In this paper, we investigate the qualitative behavior of the fuzzy difference equation
$ \begin{equation*} z_{n+1} = \frac{Az_{n-s}}{B+C\prod\limits_{i = 0}^{s}z_{n-i}} \end{equation*} $
where $ n\in \mathbb{N}_{0} = \; \mathbb{N} \cup \left\{ 0\right\}, \; (z_{n}) $ is a sequence of positive fuzzy numbers, $ A, B, C $ and the initial conditions $ z_{-j}, \; j = 0, 1, ..., s $ are positive fuzzy numbers and $ s $ is a positive integer. Moreover, two examples are given to verify the effectiveness of the results obtained.
Citation: İbrahim Yalçınkaya, Durhasan Turgut Tollu, Alireza Khastan, Hijaz Ahmad, Thongchai Botmart. Qualitative behavior of a higher-order fuzzy difference equation[J]. AIMS Mathematics, 2023, 8(3): 6309-6322. doi: 10.3934/math.2023319
In this paper, we investigate the qualitative behavior of the fuzzy difference equation
$ \begin{equation*} z_{n+1} = \frac{Az_{n-s}}{B+C\prod\limits_{i = 0}^{s}z_{n-i}} \end{equation*} $
where $ n\in \mathbb{N}_{0} = \; \mathbb{N} \cup \left\{ 0\right\}, \; (z_{n}) $ is a sequence of positive fuzzy numbers, $ A, B, C $ and the initial conditions $ z_{-j}, \; j = 0, 1, ..., s $ are positive fuzzy numbers and $ s $ is a positive integer. Moreover, two examples are given to verify the effectiveness of the results obtained.
[1] | R. P. Agarwal, Difference equations and inequalities, New York, 1993. |
[2] | E. P. Popov, Automatic regulation and control, Moscow, 1966. |
[3] | M. Bakır, S. Akan, E. Özdemir, Regional aircraft selection with fuzzy piprecia and fuzzy marcos: a case study of the turkish airline industry, Facta Univ. Ser. Mech., 19 (2021), 423–445. https://doi.org/10.22190/FUME210505053B doi: 10.22190/FUME210505053B |
[4] | D. Božanić, A. Milić, D. Tešić, W. Salabun, D. Pamučar, D numbers-FUCOM-Fuzzy RAFSI model for selecting the group of construction machines for enabling mobility, Facta Univ. Ser. Mech., 19 (2021), 447–471. https://doi.org/10.22190/FUME210318047B doi: 10.22190/FUME210318047B |
[5] | F. Rabiei, F. A. Hamid, M. Rashidi, Z. Ali, K. Shah, K. Hosseini, et al., Numerical simulation of fuzzy Volterra integro-differential equation using improved Runge-Kutta method, J. Appl. Comput. Mech., 9 (2023), 72–82. https://doi.org/10.22055/JACM.2021.38381.3212 doi: 10.22055/JACM.2021.38381.3212 |
[6] | J. H. He, F. Y. Ji, H. Mohammad-Sedighi, Difference equation vs differential equation on different scales, Int. J. Numer. Method. H., 31 (2021), 391–401. https://doi.org/10.1108/HFF-03-2020-0178 doi: 10.1108/HFF-03-2020-0178 |
[7] | I. Bajo, E. Liz, Global behavior of a second-order non-linear difference equation, J. Differ. Equ. Appl., 17 (2011), 1471–1486. https://doi.org/10.1080/10236191003639475 doi: 10.1080/10236191003639475 |
[8] | G. Rahman, Q. Din, F. Faizullah, F. M. Khan, Qualitative behavior of a second-order fuzzy difference equation, J. Intell. Fuzzy Syst., 34 (2018), 745–753. https://doi.org/10.3233/JIFS-17922 doi: 10.3233/JIFS-17922 |
[9] | M. Shojaei, R. Saadeti, H. Adibi, Stability and periodic character of a rational third-order difference equation, Chaos Soliton. Fract., 39 (2009), 1203–1209. https://doi.org/10.1016/j.chaos.2007.06.029 doi: 10.1016/j.chaos.2007.06.029 |
[10] | I. Yalcinkaya, N. Atak, D. T. Tollu, On a third-order fuzzy difference equation, J. Prime Res. Math., 17 (2021), 59–69. |
[11] | K. A. Chrysafis, B. K. Papadopoulos, G. Papaschinopoulos, On the fuzzy difference equations of finance, Fuzzy Set. Syst., 159 (2008), 3259–3270. https://doi.org/10.1016/j.fss.2008.06.007 doi: 10.1016/j.fss.2008.06.007 |
[12] | E. Deeba, A. De Korvin, Analysis by fuzzy difference equations of a model of $CO_{2}$ level in blood, Appl. Math. Lett., 12 (1999), 33–40. https://doi.org/10.1016/S0893-9659(98)00168-2 doi: 10.1016/S0893-9659(98)00168-2 |
[13] | E. Hatir, T. Mansour, I. Yalcinkaya, On a fuzzy difference equation, Utilitas Mathematica, 93 (2014), 135–151. |
[14] | A. Khastan, Fuzzy logistic difference equation, Iran. J. Fuzzy Syst., 15 (2018), 55–66. https://doi.org/10.22111/IJFS.2018.4281 doi: 10.22111/IJFS.2018.4281 |
[15] | A. Khastan, Z. Alijani, On the new solutions to the fuzzy difference equation $x_{n+1} = A+B/x_{n}, $ Fuzzy Set. Syst., 358 (2019), 64–83. https://doi.org/10.1016/j.fss.2018.03.014 |
[16] | G. Papaschinopoulos, B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A+B/x_{n}, $ Soft Computing, 6 (2002), 456–461. https://doi.org/10.1007/s00500-001-0161-7 |
[17] | G. Papaschinopoulos, B. K. Papadopoulos, On the fuzzy difference equation $x_{n+1} = A+x_{n}/x_{n-m}, $ Fuzzy Set. Syst., 129 (2002), 73–81. https://doi.org/10.1016/S0165-0114(01)00198-1 |
[18] | G. Papaschinopoulos, G. Stefanidou, Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation, Fuzzy Set. Syst., 140 (2003), 523–539. https://doi.org/10.1016/S0165-0114(03)00034-4 doi: 10.1016/S0165-0114(03)00034-4 |
[19] | D. T. Tollu, I. Yalcinkaya, H. Ahmad, S. Yao, A detailed study on a solvable system related to the linear fractional difference equation, Math. Biosci. Eng., 18 (2021), 5392–5408. https://doi.org/10.3934/mbe.2021273 doi: 10.3934/mbe.2021273 |
[20] | E. Deeba, A. De Korvin, E. L. Koh, A fuzzy difference equation with an application, J. Differ. Equ. Appl., 2 (1996), 365–374. https://doi.org/10.1080/10236199608808071 doi: 10.1080/10236199608808071 |
[21] | S. Elaydi, An introduction to difference equations, New York: Springer, 1999. https://doi.org/10.1007/978-1-4757-3110-1 |
[22] | K. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Springer Science & Business Media, 1993. |
[23] | B. Bede, Fuzzy sets, In: Mathematics of fuzzy sets and fuzzy logic, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-642-35221-8_1 |
[24] | G. Klir, B. Yuan, Fuzzy sets and fuzzy logic, New Jersey: Prentice Hall, 1995. |
[25] | C. Wu, B. Zhang, Embedding problem of noncompact fuzzy number space $E^{\sim }$ (I), Fuzzy Set. Syst., 105 (1999), 165–169. https://doi.org/10.1016/s0165-0114(97)00218-2 doi: 10.1016/s0165-0114(97)00218-2 |
[26] | Q. Zhang, W. Zhang, On a system of two higher-order nonlinear difference equations, Adv. Math. Phy., 2014 (2014), 729273. https://doi.org/10.1155/2014/729273 doi: 10.1155/2014/729273 |