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Abstract: T-spherical fuzzy sets (T-SPFSs) have gained popularity because of their ability to
account for uncertainty more effectively and spanning a larger domain. The sum of the t-th power
of membership grades in T-SPFSs is close to a unit interval, allowing for greater uncertainty. As a
result, this set outperforms traditional fuzzy structures. The “multi-criteria decision-making” (MCDM)
approach is a widely used technique that requires the use of some aggregation tools, and various
such aggregation operators (AOs) have been developed over the years to achieve this purpose. The
purpose of this paper is to propose some new operational laws and AOs for use in a T-spherical fuzzy
environment. In this regard, we presented some new neutral or fair operational rules that combine the
concept of proportional distribution to provide a neutral or fair solution to the membership, abstinence,
and non-membership of T-spherical fuzzy numbers (T-SPFNs). Based on the obtained operational
rules, we presented the “T-spherical fuzzy fairly weighted average operator” and the “T-spherical
fuzzy fairly ordered weighted averaging operator”. Compared to earlier methodologies, the proposed
AOs provide more generalised, reliable, and accurate information. In addition, under T-SPFSs, an
MCDM approach is developed employing suggested AOs with several decision-makers (DMs) and
partial weight details. Finally, to demonstrate the applicability of the innovative technique, we give an
actual case study of “food waste treatment technology” (FWTT) selection under T-SPFSs scenarios. A
comparison with an existing model has also been undertaken to confirm the validity and robustness of
the acquired results.

Keywords: fairly operations; T-spherical fuzzy numbers; aggregation operators; optimization model
Mathematics Subject Classification: 03E72, 94D05, 90B50

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023512


10114

1. Introduction

In practise, as a system becomes more sophisticated, it becomes more difficult for DMs to determine
the best choice from a collection of feasible possibilities. It is challenging to convey how tough it
is to achieve a single objective, yet it is not unattainable. Numerous organisations wrestled with
the complexity of motivating employees, achievement, and worldview development. As a result,
organizational choices, whether made by people or committees, include a number of concurrent
objectives. Using optionally solved criteria, each DM should be confined to producing the optimal
solution for each practical implication in actual issues. As a result, the decision maker is more
concerned with developing more realistic and reliable methods for finding the best options.

MCDM is a widely used intellectual process. Its key feature is to help DMs choose the best
possibility out of a limited number of choices by using their expert assessment. To solve these kinds of
complications, Zadeh [1] was the first person to come up with the concept of “fuzzy set” (FS), which
is a mathematical framework for expressing imprecision. Atanasov [2] took this unique initiative of
FS and turned it into the theory of “intuitionistic fuzzy sets” (IFS). It is essential to remember that
FS can be described in aspects of “membership functionalities” and IFS can be described in aspects
of both “membership and non-membership functionalities”. IFSs have been utilized a lot to solve big
complications, but there are some situations that they can’t handle. Assume that when it comes to
voting, the human perspective contains more answers like “yes”, “no”, “don’t know”, and “refuse”
that traditional FS and IFS can’t fully represent. Cuong [3,4] intoduced the idea of “picture fuzzy set”
(PFS) to fix these issues.

Cuong and Hai [5] defined some basics for PFSs. Cuong [6] examined many technique for
evaluating the distance between PFSs. Wei et al. introduced the “projection model” [8], “generalized
dice similarity measures” [9] and “similarity measures” [10] for PFS. Singh [11] proposed some
“correlation coefficients” and Son [12] defined “distributed picture fuzzy clustering method” for PFSs.
Riaz et al. [13] revised several fundamental PFS operations. Phong et al. [7] investigated several PF-
relation setups.

In recent eras, there has been a focus on the synthesis of knowledge and improved AOs. The
effectiveness and limits of AOs are now a fundamental component of selection. It is evident that AO
provides many principles for combining a finite set of fuzzy values into a single fuzzy value. Data
analysis is crucial in the selection, business, medical, architecture, and surveillance domains. On
PFSs, several AOs have been established in terms of their roles and operating regulations. Garg [14]
advocated several averaging AOs for PFNs. Wei [15] and Jana et al. [15] introduced the notion of
“Hamacher AOs”, whereas Jana et al. [16] recommended “Dombi AOs” for PFNs. Tian et al. [17]
gave the notion of “picture fuzzy power Choquet ordered geometric AOs” & “power shapley Choquet
ordered AOs”. Wang et al. [18] offered the selection of a hotel energy performance conversion project
under PFSs. Wang et al. [19] proposed “Muirhead mean AOs” for PFNs.

Li et al. [20] introduced the unique concept of broadly applied, simplified neutrosophic Einstein
AOs. Modified Einstein interacting geometric AOs for “q-rung orthopair fuzzy numbers” were
provided by Farid & Riaz [23]. Many AOs for “linear diophantine fuzzy numbers” are given in [21,22].
Ashraf et al. suggested a distance metric for fuzzy collections of cubic picture fuzzy set [24,25]. Saha et
al. [26,27] provided the novel hybrid weighted AOs for some extensions of fuzzy. Wei and Zhang [28]
selected important providers using single-valued neutrosophic Bonferroni power AOs. Some extra-
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ordinary work related to proposed work is given in [29–32]. Cao et al. [33] proposed decision-making
method for power grid enterprizes. Liu et al. [34] introduced detection approach for thermal defects.

In everyday reality, we may meet many scenarios that cannot be addressed by PFS, including
when the sum of PMD, NuMD and NgMD > 1. In just such a case, PFS has been unable to deliver
an appropriate conclusion. In [35, 36] authors proposed the idea of “spherical fuzzy sets” (SFSs)
independently in their articles. Mahmood et al. [37] defined T-SPFSs as an extension of SFSs. In
T-SPFSs, the sum of the t-th power of membership grades is close to a unit interval, providing for
higher uncertainty. As a result, this set outperforms conventional fuzzy structures. Munir et al. [38]
developed the Einstein hybrid AOs for T-SPFSs with applications to MCDM. Zeng et al. [39] defined
some Einstein interactive AOs for T-SPFSs with application to selection of photovoltaic cells. Liu et
al. [40] proposed novel power Muirhead mean AOs for T-SPFSs. Kifayat-Ullah et al. [41] gave the
notion of T-SPF Hamacher AOs with MCDM. Khan et al. [42] introduced the Schweizer-Sklar power
Heronian mean AOs in the domain of T-SPFSs. More work related to MCDM is given in [43–45].
Some work related to AOs and graph structures can be seen in [46,47]. Feng et al. [48] proposed some
novel score functions related to orthopair fuzzy set. Senapati and Yager proposed “Fermatean fuzzy
set” as the extension of IFS [49]. Smarandache proposed a novel idea of “neutrosophic set” [50, 51].

In literature many AOs [37, 38, 40, 41] are there to solve MCDM problem in the framework of
T-SPF, one can see the unbiased nature of aggregation process while dealing equal “membership
degree” (MSD), “abstinence degree” (AD) and “non-membership degree” (N-MSD). For example,
in the scenario where a DM directs a comparison work to all MSD, AD, and N-MSD, the values
acquired by AOs which previously existent in the literature cannot be distinguished [37,38,40,41]. This
indicates that the ultimate conclusion is unquestionably biassed. Consequently, several new procedures
are necessary to handle MSD, AD, and N-MSD properly and to ensure the fair or neutral operation of
T-SPFN. To attain actual satisfaction while assessing positive, abstinence, and negative membership,
we provide two neutral or fair procedures based on the notion of proportionate distribution constraints
for all functions.

The “Fermatean fuzzy Heronian mean” AOs and the “method based on the removal effects of
criteria” (MEREC) approach were suggested by Rani et al. [52] with applications towards the selection
of FWTT. Through the use of a spherical fuzzy technique, Buyuk and Temur [53] presented a new
method for selecting treatment options for food waste. Rani et al. [54] was the one who came up with
the idea of employing a single-valued neutrosophic framework to identify the best treatment procedure
for multi-criteria food waste. Chen et al. [55] suggested a hybrid fuzzy evaluation approach for the
purpose of safely evaluating food waste as a feed ingredient, with the method being based on entropy
methods. The synthesis of the waste-water treatment process and the selection of suppliers were both
introduced by Ho et al. [56] using fuzzy techniques.

This format is maintained for the rest of the article. In the second part, we will go through the
fundamental notions of T-SPFS. In Section 3, we looked at a few different T-SPFN approaches. The
appropriate AOs for T-SPFNs are provided in Section 4. In Section 5, an MCDM framework is shown
for the suggested AOs, and in Section 6, a numerically comprehensive test case is provided. The most
important conclusions from the research are discussed in the seventh part.
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2. Preliminaries

Some key principles connected with T-SPFSs have just been addressed in this portion of the
manuscript.

Definition 2.1. [37] A “T-spherical fuzzy set” (T-SPFS) in X is defined as

χ = {〈ğ, ,µχ(ğ)ג ,νχ(ğ)ג τχ(ğ)|ğג ∈ X〉} (2.1)

where ,µχ(ğ)ג ,νχ(ğ)ג τχ(ğ)ג ∈ [0, 1], such that 0 ≤ µג
t
χ(ğ) + νג

t
χ(ğ) + τג

t
χ(ğ) ≤ 1 for all ğ ∈

X. ,µχ(ğ)ג ,νχ(ğ)ג τχ(ğ)ג denote “membership degree (MSD), abstinence degree (AD) and non-
membership degree (N-MSD)” respectively for some ğ ∈ X.

we denote this pair as i = ,µiג) ,νiג ,(τiג throughout this article, and called as T-SPFN with the
conditions ,µiג ,νiג τiג ∈ [0, 1] and µtג

i + νג
t
i + τג

t
i ≤ 1.

Definition 2.2. [37] When implementing T-SPFNs to actual situations, it is crucial to categorize them.
For this, “score function” (SF) corresponding to T-SPFN i = ,µiג) ,νiג (τiג be defined as

S (i) = µג
t
i −

τג
t
i. (2.2)

In many instances, however, the aforesaid function is inadequate of categorizing T-SPFNs under
various settings, making it difficult to tell which is better. This is accomplished by defining an
“accuracy function” H of i as

Θ̆ζ(i) = µג
t
i + νג

t
i + τג

t
i. (2.3)

We shall provide operational principles for aggregating T-SPFNs.

Definition 2.3. [40] Let i1 = ,µ1ג〉
,ν1ג

〈τ1ג and i2 = ,µ2ג〉
,ν2ג

〈τ2ג be two T-SPFNs, then

ic
1 =

〈
,τ1ג

,ν1ג
µ1ג

〉
(2.4)

i1 ∨ i2 =

〈
max{גµ1,

,ν1ג}µ2},minג
,τ1ג}ν2},minג

{τ2ג

〉
(2.5)

i1 ∧ i2 =

〈
min{גµ1,

,ν1ג}µ2},maxג
,τ1ג}ν2},maxג

{τ2ג

〉
(2.6)

i1 ⊕ i2 =

〈
t
√
µג

t
1 + µג

t
2 −

µג
t
1
µג

t
2,
ν1ג
,ν2ג

τ1ג
τ2ג

〉
(2.7)

i1 ⊗ i2 =

〈
µ1ג
,µ2ג

t
√
νג

t
1 + νג

t
2 −

νג
t
1
νג

t
2,

t
√
τג

t
1 + τג

t
2 −

τג
t
1
τג

t
2

〉
(2.8)

σi1 =

〈
t
√

1 − (1 − µtג
1)σ, νג

σ

1 ,
τג
σ

1

〉
(2.9)

iσ1 =

〈
µג
σ

1 ,
t
√

1 − (1 − νtג
1)σ,

t
√

1 − (1 − τtג
1)σ

〉
. (2.10)
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Definition 2.4. Let i1 =
,µ1ג〉

,ν1ג
τ1ג

〉
and i2 =

,µ2ג〉
,ν2ג

τ2ג
〉

be two T-SPFNs and Yγ,Yγ
1,Y

γ
2 > 0

be the real numbers, then we have

(1) i1 ⊕ i2 = i2 ⊕ i1

(2) i1 ⊗ i2 = i2 ⊗ i1

(3) Yγ (i1 ⊕ i2) = (Yγi1) ⊕ (Yγi2)

(4) (i1 ⊗ i2)Y
γ

= iY
γ

1 ⊗ i
Yγ

2

(5) (Yγ
1 +Yγ

2)i1 = (Yγ
1i1) ⊕ (Yγ

2i2)

(6) iY
γ

1+Yγ2
1 = iY

γ
1

1 ⊗ iY
γ

2
2 .

If µi1ג
= νi1ג and µi2ג

= νi2ג then from Definition 2.3 we get, µi1⊕i2ג
, νi1⊕i2ג ,

µi1⊗i2ג
,

νi1⊗i2ג ,
µYγi1ג

, νYγi1ג ,
µiYγ1ג

, νiYγ1ג
. Thus none of the operations i1⊕i2,i1⊗i2,Y

γi1,i
Yγ

1 found to
be neutral or fair indeed. Consequently, our focus must first be on developing fair operations amongst
T-SPFNs.

3. Fairly operations on T-SPFNs

In this part, we construct several basic operations involving T-SPFNs and investigate their
fundamental features.

Definition 3.1. Consider i1 =
〈
µi1ג

, νi1ג ,
τi1ג

〉
and i2 =

〈
µi2ג

, νi2ג ,
τi2ג

〉
be the two T-SPFNs and

Yγ > 0. Then we define

i1⊕̃i2 =



t

√(
µג

t
i1
µג

t
i2

µג
t
i1
µג

t
i2

νג+
t
i1
νג

t
i2 τג+

t
i1
τג

t
i2

)
×

(
1 −

(
1 − µtג

i1
− νג

t
i1 −

τג
t
i1

)(
1 − µtג

i2
− νג

t
i2 −

τג
t
i2

))
,

t

√(
νג

t
i1
νג

t
i2

µג
t
i1
µג

t
i2

νג+
t
i1
νג

t
i2 τג+

t
i1
τג

t
i2

)
×

(
1 −

(
1 − µtג

i1
− νג

t
i1 −

τג
t
i1

)(
1 − µtג

i2
− νג

t
i2 −

τג
t
i2

))
,

t

√(
τג

t
i1
τג

t
i2

µג
t
i1
µג

t
i2

νג+
t
i1
νג

t
i2 τג+

t
i1
τג

t
i2

)
×

(
1 −

(
1 − µtג

i1
− νג

t
i1 −

τג
t
i1

)(
1 − µtג

i2
− νג

t
i2 −

τג
t
i2

))



Yγ ∗ i1 =



t

√(
µג

tYγ

i1

µג
tYγ

i1
νג+

tYγ

i1
τג+

tYγ

i1

)
×

(
1 −

(
1 − µtג

i1
− νג

t
i1 −

τג
t
i1

)Yγ)
,

t

√(
νג

tYγ

i1

µג
tYγ

i1
νג+

tYγ

i1
τג+

tYγ

i1

)
×

(
1 −

(
1 − µtג

i1
− νג

t
i1 −

τג
t
i1

)Yγ)
,

t

√(
τג

tYγ

i1

µג
tYγ

i1
νג+

tYγ

i1
τג+

tYγ

i1

)
×

(
1 −

(
1 − µtג

i1
− νג

t
i1 −

τג
t
i1

)Yγ)


.

It can be easily verified that i1⊕̃i2,Y
γ ∗ i1 are the T-SPFNs.
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Theorem 3.2. Consider i1 =< µi1ג
, νi1ג ,

τi1ג > and i2 =< µi2ג
, νi2ג ,

τi2ג > are the T-SPFNs. If
µi1ג

= νi1ג ,
µi2ג

= νi2ג and τi2ג = τi2ג then we have
(i) µi1⊕̃i2ג

= νi1⊕̃i2ג = τi1⊕̃i2ג .
(ii) µYγ∗i1ג

= νYγ∗i1ג = τYγ∗i1ג .

Proof. (i) As given µℵ1ג
= νℵ1ג ,

µℵ2ג
= νℵ2ג and τℵ2ג = τℵ2ג

µℵ1⊕̃ℵ2ג

νℵ1⊕̃ℵ2ג

=

t

√(
µג

t
ℵ1
µג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

))
t

√(
νג

t
ℵ1
νג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

))
= 1

and

νℵ1⊕̃ℵ2ג

τℵ1⊕̃ℵ2ג

=

t

√(
νג

t
ℵ1
νג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

))
t

√(
τג

t
ℵ1
τג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

))
= 1.

Consequently, µℵ1⊕̃ℵ2ג
= νℵ1⊕̃ℵ2ג = τℵ1⊕̃ℵ2ג . If µℵ1ג

= νℵ1ג ,
µℵ2ג

= νℵ2ג and τℵ2ג = τℵ2ג .
(ii)

µYγ∗ℵ1ג

νYγ∗ℵ1ג

=

t

√(
µג

tYγ

ℵ1

µג
tYγ

ℵ1
νג+

tYγ

ℵ1
τג+

tYγ

ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)Yγ)
t

√(
νג

tYγ

ℵ1

µג
tYγ

ℵ1
νג+

tYγ

ℵ1
τג+

tYγ

ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)Yγ)
= 1

and

νYγ∗ℵ1ג

τYγ∗ℵ1ג

=

t

√(
νג

tYγ

ℵ1

µג
tYγ

ℵ1
νג+

tYγ

ℵ1
τג+

tYγ

ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)Yγ)
t

√(
τג

tYγ

ℵ1

µג
tYγ

ℵ1
νג+

tYγ

ℵ1
τג+

tYγ

ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)Yγ)
= 1.

Consequently, µYγ∗ℵ1ג
= νYγ∗ℵ1ג = τYγ∗ℵ1ג . If µℵ1ג

= νℵ1ג ,
µℵ2ג

= νℵ2ג and τℵ2ג = τℵ2ג . �

This theorem reveled that the operations i1⊕̃i2,Y
γ ∗ i1 show the fairly or neutral nature to the

DMs, when MSD, AD and N-MSD are equal initially. This is why we call the operations
⊕̃

, * fairly
operations.
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Theorem 3.3. Consider i1 =< µi1ג
, νi1ג ,

τi1ג > and i2 =< µi2ג
, νi2ג ,

τi2ג > are the T-SPFNs and
0,01 and 02 are any three real numbers, then we have
(i) i1⊕̃i2 = i2⊕̃i1

(ii) 0 ∗
(
i1⊕̃i2

)
= (0 ∗ i1) ⊕̃ (0 ∗ i2)

(iii) (01 + 02) ∗ i1 = (01 ∗ i1) ⊕̃ (02 ∗ i1).

Proof. (i) This one is trivial.
(ii) 0 ∗

(
ℵ1⊕̃ℵ2

)

=



t

√√√√√√√√√√√√√√√√√√√√√√√√√

(
µג

t
ℵ1
µג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
(

µג
t
ℵ1
µג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
+

(
νג

t
ℵ1
νג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
+

(
τג

t
ℵ1
τג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
×

(
1 −

(
1 −

(
1 −

(
1 − µג

t
ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

) (
1 − µג

t
ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)))0)
,

t

√√√√√√√√√√√√√√√√√√√√√√√√

(
νג

t
ℵ1
νג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
(

µג
t
ℵ1
µג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
+

(
νג

t
ℵ1
νג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
+

(
τג

t
ℵ1
τג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
×

(
1 −

(
1 −

(
1 −

(
1 − µג

t
ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

) (
1 − µג

t
ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)))0)
,

t

√√√√√√√√√√√√√√√√√√√√√√√√

(
τג

t
ℵ1
τג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
(

µג
t
ℵ1
µג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
+

(
νג

t
ℵ1
νג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
+

(
τג

t
ℵ1
τג

t
ℵ2

µג
t
ℵ1
µג

t
ℵ2

νג+
t
ℵ1
νג

t
ℵ2 τג+

t
ℵ1
τג

t
ℵ2

)0
×

(
1 −

(
1 −

(
1 −

(
1 − µג

t
ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

) (
1 − µג

t
ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)))0)



=



t

√
µג

t0
ℵ1
µג

t0
ℵ2

µג
t0
ℵ1
µג

t0
ℵ2

νג+
t0
ℵ1
νג

t0
ℵ2

τג+
t0
ℵ1
τג

t0
ℵ2

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0 (
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0 )
,

t

√
νג

t0
ℵ1
νג

t0
ℵ2

µג
t0
ℵ1
µג

t0
ℵ2

νג+
t0
ℵ1
νג

t0
ℵ2

τג+
t0
ℵ1
τג

t0
ℵ2

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0 (
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0 )
,

t

√
τג

t0
ℵ1
τג

t0
ℵ2

µג
t0
ℵ1
µג

t0
ℵ2

νג+
t0
ℵ1
νג

t0
ℵ2

τג+
t0
ℵ1
τג

t0
ℵ2

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0 (
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0 )
,


and
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(0 ∗ ℵ1) ⊕̃ (0 ∗ ℵ2)

=



t

√(
µג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0)
,

t

√(
νג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0)
,

t

√(
τג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0)
⊕̃

t

√(
µג

t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0)
,

t

√(
νג

t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0)
,

t

√(
τג

t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

)
×

(
1 −

(
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0)



=



t

√√√√√√√√√√√√√√√√√√√√√√√
µג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

µג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

µג
t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

µג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

+
νג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

νג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

+
τג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

τג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

×

(
1 −

(
1 −

(
1 −

(
1 − µג

t
ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0))
×

(
1 −

(
1 −

(
1 − µג

t
ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0)))
,

t

√√√√√√√√√√√√√√√√√√√√√√√√√√√

νג
t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

νג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

µג
t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

µג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

+
νג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

νג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

+
τג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

τג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

×

(
1 −

(
1 −

(
1 −

(
1 − µג

t
ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0))
×

(
1 −

(
1 −

(
1 − µג

t
ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0)))
,

t

√√√√√√√√√√√√√√√√√√√√√√√√√√√

τג
t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

τג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

µג
t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

µג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

+
νג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

νג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

+
τג

t0
ℵ1

µג
t0
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1
×

τג
t0
ℵ2

µג
t0
ℵ2

νג+
t0
ℵ2

τג+
t0
ℵ2

×

(
1 −

(
1 −

(
1 −

(
1 − µג

t
ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0))
×

(
1 −

(
1 −

(
1 − µג

t
ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0)))


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=



t

√
µג

t0
ℵ1
µג

t0
ℵ2

µג
t0
ℵ1
µג

t0
ℵ2

νג+
t0
ℵ1
νג

t0
ℵ2

τג+
t0
ℵ1
τג

t0
ℵ2

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0 (
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0 )
,

t

√
νג

t0
ℵ1
νג

t0
ℵ2

µג
t0
ℵ1
µג

t0
ℵ2

νג+
t0
ℵ1
νג

t0
ℵ2

τג+
t0
ℵ1
τג

t0
ℵ2

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0 (
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0 )
,

t

√
τג

t0
ℵ1
τג

t0
ℵ2

µג
t0
ℵ1
µג

t0
ℵ2

νג+
t0
ℵ1
νג

t0
ℵ2

τג+
t0
ℵ1
τג

t0
ℵ2

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)0 (
1 − µtג

ℵ2
− νג

t
ℵ2 −

τג
t
ℵ2

)0 )


.

Hence, 0 ∗
(
ℵ1⊕̃ℵ2

)
= (0 ∗ ℵ1) ⊕̃ (0 ∗ ℵ2).

(iii) (01 ∗ ℵ1) ⊕̃ (02 ∗ ℵ1)

=



t

√(
µג

t01
ℵ1

µג
t01
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01)
,

t

√(
νג

t01
ℵ1

µג
t01
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01)
,

t

√(
τג

t01
ℵ1

µג
t01
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01)〉
⊕̃

t

√〈(
µג

t02
ℵ1

µג
t02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)02)
,

t

√(
νג

t02
ℵ1

µג
t02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)02)
,

t

√(
τג

t02
ℵ1

µג
t02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)02)



=



t

√(
µג

t01+02
ℵ1

µג
t01+02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01+02)
,

t

√(
νג

t01+02
ℵ1

µג
t01+02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01+02)
,

t

√(
τג

t01+02
ℵ1

µג
t01+02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01+02)


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and
(01 + 02) ∗ ℵ1

=



t

√(
µג

t01+02
ℵ1

µג
t01+02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01+02)
,

t

√(
νג

t01+02
ℵ1

µג
t01+02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01+02)
,

t

√(
τג

t01+02
ℵ1

µג
t01+02
ℵ1

νג+
t0
ℵ1

τג+
t0
ℵ1

)
×

(
1 −

(
1 − µtג

ℵ1
− νג

t
ℵ1 −

τג
t
ℵ1

)01+02)


.

Hence, (01 + 02) ∗ ℵ1 = (01 ∗ ℵ1) ⊕̃ (02 ∗ ℵ1) . �

4. Fairly AOs for T-SPFNs

This section addresses the evolution of fair AOs for T-SPFNs and their respective properties.

4.1. T-SPFFWA operator

Definition 4.1. Let ih = ,µhג〉
,νhג

〈τhג be the jumble of T-SPFNs, and T-SPFFWA: Rn → R, be the
mapping. If

T-SPFFWA(i1,i2, . . .ie) =
(
k1 ∗ i1⊕̃k2 ∗ i2⊕̃ . . . , ⊕̃ke ∗ ie

)
(4.1)

then the mapping T-SPFFWA is called “T-spherical fuzzy fairly weighted averaging (T-SPFFWA)
operator”, here ki is the “weight vector” (WV) of ii with ki > 0 and

∑e
i=1 ki = 1.

We may also investigate T-SPFFWA using proposed operational rules, as demonstrated in the theorem
that follows.

Theorem 4.2. Let ih = ,µhג〉
,νhג

〈τhג be the jumble of T-SPFNs, we can also find T-SPFFWA by

T-SPFFWA(i1,i2, . . . ,ie)

=



t

√ ∏e
i=1(גµt

i)ki∏e
i=1(גµt

i)ki +
∏e

i=1(גνt
i)ki +∏e

i=1(גτt
i)ki
×

(
1 −

∏e
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏e
i=1(גνt

i)ki∏e
i=1(גµt

i)ki +
∏e

i=1(גνt
i)ki +∏e

i=1(גτt
i)ki
×

(
1 −

∏e
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏e
i=1(גτt

i)ki∏e
i=1(גµt

i)ki +
∏e

i=1(גνt
i)ki +∏e

i=1(גτt
i)ki
×

(
1 −

∏e
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)


where ki is the WV of ii with ki > 0 and

∑e
i=1 ki = 1.

Proof. We will start this prove using mathematical induction.
For e = 1, we have ℵ1 = ,µ1ג〉

,ν1ג
〈τ1ג and k = 1.
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T-SPFFWA(ℵ1) = k1 ∗ ℵ1 =



t

√
µtג)

1)k1

µtג)
1)k1 νtג)+

1)k1+(גτt
1)k1
×

(
1 −

(
1 − µtג

1 −
νג

t
1 −

τג
t
1

)k1
)
,

t

√
νtג)

1)k1

µtג)
1)k1 νtג)+

1)k1 τtג)+
1)k1
×

(
1 −

(
1 − µtג

1 −
νג

t
1 −

τג
t
1

)k1
)
,

t

√
τtג)

1)k1

µtג)
1)k1 νtג)+

1)k1 τtג)+
1)k1
×

(
1 −

(
1 − µtג

1 −
νג

t
1 −

τג
t
1

)k1
)


.

Theorem is valid for e = 1, now we consider this is valid for e = g, i.e.,

T-SPFFWA(ℵ1,ℵ2, . . . ,ℵg) =



t

√ ∏g
i=1(גµt

i)ki∏g
i=1(גµt

i)ki +
∏g

i=1(גνt
i)ki +∏g

i=1(גτt
i)ki
×

(
1 −

∏g
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏g
i=1(גνt

i)ki∏g
i=1(גµt

i)ki +
∏g

i=1(גνt
i)ki +∏g

i=1(גτt
i)ki
×

(
1 −

∏g
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏g
i=1(גτt

i)ki∏g
i=1(גµt

i)ki +
∏g

i=1(גνt
i)ki +∏g

i=1(גτt
i)ki
×

(
1 −

∏g
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)


.

We will prove for e = g + 1.
T-SPFFWA(ℵ1,ℵ2, . . . ,ℵg+1) = T-SPFFWA(ℵ1,ℵ2, . . . ,ℵg)⊕̃(kg+1 ∗ ℵg+1)

=



t

√ ∏g
i=1(גµt

i)ki∏g
i=1(גµt

i)ki +
∏g

i=1(גνt
i)ki +∏g

i=1(גτt
i)ki
×

(
1 −

∏g
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏g
i=1(גνt

i)ki∏g
i=1(גµt

i)ki +
∏g

i=1(גνt
i)ki +∏g

i=1(גτt
i)ki
×

(
1 −

∏g
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏g
i=1(גτt

i)ki∏g
i=1(גµt

i)ki +
∏g

i=1(גνt
i)ki +∏g

i=1(גτt
i)ki
×

(
1 −

∏g
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)


⊕̃



t

√√(
µג

tkg+1
ℵg+1

µג
tkg+1
ℵg+1

νג+
tkg+1
ℵg+1

τג+
tkg+1
ℵg+1

)
×

(
1 −

(
1 − µtג

ℵg+1
− νג

t
ℵg+1 −

τג
t
ℵg+1

)kg+1)
,

t

√√(
νג

tkg+1
ℵg+1

µג
tkg+1
ℵg+1

νג+
tkg+1
ℵg+1

τג+
tkg+1
ℵg+1

)
×

(
1 −

(
1 − µtג

ℵg+1
− νג

t
ℵg+1 −

τג
t
ℵg+1

)kg+1)
,

t

√√(
τג

tkg+1
ℵg+1

µג
tkg+1
ℵg+1

νג+
tkg+1
ℵg+1

τג+
tkg+1
ℵg+1

)
×

(
1 −

(
1 − µtג

ℵg+1
− νג

t
ℵg+1 −

τג
t
ℵg+1

)kg+1)


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=



t

√√√√√√√√√√√√√√√√√√√√√√√
∏g

i=1

(
µג

t
i

)ki
×

(
µג

t
g+1

)kg+1

∏g
i=1

(
µג

t
i

)ki
×

(
µג

t
g+1

)kg+1
+

∏g
i=1

(
νג

t
i

)ki
×

(
νג

t
g+1

)kg+1
+

∏g
i=1

(
τג

t
i

)ki
(
τג

t
g+1

)kg+1
×

1 − g∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki
×

(
1 − µג

t
g+1 −

νג
t
g+1 −

τג
t
g+1

)kg+1

,

t

√√√√√√√√√√√√√√√√√√√√√√√
∏g

i=1

(
νג

t
i

)ki
×

(
νג

t
g+1

)kg+1

∏g
i=1

(
µג

t
i

)ki
×

(
µג

t
g+1

)kg+1
+

∏g
i=1

(
νג

t
i

)ki
×

(
νג

t
g+1

)kg+1
+

∏g
i=1

(
τג

t
i

)ki
(
τג

t
g+1

)kg+1
×

1 − g∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki
×

(
1 − µג

t
g+1 −

νג
t
g+1 −

τג
t
g+1

)kg+1

,

t

√√√√√√√√√√√√√√√√√√√√√√√
∏g

i=1

(
τג

t
i

)ki
×

(
τג

t
g+1

)kg+1

∏g
i=1

(
µג

t
i

)ki
×

(
µג

t
g+1

)kg+1
+

∏g
i=1

(
νג

t
i

)ki
×

(
νג

t
g+1

)kg+1
+

∏g
i=1

(
τג

t
i

)ki
(
τג

t
g+1

)kg+1
×

1 − g∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki
×

(
1 − µג

t
g+1 −

νג
t
g+1 −

τג
t
g+1

)kg+1





=



t

√√√√√ ∏g+1
i=1

(
µג

t
i

)ki

∏g+1
i=1

(
µג

t
i

)ki
+

∏g+1
i=1

(
νג

t
i

)ki
+

∏g+1
i=1

(
τג

t
i

)ki
×

1 − g+1∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki

,

t

√√√√√ ∏g+1
i=1

(
νג

t
i

)ki

∏g+1
i=1

(
µג

t
i

)ki
+

∏g+1
i=1

(
νג

t
i

)ki
+

∏g+1
i=1

(
τג

t
i

)ki
×

1 − g+1∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki

,

t

√√√√√ ∏g+1
i=1

(
τג

t
i

)ki

∏g+1
i=1

(
µג

t
i

)ki
+

∏g+1
i=1

(
νג

t
i

)ki
+

∏g+1
i=1

(
τג

t
i

)ki
×

1 − g+1∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki





.

Therefore, the result also stands for e = g + 1. As a result, according to the principle of induction on
‘e’, the conclusion holds for any and all e. �

Example 4.3. Consider i1 = 〈0.415, 0.245, 0.145〉, i2 = 〈0.339, 0.334, 0.119〉 and i3 =

〈0.474, 0.144, 0.109〉 are three T-SPFNs with WV i = (0.399, 0.276, 0.325), we take t = 3, then

t

√√√√√√ ∏3
i=1

(
µג

t
i

)ki

∏3
i=1

(
µג

t
i

)ki
+

∏3
i=1

(
νג

t
i

)ki
+

∏3
i=1

(
τג

t
i

)ki
×

1 − 3∏
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki

 = 0.426140
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t

√√√√√√ ∏3
i=1

(
νג

t
i

)ki

∏3
i=1

(
µג

t
i

)ki
+

∏3
i=1

(
νג

t
i

)ki
+

∏3
i=1

(
τג

t
i

)ki
×

1 − 3∏
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki

 = 0.235385

t

√√√√√√ ∏3
i=1

(
τג

t
i

)ki

∏3
i=1

(
µג

t
i

)ki
+

∏3
i=1

(
νג

t
i

)ki
+

∏3
i=1

(
τג

t
i

)ki
×

1 − 3∏
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki

 = 0.132880.

T-SPFFWA(i1,i2,i3)

=



t

√ ∏3
i=1(גµt

i)ki∏3
i=1(גµt

i)ki +
∏3

i=1(גνt
i)ki +∏3

i=1(גτt
i)ki
×

(
1 −

∏3
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏3
i=1(גνt

i)ki∏3
i=1(גµt

i)ki +
∏3

i=1(גνt
i)ki +∏3

i=1(גτt
i)ki
×

(
1 −

∏3
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏3
i=1(גτt

i)ki∏3
i=1(גµt

i)ki +
∏3

i=1(גνt
i)ki +∏3

i=1(גτt
i)ki
×

(
1 −

∏3
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)


= (0.426140, 0.235385, 0.132880).

The proposed AO meets a few special requirements, which are presented in the context of the
theorems underneath.

Theorem 4.4. Let ii = ,µiג〉
,νiג

〈τiג be the jumble of T-SPFNs and i� = ,�µג〉
,�νג

〈�τג be the T-SPFNs
such that, ii = i�∀i. Then

T-SPFFWA(i1,i2, . . . ,ie) = i�. (4.2)

Proof. Given that ℵi = ℵ�∀i, by this, µiג = ,�µג
νiג = �νג and τiג = .τ�∀iג

T-SPFFWA(ℵ1,ℵ2, . . . ,ℵe)

=



t

√ ∏e
i=1(גµt

i)ki∏e
i=1(גµt

i)ki +
∏e

i=1(גνt
i)ki +∏e

i=1(גτt
i)ki
×

(
1 −

∏e
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏e
i=1(גνt

i)ki∏e
i=1(גµt

i)ki +
∏e

i=1(גνt
i)ki +∏e

i=1(גτt
i)ki
×

(
1 −

∏e
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)
,

t

√ ∏e
i=1(גτt

i)ki∏e
i=1(גµt

i)ki +
∏e

i=1(גνt
i)ki +∏e

i=1(גτt
i)ki
×

(
1 −

∏e
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki
)


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=



t

√ ∏e
i=1(גµt

�)ki∏e
i=1(גµt

�)ki +
∏e

i=1(גνt
�)ki +∏e

i=1(גτt
�)ki
×

(
1 −

∏e
i=1

(
1 − µtג

� −
νג

t
� −

τג
t
�

)ki
)
,

t

√ ∏e
i=1(גνt

�)ki∏e
i=1(גµt

�)ki +
∏e

i=1(גνt
�)ki +∏e

i=1(גτt
�)ki
×

(
1 −

∏e
i=1

(
1 − µtג

� −
νג

t
� −

τג
t
�

)ki
)
,

t

√ ∏e
i=1(גτt

�)ki∏e
i=1(גµt

�)ki +
∏e

i=1(גνt
�)ki +∏e

i=1(גτt
�)ki
×

(
1 −

∏e
i=1

(
1 − µtג

� −
νג

t
� −

τג
t
�

)ki
)



=



t

√
µtג)

�)
∑e

i=1 ki

µtג)
�)

∑e
i=1 ki νtג)+

�)
∑e

i=1 ki τtג)+
�)

∑e
i=1 ki
×

(
1 −

(
1 − µtג

� −
νג

t
� −

τג
t
�

)∑e
i=1 ki

)
,

t

√
νtג)

�)
∑e

i=1 ki

µtג)
�)

∑e
i=1 ki νtג)+

�)
∑e

i=1 ki τtג)+
�)

∑e
i=1 ki
×

(
1 −

(
1 − µtג

� −
νג

t
� −

τג
t
�

)∑e
i=1 ki

)
,

t

√
τtג)

�)
∑e

i=1 ki

µtג)
�)

∑e
i=1 ki νtג)+

�)
∑e

i=1 ki τtג)+
�)

∑e
i=1 ki
×

(
1 −

(
1 − µtג

� −
νג

t
� −

τג
t
�

)∑e
i=1 ki

)



=


t

√
µtג)

�)
µtג)

νtג)+(�
τtג)+(�

�) ×
(
1 −

(
1 − µtג

� −
νג

t
� −

τג
t
�

))
, t

√
νtג)

�)
µtג)

νtג)+(�
τtג)+(�

�) ×
(
1 −

(
1 − µtג

� −
νג

t
� −

τג
t
�

))
,

t

√
τtג)

�)
µtג)

νtג)+(�
τtג)+(�

�) ×
(
1 −

(
1 − µtג

� −
νג

t
� −

τג
t
�

))


,�µג〉=
,�νג

〈�τג = ℵ�.

�

Theorem 4.5. Assume that ii = ,µiג〉
,νiג

〈τiג and ii∗ = ∗µiג〉 ,
∗νiג ,

〈∗τiג are the families of T-SPFNs, and
also consider

T-SPFFWA(i1,i2, . . .ie) = i = ,µג〉 ,νג 〈τג

and
T-SPFFWA(i1∗ ,i2∗ , . . .ie∗) = i∗ = ∗µג〉 , ∗νג , .〈∗τג

Then,
µג

t
+ νג

t
+ τג

t
≤ µג

t
∗ + νג

t
∗ + τג

t
∗ , if µג

t
i + νג

t
i + τג

t
i ≤

µג
t
i∗ + νג

t
i∗ + τג

t
i∗

Proof. By applying Theorem 4.2 on the both collection of T-SPFNs namely, ℵi = µג〉
t
i,
νג

t
i,
τג

t
i〉 and

ℵi∗ = µג〉
t
i∗ ,
νג

t
i∗ ,
τג

t
i∗〉, we get

µג
t

=

∏e
i=1

(
µג

t
i

)ki

∏e
i=1

(
µג

t
i

)ki
+

∏e
i=1

(
νג

t
i

)ki
+

∏e
i=1

(
τג

t
i

)ki
×

1 − e∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki


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νג
t

=

∏e
i=1

(
νג

t
i

)ki

∏e
i=1

(
µג

t
i

)ki
+

∏e
i=1

(
νג

t
i

)ki
+

∏e
i=1

(
τג

t
i

)ki
×

1 − e∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki


τג

t
=

∏e
i=1

(
τג

t
i

)ki

∏e
i=1

(
µג

t
i

)ki
+

∏e
i=1

(
νג

t
i

)ki
+

∏e
i=1

(
τג

t
i

)ki
×

1 − e∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki


and

µג
t
∗ =

∏e
i=1

(
µג

t
i∗
)ki

∏e
i=1

(
µג

t
i∗
)ki

+
∏e

i=1

(
νג

t
i∗
)ki

+
∏e

i=1

(
τג

t
i∗
)ki
×

1 − e∏
i=1

(
1 − µג

t
i∗ −

νג
t
i∗ −

τג
t
i∗
)ki


νג

t
∗ =

∏e
i=1

(
νג

t
i∗
)ki

∏e
i=1

(
µג

t
i∗
)ki

+
∏e

i=1

(
νג

t
i∗
)ki

+
∏e

i=1

(
τג

t
i∗
)ki
×

1 − e∏
i=1

(
1 − µג

t
i∗ −

νג
t
i∗ −

τג
t
i∗
)ki


τג

t
∗ =

∏e
i=1

(
τג

t
i∗
)ki

∏e
i=1

(
µג

t
i∗
)ki

+
∏e

i=1

(
νג

t
i∗
)ki

+
∏e

i=1

(
τג

t
i∗
)ki
×

1 − e∏
i=1

(
1 − µג

t
i∗ −

νג
t
i∗ −

τג
t
i∗
)ki

 .
By this, if µtג

i + νג
t
i + τג

t
i ≤

µג
t
i∗ + νג

t
i∗ + τג

t
i∗ then we have,

µג
t
+ νג

t
+ τג

t
= 1 −

e∏
i=1

(
1 −

{
µג

t
i + νג

t
i + τג

t
i

})ki
≤ 1 −

e∏
i=1

(
1 −

{
µג

t
i∗ + νג

t
i∗ + τג

t
i∗
})ki
≤ µג

t
∗ + νג

t
∗ + τג

t
∗ .

�

Theorem 4.6. Let ii = ,µiג〉
,νiג

〈τiג be the jumble of T-SPFNs. Then for T-SPFFWA(i1,i2, . . . ,ie) =

,µxג〉
,νxג

,〈τxג we have

mini

{
µג

t
i + νג

t
+ τג

t
i

}
≤ µג

t
x + νג

t
x + τג

t
x ≤ maxi

{
µג

t
i + νג

t
i + τג

t
i

}
.

Proof. We start with

min
i

{
µג

t
i + νג

t
i + τג

t
i

}
= 1 −

(
1 −min

i

{
µג

t
i + νג

t
i + τג

t
i

})
= 1 −

(
1 −min

i

{
µג

t
i + νג

t
i + τג

t
i

})∑e
i=1 ki

= 1 −
e∏

i=1

(
1 −min

i

{
µג

t
i + νג

t
i + τג

t
i

})ki

≤ 1 −
e∏

i=1

(
1 −

{
µג

t
i + νג

t
i + τג

t
i

})ki

≤ 1 −
e∏

i=1

(
1 −max

i

{
µג

t
i + νג

t
i + τג

t
i

})ki
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= 1 −
(
1 −max

i

{
µג

t
i + νג

t
i + τג

t
i

})∑e
i=1 ki

= max
i

{
µג

t
i + νג

t
i + τג

t
i

}
.

By Theorem 4.2, we get

µxג =
t

√√√√√√ ∏e
i=1

(
µג

t
i

)ki

∏e
i=1

(
µג

t
i

)ki
+

∏e
i=1

(
νג

t
i

)ki
+

∏e
i=1

(
τג

t
i

)ki
×

1 − e∏
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki


νxג =

t

√√√√√√ ∏e
i=1

(
νג

t
i

)ki

∏e
i=1

(
µג

t
i

)ki
+

∏e
i=1

(
νג

t
i

)ki
+

∏e
i=1

(
τג

t
i

)ki
×

1 − e∏
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki


τxג =

t

√√√√√√ ∏e
i=1

(
τג

t
i

)ki

∏e
i=1

(
µג

t
i

)ki
+

∏e
i=1

(
νג

t
i

)ki
+

∏e
i=1

(
τג

t
i

)ki
×

1 − e∏
i=1

(
1 − µtג

i −
νג

t
i −
τג

t
i

)ki

.
From this, we get

µג
t
x + νג

t
x + τג

t
x =

1 − e∏
i=1

(
1 − µג

t
i −
νג

t
i −
τג

t
i

)ki

 .
Consequently,

mini

{
µג

t
i + νג

t
+ τג

t
i

}
≤ µג

t
x + νג

t
x + τג

t
x ≤ maxi

{
µג

t
i + νג

t
i + τג

t
i

}
.

�

4.2. T-SPFFOWA operator

Definition 4.7. Let ih = ,µhג〉
,νhג

〈τhג be the jumble of T-SPFNs, and T-SPFFOWA: Rn → R, be the
mapping. If

T-SPFFOWA(i1,i2, . . .ie) =
(
k1 ∗ iξ(1)⊕̃k2 ∗ iξ(2)⊕̃ . . . , ⊕̃ke ∗ iξ(e)

)
(4.3)

then the mapping T-SPFFOWA is called “T-spherical fuzzy fairly ordered weighted averaging
(T-SPFFOWA) operator”, here ki is the WV of ii with ki > 0 and

∑e
i=1 ki = 1.

ξ : 1, 2, 3, ......., n→ 1, 2, 3, ......., n is a permutation map s.t. iξ(i−1) ≥ iξ(i) .

We may also investigate T-SPFFOWA using proposed operational rules, as demonstrated in the theorem
that follows.

Theorem 4.8. Let ih = ,µhג〉
,νhג

〈τhג be the jumble of T-SPFNs, we can also find T-SPFFOWA by
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T-SPFFOWA(i1,i2, . . . ,ie)

=



t

√√ ∏e
i=1

(
µג

t
ξ(i)

)ki
∏e

i=1

(
µג

t
ξ(i)

)kξ(i)
+
∏e

i=1

(
νג

t
ξ(i)

)ki
+
∏e

i=1

(
τג

t
ξ(i)

)ki ×
(
1 −

∏e
i=1

(
1 − µtג

ξ(i)
− νג

t
ξ(i) −

τג
t
ξ(i)

)ki
)
,

t

√ ∏e
i=1

(
νג

t
ξ(i)

)ki
∏e

i=1

(
µג

t
ξ(i)

)ki
+
∏e

i=1

(
νג

t
ξ(i)

)ki
+
∏e

i=1

(
τג

t
ξ(i)

)ki ×
(
1 −

∏e
i=1

(
1 − µtג

ξ(i)
− νג

t
ξ(i) −

τג
t
ξ(i)

)ki
)
,

t

√ ∏e
i=1

(
τג

t
ξ(i)

)ki
∏e

i=1

(
µג

t
ξ(i)

)ki
+
∏e

i=1

(
νג

t
ξ(i)

)ki
+
∏e

i=1

(
τג

t
ξ(i)

)ki ×
(
1 −

∏e
i=1

(
1 − µtג

ξ(i)
− νג

t
ξ(i) −

τג
t
ξ(i)

)ki
)


where ki is the WV of ii with ki > 0 and

∑e
i=1 ki = 1.

Theorem 4.9. Let ii = ,µiג〉
,νiג

〈τiג be the jumble of T-SPFNs and i� = ,�µג〉
,�νג

〈�τג be the T-SPFNs
such that, ii = i�∀i. Then

T-SPFFOWA(i1,i2, . . . ,ie) = i�. (4.4)

Theorem 4.10. Let ii = ,µiג〉
,νiג

〈τiג be the jumble of T-SPFNs. Then for
T-SPFFOWA(i1,i2, . . . ,ie) = ,µxג〉

,νxג
,〈τxג we have

minξ(i)

{
µג

t
ξ(i)

+ νג
t
ξ(i) + τג

t
ξ(i)

}
≤ µג

t
x + νג

t
x + τג

t
x ≤ maxξ(i)

{
µג

t
ξ(i)

+ νג
t
ξ(i) + τג

t
ξ(i)

}
.

Theorem 4.11. Assume that ii = ,µiג〉
,νiג

〈τiג and ii∗ = ∗µiג〉 ,
∗νiג ,

〈∗τiג are the families of T-SPFNs,
and also consider

T-SPFFOWA(i1,i2, . . .ie) = i = ,µג〉 ,νג 〈τג

and
T-SPFFOWA(i1∗ ,i2∗ , . . .ie∗) = i∗ = ∗µג〉 , ∗νג , .〈∗τג

Then,
µג

t
+ νג

t
+ τג

t
≤ µג

t
∗ + νג

t
∗ + τג

t
∗ , if µג

t
ξ(i)

+ νג
t
ξ(i) + τג

t
ξ(i) ≤

µג
t
ξ∗(i)

+ νג
t
ξ∗(i)

+ τג
t
ξ∗(i)
.

5. Decision-making approach

We explore an MCDM issue by comparing each of the n different options to a set of m distinct
qualities. In this circumstance, it is necessary to have a group of p specialists whose ratings must be
larger than zero, but whose total is one.

As one can remember, the alternative qς j ( j = 1, 2, . . . , n) should be provided by a group of experts
PQ

k (k = 1, 2, . . . , p). The characteristics C ki (i = 1, 2, . . . ,m) were likewise chosen by experts after

deliberation; hence, the evaluation result is supplied in terms of T-SPFNs, αϕp
ji =

〈
ξ

p
ji, ρ

p
ji, κ

p
ji

〉
. Assume

further that Wt is the WV for the feature C ki meeting the criteria, Wt ≥ 0 and
∑m

t=1 Wt = 1. The proposed
operator is used to create an MCDM for the T-SPF data, which includes the following steps:
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Algorithm

Step 1:
Determine the ratings of DMs based on the DMs’ importance as “linguistics terms” (LTs) as indicated
in T-SPFNs. The LTs listed in Table 1. Assume ℵk =

〈
,µkג

,νkג
τkג

〉
is the T-SPFN for the importance of

k-th DM. Then the weight ζk of k-th DM can be calculated as follows:

ζk =
ℵk∑p

k=1 ℵk
, k = 1, 2, 3, . . . , p (5.1)

where ℵk = µג
t
k +

(
1 − µtג

k −
νג

t
k −

τג
t
k

) ( νג
t
k

µג
t
k+גν

t
k+גτ

tk

) (
τג

t
k

µג
t
k+גν

t
k+גτ

tk

)
and clearly

∑p
k=1 ζk = 1.

Table 1. Linguistic terms for DMs.

LTs T-SPFNs
Very suitable 0.800, 0.100, 0.050
Suitable 0.650, 0.150, 0.100
Medium suitable 0.550, 0.200, 0.150
Un-suitable 0.300, 0.300, 0.200
Very un-suitable 0.100, 0.400, 0.400

Step 2:
Acquire a decision matrix PQ

(p) = (Y(p)
ji )n×m in the form of T-SPFNs from the DMs.

C k1 C k2 C km



PQ
1 qς1 µ1ג)

11,
νג

1
11,
τג

1
11) µ1ג)

12,
νג

1
12,
τג

1
12) · · · · · · µ1ג〉)

1m,
νג

1
1m,
τג

1
1m)

qς2 µ1ג)
21,
νג

1
21,
τג

1
21) µ1ג)

22,
νג

1
22,
τג

1
22) · · · · · · µ1ג)

2m,
νג

1
2m,
τג

1
2m)

...
...

. . .
. . .

...

qςn µ1ג)
n1,
νג

1
n1,
τג

1
n1) µ1ג)

n2,
νג

1
n2,
τג

1
n2) · · · · · · µ1ג)

nm,
νג

1
nm,
τג

1
nm)

PQ
2 qς1 µ2ג)

11,
νג

2
11,
τג

2
11) µ2ג)

12,
νג

2
12,
τג

2
12) · · · · · · µ2ג)

1m,
νג

2
1m,
τג

2
1m)

qς2 µ2ג)
21,
νג

2
21,
τג

2
21) µ2ג)

22,
νג

2
22,
τג

2
22) · · · · · · µ2ג)

2m,
νג

2
2m,
τג

2
2m)

...
...

. . .
. . .

...

qςn µ2ג)
n1,
νג

2
n1,
τג

2
n1) µ2ג)

n2,
νג

2
n2,
τג

2
n2) · · · · · · µ2ג)

nm,
νג

2
nm,
τג

2
nm)

PQ
p qς1 µpג)

11,
νג

p
11,
τג

p
11) µpג)

12,
νג

p
12,
τג

p
12) · · · · · · µpג)

1m,
νג

p
1m,
τג

p
1m)

qς2 µpג)
21,
νג

p
21,
τג

p
21) µpג)

22,
νג

p
22,
τג

p
22) · · · · · · µpג)

2m,
νג

p
2m,
τג

p
2m)

...
...

. . .
. . .

...

qςn µpג)
n1,
νג

p
n1,
τג

p
n1) µpג)

n2,
νג

p
n2,
τג

p
n2) · · · · · · µpג)

nm,
νג

p
nm,
τג

p
nm)
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Step 3:
Establish a consolidated T-SPF judgement matrix. It is necessary to note that, while developing
the aggregated T-SPF decision matrix, all individual perspectives must be summed and included to
generate a collective viewpoint. The proposed AO will provide the things to this end:
Consider H =

(
H ji

)
n×m

is the aggregated T-SPF decision matrix, where

H ji = T − S PFFWA
(
Y

(1)
ji ,Y

(2)
ji , . . . ,Y

(p)
ji

)
or

H ji = T − S PFFOWA
(
Y

(1)
ji ,Y

(2)
ji , . . . ,Y

(p)
ji

)
.

For convenience, we take H ji as H ji =
〈
µג ji,

νג ji,
τג ji

〉
Step 4:
If required, normalise the T-SPFNs by changing each cost kind attribute (τcג) to benefit kind attribute
(τbג) with the help of formula given by:

(ℵN
ji)n×m =

(ð̃ ji)c; i ∈ τcג

ð̃ ji; i ∈ ,τbג
(5.2)

where (ð̃ ji)c show the compliment of (ð̃ ji). The normalised decision matrix will be ΓN =
(
ℵN

ji

)
n×m

=(
µג˘ ji,

νג˘ ji, τג˘ ji

)
n×m

.
Step 5:
Construct the accuracy matrix, by utilizing the accuracy function of T-SPFNs as Ψ =

(
Θ̆ζ

(
ℵN

ji

))
n×m

.

C k1 C k2 C k3 . . . C km



qς1 Θ̆ζ
(
ℵN

11

)
Θ̆ζ

(
ℵN

12

)
Θ̆ζ

(
ℵN

13

)
. . . Θ̆ζ

(
ℵN

1m

)
qς2 Θ̆ζ

(
ℵN

21

)
Θ̆ζ

(
ℵN

22

)
Θ̆ζ

(
ℵN

23

)
. . . Θ̆ζ

(
ℵN

2m

)
qς3 Θ̆ζ

(
ℵN

31

)
Θ̆ζ

(
ℵN

32

)
Θ̆ζ

(
ℵN

33

)
. . . Θ̆ζ

(
ℵN

3m

)
...

...
...

...
. . .

...

qςm

(
ℵN

n1

)
Θ̆ζ

(
ℵN

n2

)
Θ̆ζ

(
ℵN

n3

)
. . . Θ̆ζ

(
ℵN

nm

)

.

Step 6:
Just on basis of this scoring matrix Ψ, a “weighted sum of the scores of each alternateqς j” is calculated
by

U(qς j) =

m∑
i=1

W γ
i Θ̆ζ

(
ℵN

ji

)
, ( j = 1, 2, . . . , n),

where, W γ
1 ,W

γ
2 , . . .W

γ
m be the WV of the given criterion.

Assume that the weights are indeterminate and that
︷︸︸︷∐

represents a subset of them. We evaluate
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these indeterminate weights using the underlying computational model:

Max g =

m∑
i=1

U(qς j)

under the conditions
∑m

i=1 W γ
i = 1. By using this methodology, the WV is normalised. Using a linear

programming model, we calculate the weights of criteria subject to certain limitations.
Step 7:
Using the normalised decision matrix ΓN and the WV W γ, analyze the consolidated weighted T-SPF
decision matrix. We used the suggested AOs listed below.

T − S PFFWA(ℵN
j1,ℵ

N
j2, . . . ,ℵ

N
jm)

=



∏m
j=1

(
µtג˘

jξ(i)

)W γ
i

∏m
j=1

(
µtג˘

jξ(i)

)W γ
i
+
∏m

j=1

(
νtג˘

jξ(i)

)W γ
i
+
∏m

j=1

(
τtג˘

jξ(i)

)W γ
i
×

(
1 −

∏m
j=1

(
1 − µtג˘

jξ(i)
− νtג˘

jξ(i) −
τtג˘

jξ(i)

)W γ
i
)
,

∏m
j=1

(
νtג˘

jξ(i)

)W γ
i

∏m
j=1

(
µtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
νtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
τtג˘

jξ(i)

)W γ
i
×

(
1 −

∏m
j=1

(
1 − µtג˘

jξ(i)
− νtג˘

jξ(i) −
τtג˘

jξ(i)

)W γ
i
)
,

∏m
j=1

(
τtג˘

jξ(i)

)W γ
i

∏m
j=1

(
µtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
νtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
τtג˘

jξ(i)

)W γ
i
×

(
1 −

∏m
j=1

(
1 − µtג˘

jξ(i)
− νtג˘

jξ(i) −
τtג˘

jξ(i)

)W γ
i
)


or

T − S PFFOWA(ℵN
j1,ℵ

N
j2, . . . ,ℵ

N
jm)

=



∏m
j=1

(
µtג˘

jξ(i)

)W γ
i

∏m
j=1

(
µtג˘

jξ(i)

)W γ
i
+
∏m

j=1

(
νtג˘

jξ(i)

)W γ
i
+
∏m

j=1

(
τtג˘

jξ(i)

)W γ
i
×

(
1 −

∏m
j=1

(
1 − µtג˘

jξ(i)
− νtג˘

jξ(i) −
τtג˘

jξ(i)

)W γ
i
)
,

∏m
j=1

(
νtג˘

jξ(i)

)W γ
i

∏m
j=1

(
µtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
νtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
τtג˘

jξ(i)

)W γ
i
×

(
1 −

∏m
j=1

(
1 − µtג˘

jξ(i)
− νtג˘

jξ(i) −
τtג˘

jξ(i)

)W γ
i
)
,

∏m
j=1

(
τtג˘

jξ(i)

)W γ
i

∏m
j=1

(
µtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
νtג˘

jξ(i)

)W γ
i

+
∏m

j=1

(
τtג˘

jξ(i)

)W γ
i
×

(
1 −

∏m
j=1

(
1 − µtג˘

jξ(i)
− νtג˘

jξ(i) −
τtג˘

jξ(i)

)W γ
i
)



.

Step 8:
Using T-SPF, compute the score value of the whole weighted consolidated result. Rank each option
depending on the SF, and afterwards select the most desired one (s).
Demonstration of the suggested method is shown in Figure 1.
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Figure 1. Pictorial view of proposed algorithm.

6. An application to food waste treatment technology selection

Food waste treatment and management has become a major concern due to the considerable
ecological, sociological, and monetary consequences. Because of the correlation of multiple qualitative
and quantitative qualities, selecting the best acceptable food waste treatment procedure from a group
of alternatives might be considered an MCDM challenge. The colossal sum of “food waste” (FW) is
produced each year around the world, and the sum of the FW era has expanded over time [58]. For
occasion, within the Joined together States, FW accounted for 21.1% of the disposed of metropolitan
squander stream in 2012 which is identical to 31.4 million tons. In China, 90 million tons of FW was
produced in 2010 which made up almost 51% of the “municipal solid waste” (MSW) generation [59].
It is evaluated that over one-fourth of nourishment delivered around the world annually is squandered
amid production, handling, dispersion, utilization, and transfer. In developed nations such as Japan,
the United Kingdom, South Korea and Australia, the sums of FW produced per year were 9.9, 7.0, 5.7
and 4.4 million tons respectively on normal [60].

It is calculated that 1.6 billion tons of “primary product equivalents” are lost due to food waste
throughout the world every year. The edible portion of this represents 1.3 billion tones of foodstuff

that is lost or wasted every year. It is projected that 3.3 billion tones of CO2 equivalence of greenhouse
gases are emitted into the sky each year as a result of food being wasted. The entire amount of water
utilized each year in the production of food that is either lost over time (250 km3) is similar to the
yearly flow of the Volga River in Russia or 3 times the volume of Lake Geneva. This is a significant
issue that has to be addressed. In a similar vein, each year, 1.4 billion hectares of land, which accounts
for 28 percent of the total agricultural acreage on the planet, is used to produce food that is either not
consumed or is wasted. Agriculture is the primary cause of the bulk of the dangers that face endangered
plant and animal species that are monitored by the International Union for the Conservation of Nature
(IUCN). Composting only accounts for a small fraction of the total amount of wasted food; the vast
majority of it is transferred to landfills, where it contributes significantly to the volume of municipal
solid waste. One of the most significant contributors to greenhouse gas emissions from the waste
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industry is the methane that is released from landfills. Composting at home has the ability to divert up
to 150 kg per household per year of food waste away from the collecting authority in the community.
FW at the retail and consumer level is often greater in areas with middle- and high-incomes, but food
losses during agricultural production are more common in developing nations. To exclude fish and
seafood from the calculation, the yearly cost of the direct economic effects of food waste is estimated
to be 750 billion dollars. Total FW per year and estimated FW per capita for different countries given
in Figures 2 and 3 respectively [57].

Figure 2. Total food waste in year 2021 for different countries.

Figure 3. Total food waste in year 2021 per capita for different countries.

FW presents transfer challenges basically due to its tall dampness substance, oil substance, and
heterogeneous nature. The choice of waste management technology could be a complex issue from
two major perspectives. Firstly, it requires thought of data and investigation from a few distinctive
disciplines, to be specific financial matters, supply administration, designing, material science, and
chemistry. Besides, determination requires communication and understanding of diverse viewpoints
from inside an organization from providers to handlers, and security officers to administration [61].
A recent review of MCDM within the improvement of industrial waste administration approaches
universally appears how the goals of these frameworks have become progressively complex over
later decades. Babalola conducted a ponder to assess diverse treatment choices for large volumes
of nourishment and natural squander and their reasonableness for Japan utilizing MCDM [62].
Additionally in 2016, Mir et al. utilized MCDM to compare and rank 11 MSW treatment strategy
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scenarios for Malaysia ecologically and financially [63]. The choice investigation, in this manner,
has been broadly supported and executed as a implies to supply a straightforward examination and a
way to consider and reconcile diverse points of view within the determination of waste administration.
Partner engagement utilizing MCDM to back metropolitan solid waste administration has been detailed
to facilitate communication, assess clashes and bolster the positioning of diverse techniques.

FW demands several treatment techniques. Burning, anaerobic assimilation, landfilling, pyrolysis,
ethanol ageing, and gasification are a few innovations for FW treatment (FWT) that involve diverse
financial guesses and have diverse social and environmental repercussions. Various writers have
conducted a small number of investigations in this area. In general, FWTT determination necessitates
a full analysis of arrangement planning, country’s GDP, garbage collection, transparency index,
availability of suitable technology, people’s awareness of supportability, etc., in which several viable
technological options are studied. Consequently, it can be acknowledged that determining an optimal
FWTT may involve a complex decision-making process governed by a variety of variables. MCDM
methods are applied well for this purpose.

In this section, we actualize the presented decision-making strategy on the choice of alluring FWTT
among a set of choices, which uncovers the viability and practicality of the developed strategy. After
a preparatory investigation, a gather of specialists (PQ

1, PQ
2, PQ

3) has chosen, five technologies
as the candidate of FWTT, which are anaerobic absorption qς1, incineration qς2, composting qς3,
landfill qς4, and gasification qς5. DMs evaluating the five technologies under the criterion given in
Table 2. Here we take t = 3.

Table 2. Criterion for land selection.

Criterion
C k1 Environmental capacity involvement with the developed scenario
C k2 Time and space are required for residential waste management
C k3 number of eco-friendly purchases
C k3 Number of participants in promoting the model

6.1. Decision-making process

Step 1:
LTs for each DM given in Table 3. By the LTs find the DMs weights by the Eq (5.1), Then the DMs
weight are ζ1 = 0.3990, ζ2 = 0.2760 and ζ3 = 0.3250.

Table 3. Linguistic terms for DMs.

DM Linguistic terms
PQ

1 Very suitable
PQ

2 Medium suitable
PQ

3 Suitable

Step 2:
Obtain the decision matrix PQ

(p) = (Y(p)
ji )n×m in the format of T-SPFNs from DMs. The judgement

values, given by three DMs, are given in Tables 4–6.
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Table 4. Assessment matrix acquired from PQ
1.

C k1 C k2 C k3 C k4
qς1 (0.425, 0.255, 0.155) (0.352, 0.256, 0.106) (0.359, 0.215, 0.178) (0.313, 0.243, 0.212)
qς2 (0.356, 0.154, 0.221) (0.332, 0.312, 0.211) (0.290, 0.312, 0.145) (0.434, 0.255, 0.157)
qς3 (0.203, 0.178, 0.248) (0.154, 0.287, 0.246) (0.257, 0.235, 0.153) (0.275, 0.385, 0.213)
qς4 (0.345, 0.120, 0.158) (0.483, 0.268, 0.121) (0.472, 0.181, 0.231) (0.335, 0.265, 0.235)
qς5 (0.165, 0.370, 0.135) (0.480, 0.260, 0.195) (0.280, 0.315, 0.320) (0.115, 0.175, 0.335)

Table 5. Assessment matrix acquired from PQ
2.

C k1 C k2 C k3 C k4
qς1 (0.340, 0.335, 0.120) (0.560, 0.125, 0.130) (0.345, 0.140, 0.115) (0.515, 0.310, 0.111)
qς2 (0.515, 0.235, 0.134) (0.165, 0.355, 0.220) (0.370, 0.425, 0.120) (0.452, 0.111, 0.123)
qς3 (0.240, 0.121, 0.315) (0.175, 0.470, 0.265) (0.255, 0.375, 0.240) (0.253, 0.135, 0.145)
qς4 (0.135, 0.240, 0.265) (0.280, 0.330, 0.145) (0.275, 0.255, 0.340) (0.253, 0.235, 0.365)
qς5 (0.365, 0.201, 0.235) (0.281, 0.240, 0.355) (0.280, 0.135, 0.330) (0.154, 0.253, 0.335)

Table 6. Assessment matrix acquired from PQ
3.

C k1 C k2 C k3 C k4
qς1 (0.475, 0.145, 0.110) (0.345, 0.252, 0.203) (0.555, 0.303, 0.115) (0.425, 0.135, 0.111)
qς2 (0.335, 0.245, 0.145) (0.145, 0.225, 0.335) (0.230, 0.153, 0.420) (0.235, 0.435, 0.245)
qς3 (0.370, 0.265, 0.275) (0.135, 0.210, 0.545) (0.235, 0.152, 0.220) (0.265, 0.225, 0.433)
qς4 (0.220, 0.465, 0.135) (0.250, 0.415, 0.245) (0.415, 0.152, 0.140) (0.265, 0.445, 0.135)
qς5 (0.143, 0.154, 0.465) (0.270, 0.458, 0.165) (0.120, 0.415, 0.260) (0.215, 0.115, 0.435)

Step 3:
To construct the aggregated T-SPF decision matrix, all individual opinions must be totalled up and
integrated to form a group opinion.
H =

(
ð̃ ji

)
5×4

be the aggregated T-SPF decision matrix, where

ð̃ ji = T − S PFFWA
(
Y

(1)
ji ,Y

(2)
ji ,Y

(3)
ji

)
=

(
ζ1 ∗ Y

(1)
ji ⊕̃ζ2 ∗ Y

(2)
ji ⊕̃ζ3 ∗ Y

(3)
ji

)
. Aggregated T-SPF decision

matrix given in Table 7.
Table 7. Aggregated T-SPF decision matrix.

C k1 C k2
qς1 (0.285906, 0.114804, 0.050480) (0.272807, 0.114013, 0.056356)
qς2 (0.254533, 0.094056, 0.078675) (0.117772, 0.178783, 0.139180)
qς3 (0.142084, 0.088203, 0.156125) (0.077527, 0.205063, 0.236169)
qς4 (0.180479, 0.147796, 0.104477) (0.240093, 0.212379, 0.072306)
qς5 (0.124448, 0.185574, 0.161027) (0.253588, 0.199940, 0.113938)

C k3 C k4
qς1 (0.294449, 0.114730, 0.0600663) (0.274437, 0.145051, 0.0669727)
qς2 (0.198061, 0.180828, 0.110345) (0.268425, 0.153467, 0.0866869)
qς3 (0.139668, 0.122039, 0.0922995) (0.174100, 0.165420, 0.151573)
qς4 (0.195787, 0.090117, 0.113357) (0.182522, 0.204743, 0.117831)
qς5 (0.116394, 0.175757, 0.193227) (0.060994, 0.072372, 0.232129)
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Step 4:
Here is no cost type attribute so, the normalized decision matrix will be ΓN =

(
ℵN

ji

)
n×m

=
(

µג˘ ji,
νג˘ ji, τג˘ ji

)
5×4

, given in Table 8.

Table 8. Normalized T-SPF decision matrix.

C k1 C k2
qς1 (0.285906, 0.114804, 0.050480) (0.272807, 0.114013, 0.056356)
qς2 (0.254533, 0.094056, 0.078675) (0.117772, 0.178783, 0.139180)
qς3 (0.142084, 0.088203, 0.156125) (0.077527, 0.205063, 0.236169)
qς4 (0.180479, 0.147796, 0.104477) (0.240093, 0.212379, 0.072306)
qς5 (0.124448, 0.185574, 0.161027) (0.253588, 0.199940, 0.113938)

C k3 C k4
qς1 (0.294449, 0.114730, 0.0600663) (0.274437, 0.145051, 0.0669727)
qς2 (0.198061, 0.180828, 0.110345) (0.268425, 0.153467, 0.0866869)
qς3 (0.139668, 0.122039, 0.0922995) (0.174100, 0.165420, 0.151573)
qς4 (0.195787, 0.090117, 0.113357) (0.182522, 0.204743, 0.117831)
qς5 (0.116394, 0.175757, 0.193227) (0.060994, 0.072372, 0.232129)

Step 5:
Construct the score matrix, by utilizing the SF of T-SPFNs as Ψ =

(
Θ̆ζ

(
ℵN

ji

))
5×4

.

C k1 C k2 C k3 C k4



qς1 0.0250124 0.0219643 0.0272556 0.0240217

qς2 0.0178093 0.0100441 0.0150260 0.0236064

qς3 0.0073595 0.0222615 0.0053284 0.0132859

qς4 0.0102475 0.0237974 0.0096936 0.0162993

qς5 0.0124935 0.0257794 0.0142206 0.0131140

Step 6:
Consider that the DMs provide the following partial weight details about the attribute weights:
Ψ = 0.10 ≤ W γ

1 ≤ 0.35, 0.20 ≤ W γ
2 ≤ 0.53, 0.10 ≤ W γ

3 ≤ 0.70, 0.15 ≤ W γ
4 ≤ 0.65

Relying on this data, the following optimization framework can be developed:

Max g = 0.0250124W γ
1 + 0.0178093W γ

1 + 0.0073595W γ
1 + 0.0102475W γ

1 + 0.0124935W γ
1

0.0219643W γ
2 + 0.0100441W γ

2 + 0.0222615W γ
2 + 0.0237974W γ

2 + 0.0257794W γ
2

0.0272556W γ
3 + 0.0150260W γ

3 + 0.0053284W γ
3 + 0.0096936W γ

3 + 0.0142206W γ
3

0.0240217W γ
4 + 0.0236064W γ

4 + 0.0132859W γ
4 + 0.0162993W γ

4 + 0.0131140W γ
4 ,
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such that,
0.10 ≤ W γ

1 ≤ 0.35, 0.20 ≤ W γ
2 ≤ 0.53, 0.10 ≤ W γ

3 ≤ 0.70, 0.15 ≤ W γ
4 ≤ 0.65,

W γ
1 + W γ

2 + W γ
3 + W γ

4 = 1, W γ
1 ,W

γ
2 ,W

γ
3 ,W

γ
4 ≥ 0.

By solving this model we get, W γ
1 = 0.1,W γ

2 = 0.53,W γ
3 = 0.1,W γ

4 = 0.27.
Step 7:
Evaluate the aggregated weighted T-SPF decision matrix by using proposed AOs given by Table 9.

Table 9. Aggregated weighted T-SPF decision matrix.

qς1 (0.277325, 0.122136, 0.058918)
qς2 (0.189635, 0.182495, 0.128065)
qς3 (0.120535, 0.187258, 0.202940)
qς4 (0.221568, 0.194255, 0.093429)
qς5 (0.186953, 0.187209, 0.189453)

Step 8:
Compute the score values of all alternatives.

S (qς1) = 0.0211243

S (qς2) = 0.00471918

S (qς3) = − 0.0066068

S (qς4) = 0.01006180

S (qς5) = − 0.0002658.

At the end, the final ranking will be

qς1 � q
ς

2 � q
ς

4 � q
ς

3 � q
ς

5.

Thus, we conclude that the optimal FWTT option is incineration qς1.

6.2. Comparison with existing AOs

To check the validity and authenticity of the proposed AOs in this article, we solve our given
problem employing fundamental averaging AOs suggested by [37]. We take the “normalized T-SPF
decision matrix” from Step 4 and the WV obtained from the partial weight details from Step 6 as
W γ

1 = 0.32,W γ
2 = 0.20,W γ

3 = 0.33,W γ
4 = 0.15. We apply “T-spherical fuzzy weighted average (T-

SPFWA) operator”, on the T-SPFNs given in Table 10 and get the following results given in Table 11.
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Table 10. T-SPF decision matrix.

C k1 C k2
qς1 (0.431824, 0.235033, 0.135906) (0.411300, 0.229910, 0.143730)
qς2 (0.395850, 0.203841, 0.180950) (0.234851, 0.310206, 0.262513)
qς3 (0.267909, 0.194961, 0.285270) (0.171292, 0.327612, 0.359957)
qς4 (0.295482, 0.258636, 0.205240) (0.374920, 0.345483, 0.168449)
qς5 (0.229988, 0.300186, 0.273095) (0.386231, 0.329630, 0.226572)

C k3 C k4
qς1 (0.435387, 0.232267, 0.150877) (0.415799, 0.271811, 0.162375)
qς2 (0.325725, 0.306545, 0.220540) (0.403580, 0.278008, 0.189969)
qς3 (0.263540, 0.240870, 0.199947) (0.299333, 0.289299, 0.272920)
qς4 (0.329464, 0.196406, 0.228867) (0.313588, 0.338549, 0.234237)
qς5 (0.233374, 0.307167, 0.327199) (0.154416, 0.173071, 0.376405)

Table 11. Aggregated weighted T-SPF decision matrix by using T-SPFWA operator.

qς1 (0.277183, 0.121832, 0.124118)
qς2 (0.178633, 0.161073, 0.167273)
qς3 (0.119849, 0.168856, 0.182187)
qς4 (0.215161, 0.186141, 0.198276)
qς5 (0.151333, 0.148903, 0.176793)

Compute the score values of all alternatives.

S (qς1) = 0.0193839

S (qς2) = 0.0010198

S (qς3) = − 0.004325

S (qς4) = 0.0021658

S (qς5) = − 0.002060.

At the end, the final ranking will be

qς1 � q
ς

4 � q
ς

2 � q
ς

3 � q
ς

5.

We achieve the same optimum solution employing the T-SPFWA operator, illustrating the resilience of
our proposed AOs.
By analyzing the inputs with specific pre-existing AOs and obtaining an equal optimal solution, we
equalize our outcomes. This proves the robustness and reliability of the suggested AOs. Due to its
unbiased or neutral operation for T-SPFNs, the offered technique is more practicable and preferable
to some previous AOs. The comparison of proposed AOs with some existing operators are given in
Table 12.
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Table 12. Comparison of proposed AOs with some exiting operators.

Authors AOs Ranking of alternatives The optimal alternative

Mahmood et al. [37] TSFWG qς1 � q
ς

2 � q
ς

4 � q
ς

3 � q
ς

5 qς1

Munir et al. [38] T-SFEWA qς1 � q
ς

3 � q
ς

2 � q
ς

4 � q
ς

5 qς1

T-SFEOWA qς1 � q
ς

4 � q
ς

3 � q
ς

2 � q
ς

5 qς1

Zeng et al. [39] T-SFEWIG qς1 � q
ς

2 � q
ς

4 � q
ς

3 � q
ς

5 qς1

T-SFEOWIG qς1 � q
ς

4 � q
ς

2 � q
ς

3 � q
ς

5 qς1

Liu et al. [40] SPFPMM qς1 � q
ς

3 � q
ς

2 � q
ς

4 � q
ς

5 qς1

SPFPDMM qς1 � q
ς

5 � q
ς

2 � q
ς

3 � q
ς

4 qς1

Kifayat-Ullah et al. [41] TSFHWA qς1 � q
ς

4 � q
ς

2 � q
ς

5 � q
ς

3 qς1

TSFOHWA qς1 � q
ς

4 � q
ς

2 � q
ς

3 � q
ς

5 qς1

Khan et al. [42] T-SPHFSSPHEM qς1 � q
ς

5 � q
ς

2 � q
ς

3 � q
ς

4 qς1

T-SPHFSSPGHEM qς1 � q
ς

2 � q
ς

3 � q
ς

4 � q
ς

5 qς1

Proposed T-SPFFWA qς1 � q
ς

4 � q
ς

2 � q
ς

3 � q
ς

5 qς1

7. Conclusions

Present research indicates that when a DM provides an equal number of membership, abstinence
and non-membership evaluations for an object, the resulting aggregate assessments are uneven.
In this scenario, we proposed some novel fairly or neutrality operations based on T-SPFS and
proportional distribution rules for membership, abstinence and non-membership functions, with
an emphasis on correctness and applicability throughout decision making impacted by the DM’s
attitude. We contributed some “T-spherical fuzzy fairly weighted averaging (T-SPFFWA) operator”
and “T-spherical fuzzy fairly ordered weighted averaging (T-SPFFOWA) operator” for the T-SPFN
information, inspired by fairly operations. We discussed the prospective AOs’ characteristics in
considerable detail. The primary benefit of the suggested operators is that they facilitate not just
interaction amongst pairs of diverse T-SPFNs, but also the exploration of DM attitude characteristics
by enabling for a categorical treatment of the T-SPFS degrees. The developed strategy was compared
with extant strategies to confirm its legitimacy. The results gotten by the proposed strategy confirm that
it encompasses a better than average viability and soundness and is reliable with extant models. There
is no interaction between the membership, abstention, and non-membership degrees as we discuss the
limitations of proposed AOs. On this side of the proposed AOs, the hybrid structure of interactive AOs
is implemented. This model was expanded to incorporate the global dynamics of a three-species spatial
food chain model [64] and a multi-source fluid queue-based stochastic model [65].
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