhaf value in cooperative grey games, where the values of coalitions are depicted as grey numbers within intervals. The grey Banzhaf value is defined by several axioms, including the grey dummy player, grey van den Brink fairness, and grey superadditivity. By presenting these axioms, this investigation contributes novel insights to the axiomatic characterization of the grey Banzhaf value, offering a distinct perspective. Finally, the study concludes by presenting applications in cooperative grey game models, thereby enriching the understanding of this concept.
Citation: Mustafa Ekici. On an axiomatization of the grey Banzhaf value[J]. AIMS Mathematics, 2023, 8(12): 30405-30418. doi: 10.3934/math.20231552
The Banzhaf value with grey data is a solution concept in cooperative grey games that has been extensively studied in the context of operations research. The author aims to define the traits of the Banzhaf value in cooperative grey games, where the values of coalitions are depicted as grey numbers within intervals. The grey Banzhaf value is defined by several axioms, including the grey dummy player, grey van den Brink fairness, and grey superadditivity. By presenting these axioms, this investigation contributes novel insights to the axiomatic characterization of the grey Banzhaf value, offering a distinct perspective. Finally, the study concludes by presenting applications in cooperative grey game models, thereby enriching the understanding of this concept.
[1] | R. Branzei, S. Z. Alparslan Gök, O. Branzei, Cooperative games under interval uncertainty: on the convexity of the interval undominated cores, Cent. Eur. J. Oper. Res., 19 (2011), 523–532. http://doi.org/10.1007/s10100-010-0141-z doi: 10.1007/s10100-010-0141-z |
[2] | L. Y. Yu, The grey forecast for urban domestic wastes, Environ. Pollut. Control, 5 (1986), 7–9. |
[3] | S. Liu, Y. Lin, Grey prediction, Springer, 2006. https://doi.org/10.1007/1-84628-342-6_9 |
[4] | S. F. Liu, Y. Lin, Introduction to grey systems theory, Springer, 2010. https://doi.org/10.1007/978-3-642-16158-2_1 |
[5] | Z. Li, Primary applications of grey system theory in the study of earthquake forecasting, J. Seismol., 4 (1986), 27–31. |
[6] | C. Lee, Grey system theory win application on earthquake forecasting, J. Seismol., 4 (1986), 27–31. |
[7] | M. Wang, W. Liu, Long period forecasting of first frost by grey system theory, Fuzzy Math., 2 (1985), 59–66. |
[8] | D. Julong, On Grey and fuzzy decision of lining Building of irrigation channels, Syst. Sci. Compr. Stud. Agric., 2 (1985), 26–30. |
[9] | E. Kose, I. Temiz, S. Erol, Grey system approach for economic order quantity models under uncertainty, J. Grey Syst., 1 (2011), 71–82. |
[10] | B. Li, J. Deng, The grey model of biological prevention and cure systems of aphis gossypii Glover, Explor. Nature, 3 (1984), 44–46. |
[11] | J. Deng, Grey system and agriculture, J. Shanxi Agric. Sci., 5 (1985), 34–37. |
[12] | L. Senra, Grey forecasting the freight volume for vehicle of railway, J. Xiangfan Univ., 1 (1986), 33–35. |
[13] | G. Hong, Grey classification of medical diagnosis, Explor. Nat., 4 (1986), 69–75. |
[14] | B. Cheng, The grey control on industrial process, J. Huangshi College, 1 (1986), 11–23. |
[15] | D. Zhang, Grey relational analysis of the shape function and the level of body quality for youngsters and children, Sport Science in Guizhou Province, 2 (1986), 1–5. |
[16] | X. Ma, P. Zhen, The forecasting of creep behaviour for low alloy steel, Fuzzy Math. 2 (1985), 85–88. |
[17] | X. Jiling, Analysis of potentials of the load of judicial system of China, Grey Syst., 1988,195–210. |
[18] | E. F. H. Qasim, S. Z. A. Gök, O. Palanci, An application of cooperative grey games to post-disaster housing problem, Int. J. Supply Oper. Manage., 6 (2019), 57–66. http://doi.org/10.22034/2019.1.4 doi: 10.22034/2019.1.4 |
[19] | E. F. H. Qasim, S. Z. A. Gök, O. Palanci, G. W. Weber, Airport situations and games with grey uncertainty, Int. J. Ind. Eng. Oper. Res., 1 (2019), 51–59. |
[20] | U. A. Yılmaz, S. Z. A. Gök, M. Ekici, O. Palanci, On the grey equal surplus sharing solutions, Int. J. Supply Oper. Manage., 5 (2018), 1–10. http://doi.org/10.22034/2018.1.1 doi: 10.22034/2018.1.1 |
[21] | J. Deng, Control problems of Grey Systems, Syst. Control Lett., 5 (1982), 288–294. http://doi.org/10.1016/S0167-6911(82)80025-X doi: 10.1016/S0167-6911(82)80025-X |
[22] | W. Xie, C. Liu, W. Z. Wu, A novel fractional grey system model with non-singular exponential kernel for forecasting enrollments, Expert Syst. Appl., 219 (2023), 119652. http://doi.org/10.1016/j.eswa.2023.119652 doi: 10.1016/j.eswa.2023.119652 |
[23] | M. Zhang, Y. Lan, J. Chen, A comprehensive college coaches evaluation model based on AHP and grey correlation theory, 2015 IEEE Fifth International Conference on Big Data and Cloud Computing, 2015. http://doi.org/10.1109/BDCloud.2015.69 |
[24] | S. Liu, Y. Yang, J. Y. Forrest, Grey models for decision making, Springer, 2010. https://doi.org/10.1007/978-981-19-6160-1_10 |
[25] | S. A. Javed, A. Gunasekaran, A. Mahmoudi, DGRA: multi-sourcing and supplier classification through dynamic grey relational analysis method, Comput. Ind. Eng., 173 (2022), 108674. http://doi.org/10.1016/j.cie.2022.108674 doi: 10.1016/j.cie.2022.108674 |
[26] | M. Ekici, O. Palanci, S. Z. A. Gök, The grey Shapley value: an axiomatization, IOP Conf. Ser., 300 (2018), 012082. http://doi.org/10.1088/1757-899X/300/1/012082 doi: 10.1088/1757-899X/300/1/012082 |
[27] | O. Palanci, The new axiomatization of the grey Shapley value, J. Grey Syst., 33 (2021), 67–77. |
[28] | O. Palanci, M. O. Olgun, S. Ergun, S. Z. A. Gök, G. W. Weber, Cooperative grey games: grey solutions and an optimization algorithm, Int. J. Supply Oper. Manage., 4 (2017), 202–215. http://doi.org/10.22034/2017.3.02 doi: 10.22034/2017.3.02 |
[29] | G. Owen, Multilinear extensions and the Banzhaf value, Naval Res. Logist. Q., 22 (1975), 741–750. http://doi.org/10.1002/nav.3800220409 doi: 10.1002/nav.3800220409 |
[30] | L. S. Shapley, A value for $n$-person games, Princeton University Press, 1953. |
[31] | E. Lehrer, An axiomatization of the Banzhaf value, Int. J. Game Theory, 17 (1988), 89–99. http://doi.org/10.1007/BF01254541 doi: 10.1007/BF01254541 |
[32] | H. Haller, Collusion properties of values, Int. J. Game Theory, 23 (1994), 261–281. http://doi.org/10.1007/BF01247318 doi: 10.1007/BF01247318 |
[33] | V. Feltkamp, Alternative axiomatic characterizations of the Shapley and Banzhaf values, Int. J. Game Theory, 24 (1995), 179–186. http://doi.org/10.1007/BF01240041 doi: 10.1007/BF01240041 |
[34] | A. S. Nowak, On an axiomatization of the Banzhaf value without the additivity axiom, Int. J. Game Theory, 26 (1997), 137–141. http://doi.org/10.1007/BF01262517 doi: 10.1007/BF01262517 |
[35] | H. P. Young, Monotonic solutions of cooperative games, Int. J. Game Theory, 14 (1985), 65–72. http://doi.org/10.1007/BF01769885 doi: 10.1007/BF01769885 |
[36] | A. Casajus, Marginality, differential marginality, and the Banzhaf value, Theory Decision, 71 (2011), 365–372. https://doi.org/10.1007/s11238-010-9224-5 doi: 10.1007/s11238-010-9224-5 |
[37] | R. van den Brink, An axiomatization of the Shapley value using a fairness property, Int. J. Game Theory, 30 (2002), 309–319. http://doi.org/10.1007/s001820100079 doi: 10.1007/s001820100079 |
[38] | Y. Kamijo, T. Kongo, Axiomatization of the Shapley value using the balanced cycle contributions property, Int. J. Game Theory, 39 (2010), 563–571. http://doi.org/10.1007/s00182-009-0187-0 doi: 10.1007/s00182-009-0187-0 |
[39] | S. Hart, A. Mas-Colell, Potential, value, and consistency, Econometrica, 57 (1989), 589–614. http://doi.org/10.2307/1911054 doi: 10.2307/1911054 |
[40] | Y. Chun, A new axiomatization of the Shapley value, Game. Econ. Behav., 1 (1989), 119–130. http://doi.org/10.1016/0899-8256(89)90014-6 doi: 10.1016/0899-8256(89)90014-6 |
[41] | R. B. Myerson, Conference structures and fair allocation rules, Int. J. Game Theory, 9 (1980), 169–182. http://doi.org/10.1007/BF01781371 doi: 10.1007/BF01781371 |
[42] | S. Tijs, Introduction to game theory, Springer, 2003. |
[43] | R. E. Moore, Methods and applications of interval analysis, Society for Industrial and Applied Mathematics, 1979. http://doi.org/10.1137/1.9781611970906 |
[44] | O. Palanci, S. Z. A. Gök, S. Ergün, G. W. Weber, Cooperative grey games and grey Shapley value, Optimization, 64 (2015), 1657–1668. http://doi.org/10.1080/02331934.2014.956743 doi: 10.1080/02331934.2014.956743 |
[45] | A. Casajus, Differential marginality, van den Brink fairness, and the Shapley value, Theory Decision, 71 (2009), 163–174. http://doi.org/10.1007/s11238-009-9171-1 doi: 10.1007/s11238-009-9171-1 |
[46] | J. J. M. Derks, H. H. Haller, Null players out? Linear values for games with variable supports, Int. J. Game Theory Rev., 1 (1999), 301–314. http://doi.org/10.1142/S0219198999000220 doi: 10.1142/S0219198999000220 |
[47] | S. H. Tijs, T. Parthasarathy, J. A. M. Potters, V. R. Prasad, Permutation games: another class of totally balanced games, Oper. Res. Spektrum, 6 (1984), 119–123. http://doi.org/10.1007/BF01721088 doi: 10.1007/BF01721088 |
[48] | J. C. Harsanyi, A bargaining model for cooperative $n$-person games, Princeton University Press, 1959. http://doi.org/10.1515/9781400882168-019 |