. AIMS Mathematics, 8(5): 11684—11708.
AIMS Mathematics DOI: 10.3934/math.2023592

Received: 27 September 2022

Revised: 27 February 2023

Accepted: 06 March 2023

Published: 17 March 2023

http://www.aimspress.com/journal/Math

Research article

Different characterization of soft substructures in quantale modules

dependent on soft relations and their approximations

Saqib Mazher Qurashi'*, Ferdous Tawfiq?, Qin Xin’, Rani Sumaira Kanwal* and Khushboo
Zahra Gilani®

I Department of Mathematics, Government College University, Faisalabad, Pakistan

2 Department of Mathematics, College of Science, King Saud University, P.O. Box 22452, Riyadh
11495, Saudi Arabia

3 Faculty of Science and Technology, University of the Faroe Islands, Faroe Islands, Denmark

4 Department of Mathematics, Government College Women University, Faisalabad, Pakistan

5 Department of Mathematics, Government College University, Faisalabad, Pakistan

* Correspondence: Email: sagibmazhar@gcuf.edu.pk.

Abstract: The quantale module introduced by Abramsky and Vickers, engaged a large number of
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algebraic structure quantale module with the left action. In fact, the paper reflects the generalization
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characterizations of soft substructures in quantale modules based on soft binary relation are
presented. Further, in quantale modules, we define soft compatible and soft complete relations in
terms of aftersets and foresets. Furthermore, we use soft compatible and soft complete relations to
approximate soft substructures of quantale modules and these approximations are interpreted by
aftersets and foresets. This concept generalizes the concept of rough soft quantale modules.
Additionally, we describe the algebraic relationships between the upper (lower) approximations of
soft substructures of quantale modules and the upper (lower) approximations of their homomorphic
images using the concept of soft quantale module homomorphism.
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List of Acronymsx*

Acronyms Representation

Cite Complete lattice

Qg Quantale submodule

0y Quantale submodule ideal

LOgy Lower approximation

UPyp Upper approximation

URQg Upper rough quantale submodule
LRQg Lower rough quantale submodule
URQ, Upper rough quantale submodule ideal
LROQ,; Lower rough quantale submodule ideal
GU,.S Generalized upper soft

GL.S Generalized lower soft

SBIR Soft binary relation

SCMR Soft compatible relation

SCMPR Soft complete relation

S.P Set of Parameters

SWMH Soft weak quantale module isomorphism

1. Introduction

Molodtsov [6] proposed the soft set (S-set) theory which has many applications to find solutions
of problems in economics, medicine, engineering and social sciences. A S-set over a set U under
consideration is a pair (F,A) = {F(a) S U:V a € A} where F is a function from A (set of
parameter) to P(U). The S-sets are generalization of conventional sets. Molodstov also discussed
how this approach could be used to elaborate a variety of problems. The specification of a parameter
is not required in S-set theory. This makes S-set theory a natural mathematical framework for
approximate logic. Numerous theories were proposed to deal with uncertainty and imprecision
following the development of S-set theory. Some of those are extensions of S-sets, while others strive
to deal with uncertainty in another suitable way. To get better and precise result, rough set (R-set)
presented by Pawlak [27] is combined with S-set named as rough soft set. In R-set theory an
important part is played by an equivalence relation. There is always a question left whether an
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equivalence relation is simple to obtain. Thus, the combined R-set with S-set is termed as rough soft
set defined by Feng et al., [7] is as follows: Let G = (f, A) be a soft set over U. Then the pair P =
(U,G) is called soft approximation space. Based on P, following are defined as aprp(X) = {u €
U:da€Alu€ f(a) S X]} and apr,(X) ={u€U:Fa€Alu€ef(a)NX =+ ]} where X<
U, aprp(X) and apr,(X) are called lower and upper soft rough sets. In this way, further
approximation of S-sets in a different way was proposed by Shabir et al., [14] to give a proper
illustration of the information and allow a greater degree of freedom and flexibility in representing
uncertainty which is as follows: Let (F,V) be a soft binary relation from K; to K, (where K; to K,

are universal sets under consideration). Thus, (FM,V) and (FM, V) are the lower and upper
approximation of S-set (M, V) over K, with respect to aftersets, are essentially two soft sets over K;
defined as FM(v) = {k € K;: ¢ # kF(v) € M(v)} and (fM(v) ={k € K;:kF(v) N M(v) # ¢} .
From above discussion it is clear to understand that approximation of soft sets with respect to either

aftersets or foresets by soft relations are simple and more suitable to handle different situations in
different field of sciences.

1.1. Background and importance of quantale module

The quantale module, introduced by Abramsky and Vickers [20], engaged a large number of
researchers. By replacing rings by quantale and abelian group with complete lattices in the module
over ring, the concept of the quantale module was developed. Abramsky and Vickers used the
concept of a quantale module for the unified treatment of process semantics. The concept of modules
over a commutative unital quantaleas by Rosenthal [11] provided a family of models of full linear
logic. Russo [4] introduced an approach to data compression algorithms using quantale module
homomorphism as an application. A quantale-theoretic approach to propositional deductive [5]
systems has been developed in recent years, based on the notion that any propositional deductive
system may be represented as a quantale module. However, despite of their multiple applications, the
first systematic studies on the categories of quantale modules are rather recent [2—4,22]. On the other
hand, the results presented in [15] and [21] clearly suggest that the algebraic categories of quantales,
unital quantales, and quantale modules are worth to be further investigated.

1.2. Literature review

The categories of modules over unital quantales were introduced by Russo. The main
categorical properties were established and a special class of operators, called Q-module transforms,
was defined [2]. Some applications of quantale modules with applications to logic and image
processing were introduced Russo [4] including Free modules, hom-sets, products and coproducts,
Q-module transforms, projective and injective Q-modules. Further decomposition and projectivity of
quantale modules were discussed by Slesinger [18] and showed that every quantale module join-
generated by its sub-set of join-irreducible elements can be uniquely decomposed into a collection of
further indecomposable submodules. Further, he characterized regular projective essential modules
that admitted this product decomposition as products of such cyclic quantale modules. The concept
of Q-P quantale modules was defined by Liang and discussed categorical properties of Q-P quantale
modules [23]. Algebraic properties of the category of Q-P quantale modules were defined by [23]
and the structure of the free Q-P quantale modules generated by a set were obtained. Modules on
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involutive quantales were defined by Heymans and Stubbe [9]. They defined Canonical Hilbert
structure, an application of sheaf theory. In 2018, rough set was applied to substructures of quantale
modules and defined rough Q-submodule. Further the concepts of set-valued homomorphism and
strong set-valued homomorphism of Q-modules were introduced, and related properties are
investigated [25]. With the help of soft relations, substructures of quantale modules were
approximated by Qurashi et al., [24]. An application of rough set theory based on Multi source
information fusion was presented by Zhang et al., [16]. Zhang et al.,, introduces further
heterogeneous feature selection dependent on neighborhood combination entropy [17].

1.3. Research gap in the current literature and motivation of the study

The literature overview above highlights some developments in both classical and R-set theory.
Furthermore, even though several results about rough submodule and rough submodule ideals of
quantale module and generalized lower and upper approximations operators based on set-valued
homomorphism of quantale modules have been demonstrated but there are still some open questions
remain to be answered.

(1) In classical quantale module theory, there is a lot of contributions but there is no attention on its
generalization, for example soft quantale module, different characterization of fuzzy substructures in
quantale modules like (€,eVq) -fuzzy substructures, (€,€Vqy) -fuzzy substructures of quantale
modules and (€,,€,Vqs) -fuzzy substructures of Quantale modules. Rough neutrosophic soft
substructures in quantale modules, fuzzy bipolar soft substructures in quantale modules.

(2) Study of different substructures of quantale modules by soft relations is present in existing
literature. Further, approximation of soft ideals by soft relations in semigroups was proposed by
Kanwal and Shabir [19]. Since soft substructures in quantale modules are generalization of its
substructures so therefore, it is important to understand the characterization of soft substructures in
quantale modules dependent on soft relations.

(3) Roughness of substructures with the help of congruence relations and set-valued homomorphism
is in the lecturer [25]. A natural question comes into mind, what will be the behavior of roughness of
soft substructures by soft relations is a logical question to ask.

(4) Some fundamental and important theorems of quantale module homomorphism are discussed
in [24]. Therefore, it is necessary to discuss these remarkable theorems in the context of soft quantale
module homomorphism.

(5) Numerous algebraic aspects of substructures of quantale module with and without by soft
relations have been studied in the literature. In the context of soft substructures of quantale modules,
these studies have yet to be examined from a broader perspective.

The ultimate goal of this research is to address the aforementioned open problems and fulfil the
knowledge gap in the existing literature.

1.4. Comparative study and limitations of the current research
The results proved in this paper are valid for substructures in quantale modules. Moreover,
every fuzzy set is an IFS, so the present study can also be applied to fuzzy substructures and

intuitionistic fuzzy substructures in quantale modules by soft relations. Further, approximations of
Pythagorean fuzzy sets by soft binary relations were presented by Bilal and Shabir [13]. So, we can
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define approximation of Pythagorean fuzzy substructures in quantale modules by soft relations.
However, we cannot apply these results directly to g-rung orthopair fuzzy ideals, picture fuzzy ideals
and fuzzy soft hyper substructures in quantale modules. Therefore, separate studies are
recommended for these generalized structures. This is the main limitation of our research.

The detail of paper is as follows. In Section 2, some necessary definitions related to
substructures of quantale module are presented. Further, rough set, soft sets, soft substructures in
quantale module and soft binary relations are discussed. In Section 3, some characterization of
subsets of quantale modules are described. Moreover, different rough soft substructures with respect
to aftersets and foresets will be expressed in Section 4. In the last section, soft quantale module
homomorphism with its relation to upper (lower) approximations and homomorphic images are
described.

2. Preliminaries

In this section, we define soft substructures of quantale modules and present some basic notions
of soft sets, rough sets and substructures of quantale modules, which are the main tools in our study.
Definition 2.1. [1] Let Q be a C;;.. Define an associative binary operation @ on Q satisfying,

Dt ® (Vierz) = Viett @ z));
2) (Vi) @ 2=V (t; @ 2).
Vr,z € 0Qand{z} {r;} €0 (€ L).Then (Q,Q) is a quantale.
Let R;, R4, R, € Q. Then the following are defined
R ® Ry={r; ® 1: 11 ER;,1; ERL};
:R'l VRZ == {r1Vr2 : rl E:R,:l,rz E:RQ},
VietRi = {VieL 11+ 1, E R}

Definition 2.2. [20] Let Q be a quantale and Q be a sup-lattice equipped with a left action * : Q X

Q — Q. Then Q is called left Q-module over the quantale Q, if it satisfies the following criteria,

) (Vieear) *x =V (a; *x);

2)  a *(Vigxp) =Vigr (@ *xp);

3) (a ® b)) xx=a (b xx).

forany a, 4 € Q,{a;} S Q(l€L),x€Q,and{x;} € Q (i €])

way. We write Q for left Q-module over the quantale throughout in this thesis. For a Q-module @,
A S Qand m € Q we have,

Axm={a~m|ac€A};
AxB={a xb6|a€A b €B}
where B € Q. For A,B,A; € Q (L € L), We write
AVB={aVvt|a€AbEB}
Viee At = {Vier ai | a1 € A}

Example 2.3. Let Q = {£, ¢, 3, T} be the C; shown in Figure 1 and operation & on Q is shown in
Table 1. Then(Q,&) is a quantale. Let Q = {£, x, T} be a sup lattice. The order relation of Q is given
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in Figure 2. And the left action on Q i.e., x: Q X @ — @Q is shown in Table 2. Then it is easy to verify
that Q is Q-module.

T ‘T
Y z ®x
L ot

Figure 1. Description of Q. Figure 2. Description of Q.

Table 1. Binary operation subject to &.

HAa R S5
SRR eI S
SRS SRS N
ISEESER SR SIS
AN R S|H

Table 2. Left action subject to *.

¥R OSSR
HoH S S

H N R S+
S5 S|s

Example 2.4. Every quantale Q is a certainly a Q-module over Q.

Definition 2.5. [20] Let Q be a Q-module. If a subset Q; € Q satisfies the following axioms for any
m € Qi,{m;} S Q, andy € Q, we have

1) Viggm; € Q1 Vm; € Qy;

2) yxme€ Q1 VmE Q,y €0.

Then Q; is called Q-submodule (Qg) of Q.

Definition 2.6. [20] Let 7 # @ be a subset of Q-module Q. Then 7 is called Q-sub module ideal (Qy)
of @ if following holds;

1) AC JimpliesV A C 7J;

2) x €Jand & < x implies & € J;

3) x€Jimpliesy xx €J,Vy€Q.

Example 2.7. Consider the quantale module given in Example 2.3. Then {L},{L, x},{L, x, T} are Q,
of Q.

Definition 2.8. [5] If JI is a mapping given by JI : V — P(Q) where V € E (S.P), then the pair
(JI,V) is called a soft set over Q.
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Definition 2.9. [8] Assume (M, V;) and (IV,V,) be two soft sets over Q. Then we called (M, V;)
soft subset (V' V;) if the conditions listed below are satisfied,

e V1EVy

e MW cNWVveV,.

We will represent soft subsets defined in above manner by (M, V;) € (IV, ).

Definition 2.10. [8] Let (JI,V) be a soft set over Q@ X Q, ie, J: V - P(Q X Q). Then (JI,V) is
called a soft binary relation (SBIR) over Q. A SBIR from Q;to Q, is a soft set (JI,V) from Q,to Q,.
Thatis J1: V — P(Q; X Q,).

Definition 2.11. Let (JI,V) be a soft set over quantale module Q. Then the soft substructures of
quantale modules are defined as,

1) (JI,V) is called soft quantale submodule (Qg) over Q iff JI(v) isa Qgsof Q, Vv E V.

2) (JL,V) is called soft quantale submodule ideal (Q;) over Q iff JI(v) isa Q;of QVv EV.
Definition 2.12. [27] Let @ be an equivalence relation on a non-empty finite set Q. Then (Q, @) is
called an approximation space. Let C be a subset of 9. Then C may or may not be written as union of
the equivalence classes of Q. We say that C is definable, if C can be written as union of some
equivalence classes of Q. Otherwise, it is called not definable. In case, if C is not definable, then C
can be approximated by two definable subsets called the lower and upper approximations of C. These
approximations are defined as follows,

) =1{g4€Q:lgl, SClandu(C)={q€Q:[gl,nC* @}
A rough set is a pair (u(C), u(C)) if u(C) # pu(C).

3. Approximation of soft subsets of quantale module by soft relation

In this section, we approximate the subsets of quantale module by using soft relations.
Definition 3.1. [14] Assume V is the subset of E (S.P) and (JI,V) be a SBIR from @, to 9, i.e.,

—M
J:V = P(Q; XQy). Thus, the L0y, (J1M,V) and UP,, (J ,V) wrt the afterset of soft set
(M, V) over Q, are essentially two soft sets over Q4 defined as

I () = {y1 €91 : 0 # v I(v) € M(v)}

and

T () = {1 €0y /I(v) N M(v) # B},

Vvevl.

N
The LOg, (MJL,V) and UP,, (- J1,V) of w.r.t the foreset of a soft set (I, V) over @, are two soft sets

over @, defined as,
YAW) ={y, € Q; : @ # JI(v)y, € N (v)}.

and
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N—
NW) ={r2 € & : W)y, N N(v) #B}Vv EV,

where Y JI(v) ={y, € 9, : (¥1,Y2) € JI(v)} is called the afterset of y; and JI(v)y, ={y; €
91: (¥1,V2) € JI(v)} is called the foreset of y».

—M
Remark 3.2. (1) For each soft set (M, V) over Q,, I1™ : V - P(Q;)and I :V - P(Q;).

N
(2) For each soft set (N, V) over Q;,VJI: V - P(Q,)and J1: V - P(Q,).
Theorem 3.3. [14] Let (JI, V) and (@, V) be two SBIR from a non-empty set Q; to a non-empty set
Q, and consider (M3, V) and (M5, V) be two soft set over Q. Then
1) M, V) € (M, V) = (1™, V) © (I™,V),
—M —M:

@ MV)e M) = (Tv)e (T7V),
@) (5, V)n (P, ) = (1605, p),

M —M —My0 M
y (A v)n (TEv)2 (T ),
5) (1M, V)u (17,V) c (MY, y),

—M —M — MU M
6) (T v)u (I v)= (T p),
7) L) € (@V) = (@, v)c (1™,V),

—_M —M

® e @y= (T v)2 (T V)
Theorem 3.4. Let (JI,V) and (@, V) are two SBIR from Q; # @ to @, # @. Then for any soft set
(M, V) over Q,, we have

- M —M —M
(1) (11 na ,V) c (11 ,V) N (co ,V).
2) (1n@™, V)2 (1 Vv)u (@)
Proof. The proof is obvious and will be immediately concluded from part (7) and (8) of Theorem 3.3.
In general converse of above Theorem is not true we will present an example to justify this as
follows.
Example 3.5. Assume Qq = {£,r,T} and Q, = {L', w, x, 4, 3, T'} be two Ci as shown in Figures 3
and 4 respectively. The associative binary operation &4 and &, on Q4 and Q, is defined as,
(1) a®  b=anb
2 a®, b =2
Then Q4 and Q, are quantales by (1) and (2), and Q;and @, are quantale modules by Tables 3 and 4.

~ o~ o~

)
)
)
)
)
)

@7
o 2
®r
®L w -
r
Figure 3. Description of Q5. Figure 4. Description of Q,.
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Table 3. Left action subject to *;.

*q L Y T
L L L L
r L L L
T L T T

Table 4. Left action subject to *,.

*y L' w x Y z T
L' L' w x Y z T
w L' w x Y z T
x L' w x Y z T
Y L' w x Y z T
z L' w x Y z T
T’ L' w x Y z T’

Consider V = {v;,v,} and define JI: V. — P(Q; X Q;)and @: V — P(Q, X Q,) by,

(L, L), (w), (F,2), (), (L,T), (v, 4)
w1 = { (T, 2), (1, x) }’

N(w,) = {(£, L), (v, 2), (£, w), (F,2),(F,T)}

and
Q) = {(£, L), (F %), (¥, 2), (t, L), (LT)}
Q(vy) = {(£, L), (F, 1), (£, w), (v, 2)}.
(In ©(vy) = {(£, L), (F,2), (L,T), (T 2)}
and

(I n @(vy) = {(£, L), (£, w), (F,T)}.

Following are the aftersets corresponding to JI(v;) and @(v,),

LIN(vy) = {L,T}el(vy) = {x,w,y}and T 1(v,) = {x,2,T},

L Q(Ul) = {L,, T,},r (Q(vl) = {L,} and T GZ(‘,]1) = {xr Z}

Also, LUT N @) ={L,TLhe(IT N @MW) =0 and TUI N @ (v,) = {x,3}. Now, we
define soft set (My,V) over Q, by, M;(v;) = {L,x} and M;(v,) = {L,x,2,T}. Thus,
— — — M —
Tow) = £,0,7 . @ @)={&1,7 and (TNQ (@)= {£,T =7 @)n
—M —M M —M

@ '(v)) = {£,r, T} Thisshows that T ‘(v))N @ W) LU N Q@  (vy).

Now, consider V = (v4,v,) and defineJ1: V — P(Q; X Q@,)and @ : V — P(Q; X Q) by,

(L, L), (Lw), (F.L),(r,9)
Nw) = { (f,2), (r, T) }’

N(w,) = {(£, L), (, %), (L, w), (T, 2),(TT)}

and
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Q(vy) = {(£, L), (L), (F,T), (F,.L), (x,T), (r,2)},
Q(vy) = {(£, L), (F, 1), (L, w),(x,2)}.

So, (/1 N @(vy) = {(£,£),(F, L), (x,T)}and (J N @(v,) = {(£, L), (£, w), (T, T)}.
Following are the aftersets corresponding to JI(v;) and @(v,),

LN(vy) = {L,iw}hrA(vy) = {F,4g}and TJN(vy) = {£, 3}
L) = {L,2},x@vy) = {T,z}and T Q(v,) = {£, T}

Also, LUITN @)(vy) = {L},x(T N @)(vy) = {TTand TUI N @) (v,) = {L}.

Now, we define soft set (M5, V) over @, by, M,(v;) = {£,T} and M,(v,) = {£L}. Thus,
M (vy) = 9,@"(v;) = {F} and (JLN @™ (v,) = {£,r,T}. Thereby, 1" (v;) U @2 (v;) =
{T}. This shows that, ™2 (v,) U @2 (v;) 2 (1IN @)*%(v,).

Definition 3.6. For SBIR (JI,V) from Q;to Q, i.e., J1: V — P(Q; X Q,) the soft compatible
relation is defined as, for all € Q;, w € Q,, f; € Q; and g; € Q, for (Il € L) we have

(D) (fog1) € 1) = (Vier, fiVier 1) € J1(v),

(2) (ww) € JI(w) = (y1 *1 wyz *2 w) € JI(w) Vy; €0Qq, ¥2 € Q2.
Example 3.7. Let Q; ={L,4,#,T}and Q, = {L,x",y',Z, T} be two C,

. described in Figures 5

and 6 respectively. The associative binary operation 1 and &, on Q1 and Q, is defined as,

(1) a®  b=anb

2 a®, b =2

We define x; and x, the left action on Q; and Q,, respectively as shown in Tables 5 and 6. Then,
Q, and @, are quantale modules. Let V = {v;, v,} and the SBIR (JI, V) from Q; to Q, be defined by,

(£, L)), (7 x), (L,x), (%), (L,Y), (L, T'),}
G 1), (£ T),(T,T) ’

G.%),7,Y),G.2), G T), (&, L), (£,x),(L,L),(F,y), (L)), (T,T) }
(L,x), (1,2),(},x), (%, 2), (}, L), (., y), (L, T), (£ T), G L), (L, 2))

Then (JI,V) is an SCMR.
¢ Throughout in this paper, we consider that (JI, V) be a SBIR from Q; to Q.

) =

1w,) = {

"
T )
z
Fi £ - -
£ £
Figure 5. Description of Q;. Figure 6. Description of Q.
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Table 5. Left action subject to *4.

*1 L 7 R T

L L L L L

P L L L L

o L 7 £ T

T L 7 A T

Table 6. Left action subject to *.

*5 L' x y’ 7 T’
L' L' x y z T
X L' x y z T
y L' x y z T
z L' x y z T
T L X y z T

Lemma 3.8. If (JI, V) is a SCMR form quantale module Q, to Q,, then for y; € Q, and g, 4 € Q, we
have
(1) yI(w) %, gJl(w) < (y1 *1 ¢)I(w).
(2) gl(v) v AI(v) € (g V A)I(V).
Proof. (1) Let f € y,JI(v) *, gJI(v). Then for some m € y,JI(v) and n € gJI(v), we have f =
m x, n. Thereby, (y;,m) € JI(v) and (¢g,n) € JI(v). By SCMR , we have(y; x; g¢,m *, n) €
JI(w). Thus, (m *; n) € (y1 *1 ¢) 1I(v). Consequently, y; JI(v) *, g I(v) S (y1 *1 ¢)A(w).
(2) Let f € gJl(v) VAJI(v). Then for some m € gJI(v) and n € AJI(v), we have f =m V
n.Thereby, (¢, m) € JI(v) and (£, n) € JI(v). By SCMR, we have (gVA,mVn)E
JI(v). Thus, (m vV n) € (g V £) JI(v). Consequently, g JI(v) V A JI(v) € (g V A) J1(v).
Lemma 3.9. If (JI,V) is a SCMR from a quantale module Q; to Q,, then fory, € Q, and x, ¢ €
Q, we have
(1) A@)yz * M)y S AW)(y2 *2 ¢).
(2) J(w)x v I(v)y < J(Ww)(xVy).
Proof. (1) Assume p € JI(v)y, *; JI(v)y. Then for some « € JI(v)y, and w € JI(v)y, we have
P = U * w. Thereby, (u,y,) € JI(v) and (w, ¢) € JI(v). By SCMR, we
have (u x; w,y, *; ¢) € JI(v). Thus, (u *; w) € (V) (2 *; @)
Consequently, I(v)y, *; JI(v)y S JI(w)(y, *; 4)
(2) Assume p € JI(v)x V JI(v)y. Then for some « € JI(v)x and w € JI(v)y, we havep = w V w.
Thereby, (u, x) € JI(v) and (w, ) € JI(v). By SCMR, we have (« Vw,x vV ¢) € JI(v). Thus, (1 vV
w) € JI(v)(x V ¢).Consequently, T(v)x VJI(v)y S J(w)(xV y).
Definition 3.10. A SCMR (JI,V) from Q; to Q, w.r.t aftersets is called soft complete relation
(SCMPR) if V u, wr € Q4,Y;1 € Q1 we have
(1) uld(w)Vv wl(v) = (uVw)JI(v).
(2) yi1w) *; wl(v) = (y1 * w)IW) Vv eV.

If a SCMR (JI, V) w.r.t the aftersets satisfies condition (1) only, then it is called Vv -complete. If
a SCMR (JI, V) w.r.t the aftersets satisfies condition (2) only, then it is called *-complete.

A SCMR (@, V) from Q; to Q, w.r.t foresets is called soft complete relation (SCMPR) if V
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8,1 €0Q,,Y, € Q, we have,
(1) @(v)sVv @v)t =@w)(s8V1).
(2) I(w)y, *1 M)t = N(w)(yz *; t) Vv EV.

Ifa SCMR (JI, V) w.r.t the foresets satisfies condition (1) only, then it is called v -complete. If a
SCMR (J1, V) w.r.t the foresets satisfies condition (2) only, then it is called x-complete.
Example 3.11. Consider Q; and Q, be quantale modules described in Example 3.5. Let V = (vq, v3)
and the SBIR (JI, V) from Q; to Q, be defined by,

(r,2),(,£),(£,2),(LL), (L, x)}
(T, L), (T,x),(T,2),(x,x) ’

(r,w), (r,L), (L w),(LL),(Ly), (T T')}
(£,L),(Fw),(F4), t,y), (LT),@T) )

Then (JI,V) is SCMR. Following are the aftersets corresponding to JI(v;) and JI(v,).
LN(vy) ={L,x,3}, t N1(vy) = {L, %, 3}, TN(vy) = {L,x, 5}

LN(vy) ={L,y,w, T} A(vy) ={L, 4w, T}, TN(vy) = {L,y,w, T}

Then it is very easy to verify that (JI, V) w.r.t the aftersets is SCMPR from Q; to Q,.
Now, consider V = (v, v,) and the SBIR (JI,V) from Q;to Q, is defined by,

(r,2),(,L),(L2),(LL),(Lx), (kT }
(L,T), (%), (L,y), (x,4),(Lw),(x,w))

(r,w), (,L),(,x),(,4) (@, 2), (T T')}
(£.L), (F,w),(F,4),(T.x),(T.2),,T))

Then (JI,V) is SCMR. Following are foresets corresponding to JI(v;) and JI(v,),

N L = {L,c}, N(v))x = {£,1}, 1(v))y = {L,1}, I(v))z = {L,t }, N(v )w = {£,c}, NI(v)T =
{L,1}.

Nw)L = {x, T} NI(wy)x = {r, T}, I(v)y = {r, T}, 1(v,)z = {v, T}, I(v)w =

{v, T}, 1(v,))T = {x, T}

Then it is very easy to verify that (JI, V) w.r.t the foresets is SCMPR from Q,to Q,.

Remark 3.12. Generally, neither SCMPR w.r.t aftersets implies SCMPR w.r.t foresets nor SCMPR
w.r.t foresets implies SCMPR w.r.t aftersets.

Theorem 3.13. Let (JI,V) be a SCMR from Q; to Q,. Then for any soft set (M, V) over Q, and
(Q,, V) over Q,, we have

(1) (ﬁQZ' V) % (ﬁMZ, V) c (ﬁQz*zMZ' V)

@) Vi (V) € (A" w).

Proof. (1) For arbitrary v €V, let f € ﬁQZ (v) *; ﬁMZ (v). Then, for some e € ﬁQZ (v) and g €
ﬁMZ (v) we have f = e *; g. Thereby, eJI(v) N Q,(v) # @ and gJI(v) N M, (v) # @. So, for 7 €
Q, and £ € Q,, we have 7 € eJI(v) N Q,(v) and £ € gJI(v) N M, (v) = 7 € eJl(v), £ € gJI(v),
7 €Q,(v) and £ € M,(v) . Thereby, (e, 7) € 1(v), (g,%) € JI(v) . Since JI(v) is SCMR

thus, (e *x; g,7 *; £) € JI(v) ie., (F*, £) € (e*; ¢)JI(v) and (F *, £) € Q (V) x; M, (V) .

Thus, (7*; #£) € (e*1 g)1(v) N Q2(V) %, M (V) = (e x1 g)/I(W) N Q (V) x; Mp(v) # @ .
Hence, f = (e*; ¢) € ﬁQZ*ZMZ (v).

N(vy) = {

iw,) = {

) = |

J(v;) ={
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(2) Now for arbitrary v € V, assume f € V¢, ﬁMl(v). Then f = V¢, g, for some g; € ﬁMl(v).
Thereby, g; JI(v) N M;(v) # @. So there exists ¢; € g; JI(v) i.e., (g, €;) € JI(v) and ¢; € M;(v).
Since JI(v) is SCMR thus, (Ve @1, VieL €1) € JI(V) = Vi, €1 € Vier ¢/1(v) and Vg, e €
Vier My(v). Thus, Vie, € € Vigp g I(W) N Vi, Mi(v) . So, Vigp gy W) N Vi, Mi(v) # 0.

—VietM]

Hence, f = Vi, g1 € J1 (v).
Example 3.14. Consider Q; and @, be two quantale modules described in Example 3.7. Let V =
{vi, v} and the SBIR (JI, V) from Q, to @, be defined by,

(£, L), 7). (L 2), (#Y),(Ly) T, L'),}
G.2),(#,T),(1.T),G L), (L,T) J

7. %), (L, y), (£,Y),(L,2), (%, Z'),}
£, L), (%,2),(L,x),G2z) )

Then (JI,V) is SCMR. Following are the aftersets corresponding to JI(v;) and JI(v,).

L] (Ul) = {L’, y” Z’, T,}, g’-}-[ (Ul) = {L’, y" Z’}, %’j[ (Ul) = {y,: T,}, T-}I(vl) = {L’, T}

LN(vy) ={L,x,y, 2}, §1(vy) = {x, 2}, £]1(v,) = {y', 2}, T/(v,) = {z}.

Now let V = {v,, v,} and define soft set (Q,, V) over Q, and (M, V) over Q.

Q;(v1) = {z'}, Q2(vy) = {x'} and M (v1) = {x’, ¥}, M3(v,) = {y'}. Then 17w = (L, #} and

N(vy) = {

iw,) = {

T2 (0y) = {L,4, 4. So, T2 (wy) T2 (0) = {L,7} (L #) = (0)
and Q,(vy) *, M,(vy) = {7} *ZM{x’r y}={x,y} UPap of Qu(v1) *; M, (vy) is JI 2; 2(”1) =
(L, j, #). Therefore T 2 (vy) *, T 2 (vy) = (L,)} %, (L, 4, #) = (£} € (L, 5,8} = T2 22 ().

Also T17% () = {£,7} and T *(v) = {L, A}, Thus T~ (v3) % T " (v) = {L,7} %, {L, 4} =
— Q2% M3
{£} and Q,(vy) *; Mp(vy) = {7} *, {y'} = {y}. UPyp of Qu(v;) *; M;(vy) iSﬂQ (vp) =

— — M —Qy*,; M:
(£, £). Therefore T~ (v;) *, 7T “(v2) = {£L,7} % (LA} = (L} LAy =TT "
—Q2 —M; —Qax M3 ..

(J] , V) *q (J] , V) c (JI , V). Similarly, we can find an example that supports the argument
for Theorem 3.13 (2).
Theorem 3.15. Let (JI, V) be a SCMR w.r.t foresets from Q; to Q,. Then for any soft set (V;, V)
over Q, and (Q,,V) over Q,, we have

_ Ny— *4 NG —
M (CTV)x (MV) e (MTIY).

) Vi, (N‘ﬁ, V) = (VlELNlﬁ, V).

Proof. Similar to proof of Theorem 3.13.

Theorem 3.16. Let (JI, V) be a SCMPR w.r.t afterset from Q; to Q,. Then for any soft set (M5, V)
over Q, and (Q,, V) over Q,, we have

(1) (A%, V) (1%, V) € (1%, )

) Vier (7, V) € (XY, V).

Proof. (1) For arbitrary v € V, let f € 1% (v) x; JM2(v). Then for some e € JI%(v) and g €
M2 (v), we have f = e x; g. Thereby, @ # eJI(v) € Q,(v) and @ # gJI(v) € M,(v). Then by
SCMPR, (e*1 g)I(w) = eJl(v) *x; g/I(v) € Qu(v) *; M3 (v) = (e % g)/I(v) &
Qo (V) *; My(v). Thus, f = (e *; g) € 1922 (v).

(2) Now for arbitrary v € V, assume f € V¢, JIM(v). Then, f = V¢, g, for some g, € 1M (v).
Thereby, @ # g, JI(v) € M;(v) . By SCMPR, we have V¢ (¢;/1(v)) = (VieL ¢)/I(V) S
Vier Mi(v). So, (Vier g)A(W) € Vi, My(v). Hence, f = Ve gy € NVeM1(v).

(v,). Hence,
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Theorem 3.17. Let (JI,V) be a SCMPR w.r.t foresets from Q to Q,. Then for any soft set (W, V)
over Q; and (Q4,V) over Q;, we have

(1) (Qlﬂ, V) *, (Nlﬂ, V) c (Q1*1N1ﬂ, V).

2) Vie(MLV) < (VL Y).

Proof. Similar to proof of Theorem 3.16.

4. Approximation of soft substructures in quantale modules

In this section, we use SBIR from Q; to Q, to approximate different soft substructures of
quantale modules Q; and Q,. We will show that by using SCMR, UP,, of a soft substructure of
quantale module is again a soft substructure of quantale module, and we will provide counter
examples to show that the converse is not true. We'll also show that by using SCMPR, LOg, of a soft
substructure of quantale modules is again a soft substructure of quantale module and provide a
counter-example to show that the converse is not true.

Throughout in this section, we consider (JI, V) be the SBIR from Q, to Q, and bJI(v) # @ for
all€ Q;,vEeVand JI(v)c # OV c € @,, v € V unless otherwise specified. Consider two soft sets
(W, V) and (M, V) over Q; and Q, respectively, by the rule,

Nw)=0Q,and M (v) =Q, Vv €V.Then,

NI(w) ={y €9, : I(W)y €0;} € Q.

") =y, Wy n 0, =0} €0,

ﬂﬁ(”) ={p€Q:(Wp S Q;} S Q.

T () ={p€Qu:1(W)pnQ,+ 0} C 9y,

Definition 4.1. Let (JI,V) be the SBIR from Q, to Q,. A soft set (M, V) over Q, is called GU;S

(generalized upper soft) Qg of Q; w.r.t aftersets if UF,, (ﬁM, V) is soft Qg of Q.

Definition 4.2. Let (JI, V) be the SBIR from Q to Q,. A soft set (M, V) over Q, is called GU;S left
(right) Q; of 9 w.r.t aftersets if UF,,, (ﬁM, V) is soft left (right) Q; of Q;.

Definition 4.3. Let (JI,V) be the SBIR from Q;to Q,. A soft set (V,V) over Q, is called GU;S
quantale sub-module of @, w.r.t foresets if UF,, (Nﬁ, V) is soft Q5 of Q5.

Definition 4.4. Let (JI, V) be the SBIR from Q;to Q,. A soft set (N, V) over Q, is called GU,S left
(right) Q; of Q, w.r.t foresets if UF,, (Nﬁ, V) is soft left (right) Q; of Q5.

Theorem 4.5. Let (JI, V) be a SCMR from Q;to Q,. If (M, V) is a soft Qg of @,, then (M, V) is a
GU.S Q; of Q;w.r.t the aftersets.

Proof. (1) Assume that (M,V) is soft Qg of Q,, then @ # ﬁM(v) for any v €V. Let y; €
—M

J. (v) forl € L. Thereby, y; J(v) N M (v) # @. So there exist, w; € yu; JI(v) i.e., (u;, w;) €
J(w) and w; € M (v) . By SCMR, (Ve ty, Vier W) € JI(v) = VgL Wp € Ve y (V). As
(M, V) is soft Qg of Q, so, we have Vg, w; € M (v). Thus, Vi, w; € Vi iy JI(v) N M (V) .

—M
So, Vier, 4 I(w) N M (v) # 0. Hence, Vi, uy €1 (V).
— —M

(2) Let y € JIQ(U) CQ;and u€J (v), where (Q,V) is a subset of (Q,,V). Thereby, yJI(v) N
Q) # @ and wWi(v) N M (v) # @. So, for h € Q, and g € Q,, we have h € yJI(v) N Q(v) and
geulv)ynMw) = heyl(w), ge ul(w), he Q(v),g € M(v). Thereby, (y,h) € I(v),
(w,g¢) € I(v) . Since J(v) is SCMR thus, (y*; u,hx, g) €J(v) , ie, (h*, g)€E
(y ¥, WJI(v) and (hx; g) € QW) *, M(v) . As (M,V) is soft Qs of Q, so, (A*; g) €
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QW) *x; M(v) € M (v). Thus, (h*; ¢) € (y x1 WIW) N M W) = (¥ *; WAW) N M) # 0.
Hence, (y *; 1) € ﬁM(v).

Theorem 4.6. Let (JI,V) be a SCMR from Q,to Q,. If (W, V) is a soft Qg of Q;, then (W, V) is a
GU:S Q; of 9, w.r.t the foresets.

Proof. Similar to Proof of Theorem 4.5.

Theorem 4.7. Let (JI, V) be a soft V —complete relation from Q; to Q, w.r.t aftersets. If (M, V) is a
soft left (right) Q; of Q,, then (M, V) is a GU,S left (right) Q; of Q; w.r.t the aftersets.

Proof. (1) Assume that (M,V) is soft Q; of Q,, then @ # ﬁM(v) for any v € V. Let p; €
ﬁM(v) and p, € ﬁM(v) . Thereby, p; JI(v) N M (v) # @ and p, J(v) N M (v) # @ . So there
exist w; € p; I(v) i.e.,(p;,wy) € I(v) and w; E M(v) and w, € p, I(v) i.e., (P, W) €
Jd(w) and w, € M(v) . By SCMR, (p; V py,wi Vw,) € JI(v) = wy Vw, € (pVpy) JI(v). As
(M, V) is soft Q; of @,, so we have w; Vw, € M (v). Thus, w; Vw, € (p; V p,) I(v) N M (v).
So, (p1 V p2) JI(v) N M (v) #+ @. Hence, (]\p/)[1 Vp,) € ﬁM(v). . ,

(2) Let p1,p2 € Q1,p1 < pzandp, €J1 (v). So, p;Vp, =p, €EJ (v).Sincep, €1 (v) =
p, (W) NM(v) #@. So there exist w, € p, JI(v) i.e.,(py,w,) € JI(v) and w, € M(v) . As
(JLV) is a soft V —complete relation, thereby, w, € p, JI(v) = (p; V p2)1(v) = pJI(v) V p,J1(v)
= w, =u Vv, for some u € pJI(v) and v € p,JI(v). Thus, «w <w, andw, € M(v) . As
M(v)is Q; so, . € M (v). Thus, « € p; JI(v) N M (v). Consequently, p; € ﬁM(v).

(3) Let B € ﬁQ(v) CQ,andp € ﬁM(v), where (Q,V) is a subset of (Q,,V). Thereby, SJI(v) N
Q) # @ and pJI(v) N M (v) # @. So, for w € Q, and v € Q,, we have u € fJI(v) N Q(v) and
v E€plw)NMW). > u € BIW), v € pJI(v), u € Q(v) and v € M (v). Thereby, (8,1 ) €
(), (p,v) € JI(v). Since (JI,V) is SCMR thus, (8 *; p,u *, v) € JI(v), ie., (u*x, vv) €
(B *1 p)JI(v) and (u*, v) € Q(v) *, M(v). As (M,V) is soft Q; of Q, so, (u*, v) €
QW) *, M(v) € M (v). Thus (u *; v) € (B *1 p)JI(v) N M (v) = (B *1 p)/I(v) N M(v) # O.
Hence, (f *1 p) € ﬁM(v).

Theorem 4.8. Let (JI, V) be a soft V —complete relation from Q; to Q, w.r.t foresets. If (V,V) is a
soft left (right) Q; of Q;, then (I, V) is a GU;S left (right) Q; of Q, w.r.t the foresets.

Proof. Similar to proof of Theorem 4.7.

Definition 4.9. Let (JI,V) be the SBIR from Q, to Q,. A soft set (M, V) over Q, is called GL:S
(generalized lower soft) Qg of Q;w.r.t aftersets, if LO,,, (ﬂM , V) is soft Qg of 9.

Definition 4.10. Let (JI, V) be the SBIR from Q, to Q,. A soft set (M, V) over Q, is called GL;S left
(right) Q; of 9 w.r.t aftersets, if L0y, (ﬂM , V) is soft left (right) Q; of Q.

Definition 4.11. Let (JI,V) be the SBIR from Q; to Q,. A soft set (W, V) over Q; is called GL:S
quantale sub-module of @, w.r.t foresets, if LOg, (N JI, V) is soft Qg of Q5.

Definition 4.12. Let (JI, V) be the SBIR from Q; to Q,. A soft set (', V) over Q, is called GL,S left
(right) Q; of 9, w.r.t foresets, if L0y, (N JI, V)is soft left (right) Q; of Q.

Theorem 4.13. Let (JI, V) be a SCMPR from @, to Q,. If (M, V) is a soft Qg of @, then (M, V) is a
GL:S Qg of Q; w.r.t the aftersets.

Proof. (1) Assume that (M,V) is soft Qg of Q,, then @ # JM(v) for any v € V. Let x; €
JM (W) for (L € L). Thereby, x; JI(v) € M (v) . Since (J,V) is a SCMPR from Q; to Q,
therefore, Ve, (2, 1(v)) = (Vi x) I(W) € Vig, M(w) . As (M,V) is a soft Qg of Q,
So, Vie, M (v) € M (v). Thereby, (Vie, x;) 1(v) € M (v). Consequently, V¢, x; € 1M (v).
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(2) Let y € JI%w) € 0, and x € JI™ (v), where (Q,V) is a subset of (Q,,V). Thereby, yJI(v) S
Q(v) and xJI(v) € M (v). Since (JI,V) is a SCMPR from Q, to Q,. Therefore, (y *; x)JI(v) =
YIAW) %, 2xJI(v) € Q) *, M(v). As (M,V) is soft Qg of Q, so, (y*; x)J(v) <
Q(v) *, M (v) € M (v). Thus, (y *; x)J(v) € M (v). Hence (y *; x) € 1M (v).

Theorem 4.14. Let (JI, V) be a SCMPR from Q,to Q,. If (W, V) is a soft Qg of Q4, then (IV,V) is a
GL:S Qg of Q, w.r.t the foresets.

Proof. Similar to proof of Theorem 4.13.

The converse of above Theorems is not true in general. To substantiate our claim, we will provide the
following example:

Example 4.15. Let Q; = {£,a,6,¢,d,T} and Q, ={L',e,#,¢,A,T"} be two C,_ described in

Its

Figures 7 and 8 respectively. The associative binary operation ) 1 and ® 2on Q; and Q, is defined

as,
(1) a® b=CL
2 a®,b=7r

We define *; and *, the left action on Q; and @,, respectively as shown in Tables 7 and 8.

-
=2 A
o =
o
Figure 7. Description of Q;. Figure 8. Description of Q5.
Table 7. Left action subject to *;.
*; L a & c d T
L L a & c d T
a L a i c d T
& L a & c d T
c L a i c d T
d L a & c d T
T L a i c d T
Table 8. Left action subject to *,.
*, L' e # g h T’
L' L' e f g h T
e L' e Ol g h T
¥ L e # g A T
g L' e Ol g h T
h L' e Il g h T
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T L e # g A T

Then, Q; and Q, are quantale modules. Let V = {v;,v,} and the SBIR (JI,V) from Q; to Q, be
defined by,

N(v,) = {(T,/L), (fe),(c, ), (&, 1), (de)(a, e),}
Vi) = (L, A),(a,h),(ce)(b,e)dn)(Le))

(£, L), (e, $), (a, $), (T, $), (4, L), (T, L'),}
(£, $), (6, 0), (6, %), (a, L), (d,$),(c. L))

Then (JI,V) is SCMR. Following are the aftersets corresponding to JI(v;) and JI(v,),
LNI(vy) = {e, A}, all(vy) = {e, A}, bJ1(vy) = {e, A}, cJI(vy) = {e, A}, dI(vy) = {e, A}, T/I(v;) =
{e, A},
LN(wy) ={#,L3,  alllvy)) ={$,L} , G]Iwy) ={$L} , o) ={#L} , dl(v,) =
{#, L}, TN(vy) = {$, L}
Then (JI,V) is SCMPR from Q, to @, w.r.t aftersets. Define soft set (M, V) over Q, by the rule,
M(v,) = {e, #,¢9} and M (v,) = {L, #,g, A} Then (M, V) is not a soft Q5 of Q, But I (v,) =
{L£,a &, cd T} and 1" (v,) = {L,a,&,¢c,d, T} are Qg of Q;. So, (M, V) is a GL:S Qg of Q; w.r.t
aftersets.
Theorem 4.16. Let (JI,V) be a SCMPR from Q;to Q,. If (M, V) is a soft Q; of Q,, then (M, V) is a
GL:S Q; of @, w.r.t the aftersets.
Proof. (1) Assume that (M, V) is soft Q; of Q,, then @ # JI™(v) for any v € V. Let x1,x, €
J™ (v). Thereby, x; JI(v) € M (v) and x, JI(v) € M (v). Since (JI,V) is a SCMPR from Q;to Q,
therefore x; JI(v) V x, JI(v) = (%1 V 2,) I(v) S M W) VM (v). As (M,V) is a soft Q; of Q,.
So, M'(v) VM (v) € M (v). Thereby, (% V x,) JI(v) € M (v). Consequently, x; V x, € I (v).
(2) Let x4, %, € Q1. %1 < x,and x, € JM(v). So, 2, V x, = 2, € 1M (v).Since x, € 1" (v) >
x, I(v) € M (v). Suppose ¢, € 2, JI(v) and ¢, € x, JI(v). As (JI,V) is a SCMPR thereby, ¢, V
Yo €E 2 N(W)V 2, N(v) = (21 V2)JI(V). ie, #1Vyy €Ex, JI(v) €S M(w). As M(v)isQ,
SO Y1 < Y1V Yy, EM(v). Thus, g € M(v). Hence, 2, I(v) € M (v). Consequently, x; €
T ).
(3) Let B € 1®(v) € Q, and x € JM (v), where (Q,V) is a subset of (Q,,V). Thereby, BJI(v)
Q(v) and xJI(v) € M (v). Since (JI,V) is a SCMPR from Q, to Q,, therefore, (8 x; x)JI(v) =
BIA(W) *, xI(v) € Q(v) x, M(v). As (M,V) is soft Q; of Q, so, (B*; x)J(v) S
Q(v) *, M (v) € M (v). Thus, (8 *; x)JI(v) € M (v).Hence, (8 *; x) € I (v).
Theorem 4.17. Let (JI, V) be a SCMPR from Q;to Q,. If (W', V) is a soft Q; of Q;, then (W, V) is a
GL:S Q; of 9@, w.r.t the foresets.
Proof. Similar to proof of Theorem 4.16.

The converse of above Theorem is not true in general. To substantiate our claim, we will
provide the following example:
Example 4.18. Consider Q; ={L,a,4,¢c,d,T} and Q, = {L,e,#,¢,/, T} be two quantale
modules described in Example 4.15. Let V = {v;, v,} and the SBIR (JI,V) from Q, to Q, be defined
by,

J(v,) ={
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(t,4), (¢, $), (£, ), (6, $), (4, L), (T, L),
Nwy) =& #£),(6,£),(c, L), (a,L),(d,$),(6,9)
(a,$),(a,g), (T, $),(c.9).(d,9), (£, L)

(a,9).(a,$), (&, %),(6,9),(d $),(c, ),
N(wy) =4 (L,4),(F,9),(L,g), (F,$),(d, h),(d,9) (.
(6, 4), (L, $), (. ), (c,g), (T, 4),(a,#)

Then (JI,V) is SCMR. Following are the aftersets corresponding to JI(v,) and JI(v,). L/I(v,) =
{L,1 ’ﬁl g"}l a’j[ (Ul) = {L,1 ’ﬁl g"}l ’()Yj[ (Ul) = {L’, #! g'}; C-}I (Ul) = {L,1 ’ﬁl g"}l dj[ (Ul) =
{L,1 ’ﬁl g’}l T-]I(vl) = {L’, #' g‘}r

LJI (UZ) = {g’l #' h}, a’j[(UZ) = {g': 'ﬁl /L}, ’()YJI(UZ) = {g"f #' h} C-}I(UZ) = {g"f #' h}, dﬂ(UZ) =
{g'l ’ﬁl /L}, T-}I (UZ) = {g'l ’ﬁl ’h’}

Then (JI,V) is SCMPR from Qto Q, w.r.t aftersets. A soft set (M, V) over Q, is defined by,

M) ={L,#,g, A} and M (v,) = {e, #, g, A}. Then (M, V) is not a soft Q; of @, But I (v,) =
{L,a,b,c,d,T}and 1M (v,) = {L,a,b,¢c,d, T} are Q; of Q;. So, (M,V) is a GL:S Q; of Q; w.r.t
aftersets.

5. Relationship between soft quantale module homomorphism and their approximation

We define soft weak quantale module homomorphism (SWMH) in this section and then by
using SBIR, we established relationship between homomorphic images and their approximation.
Definition 5.1. [20] Consider two quantale modules (Q4, *;) and (Q,, *,) over Q. A function | :
Q1 — 9, is called weak quantale module homomorphism (WMH) if
(1) Fmvn) =F(m) Vv Fn);

(2) F(y*y m) =y *; F(m).Foranyy € Q, m, n € Q;.

If F is one-one then F is monomorphism. If | is onto then J is called epimorphism and if | is
bijective then f is called isomorphism between (Q;, *;) and (Q,, *,) over Q.

Definition 5.2. Let (M, V) be a soft quantale module over Q; and (IV, V) be a soft quantale module
over @,. If there exist an ordered pair of functions (f, ) satisfies the following,

(HF: Q1 = 9, is onto WMH.

(2) € : Vi =V, is surjective,

B FM W)=V (W) Vv, EVy.

Then (M, V) is said to be soft weak homomorphic to (I, V). The ordered pair (F, ¢) of functions is
SWMH. The pair (F,§) is called soft week quantale module isomorphism (SWMI) and (M, V;) is
said to soft weak isomorphic to (IV,V,), if in ordered pair (F,¢) both F and & are one-to-one
functions.

Lemma 5.3. Let (M, V) be soft weak homomorphic to (N, V,) with SWMH (F, ). Let (JI,,V3) be
a SBIR over Q, and (My,V3) © (M, V;). Define JI;(v3) = {(a,4) € @, XQ;: (F (a),F(#)) €
J1,(v3)} be a SBIR over Q,. Then the following holds,

(1) (JI;,V3)is SCMR if (JI,,V3) is SCMR.

(2) If (F,€) is SWMI and (JI,,V3) is SCMR w.r.t the aftersets (w.r.t the foresets), then (JIy,V3) is
SCMR w.r.t the aftersets (w.r.t the foresets).

3)F (ﬁf“ (v3)> =7 (y).
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@) F (4% () € O (w3) and if (F, €) is SWML then F (1, (v3) ) = J57 ().
(5) Let (F,&) be a SWMIL Then F(a) ef(ﬁf“(@) oacl *(v) and F(a) €

F(1% ;) & a € 1% (vy).
Proof. (1) and (2) are obvious.
—M
(3) Suppose (My,Vs) & (M, Vy). For any vs € V3, let p € F(JI, "(v3)) for some p € Q,. Then

there exists g € Q; such that, g € ﬁiwl (v3) and F(g) = p. Thereby, gJ1;(v3) N M;(v3) # @. So,
we have# € gJl;(v3) N M;(v3) i.e., £ € gJ1,(v3) and £ € M;(v3) which means, (g, #) € J;(v3)
= (F(@).F(£)) € Jl;(v3) .Thereby, F(£) € F(g)/1;(vs) and F (%) € F(M;(v3)). Thus, F(%) €

F(@),(v3) NFMy(v5)) = F(@) 1y (v3) NF(My(v;)) # @ . Hence, p=F(g) € Ty " (v3).

—M. —F( —FMm:
Consequently, (]I1 1(173)) c J]J;( v (vg). Conversely, let 7 € JIJ;( 1)(173) c Q,= r/,(v3)N
j’(]vfl(vg)) # @. So, there exists + € JI,(v3) NF(M;(v3)) such that £ € »JI,(v3) and t €
FM;(v3)) ie (r,4) € J,(v3). Let uw € My (v3) € M(vy) € Q4.. So, u € Q; and u” € Q; such
that F («)=4 and F () =2 we have (r,%) = (f‘(u),f(u’)) € Jl,(v3). By above
definition, (u,2) € J;(v3) = u€ 4’ Jd;(v3). Thus, w € uJ;(v;) N M;(v3) = w'l;(v3) N

M;(v3) # @. So, w' € ﬁf[l (v3). Hence » = F(u') €F (ﬁf[l (v3)>. Consequently, ﬁi(Ml)(vg,) c
—M

F (Jh 1(v3)>.

(4) Suppose (My,V3) € (M,V,). For any v € V5, let p €F (ﬂiwl (v3)) for some p € Q, then
there exists g € Q;, such that g € ﬂiv[l(vg,) and F(g) =p . Thereby, gJl;(v3) € M;(v3) .
Assume, % € pJl,(v;) € Q, there exists, £ € Q; such that F(£) =4 . Thereby, F(¥) €
F@)1;(v3) = (F(g),7(£)) € JI(v3). By given definition (g,%) € J1(v3) = £ € gJl;(vs) &
M (v3) = F&) €FMy(vs) . Thus, F(g),(v3) € F(My(v3). Hence, p=F(g)€
EZ(Ml)(vg). Consequently, J (ﬂfﬁ (v3)) c EZ(MQ(%). Conversely, let 7 € EZ(Ml)(vg) C Q, then
there exists 8 € Qy such that, F(8)= 7 and #JI,(v3) € F(M,(v3)). So, F(8)J1;(v3) € F(My(v3)).
Let t € 8J1;(v3) ie., (8,%) € JI;(v3). Thereby, (F(8),F(%¥)) € 1,(v3) = F(*) € F(8)/,(v3) S
F(M;i(v3)). So, F(#) € f(M1(v3)) = 1€ (M1(173))- Thus, &8J1;(v3) S M (v3) > 8 €
ﬂf’rl(vg) = F(8) Ef(ﬂf/[l(%)). Thereby, » = F ( 8) Ef(ﬂfﬁ(%)) . Consequently,
IO (03) € F (1, (v3) ). Hence, L7 (v3) = F (17 (v))

(5) Letr € ﬁi\/[l (vg) for any v € V5. Then, F(#) € F (ﬁi‘/[l (v3)). Conversely, suppose that () €
F (ﬁi‘/[l (v3)). AsF is SWMI so, 7 € ﬁivrl (vg). Similarly, we can show that f(a) € F (ﬂf/[l (vg)) S
ae€ ﬂi‘/[l (v3).

Theorem 5.4. Let (M, V;) be soft weak isomorphic to (N, V,) with SWMI (F, §). Let (JI,, V3) be a
SCMR over Q; and (My,V3) & (M, V). Define JI;(v3) = {(a,4) € Q; X Q1: (F(a),F(4)) €

J1,(v3)} for any v € V5. Then the following holds,
—M. —F' (M
(1) T, " (vs)is Q; of Oy & J]J;( 1)(173) i1sQ; of @, Vw3 € V3.

—M. —F (M-
@) Ty (vg) is Q5 0f @y & Ty (w3) is O of Oy ¥ v € V.

AIMS Mathematics Volume 8, Issue 5, 11684—-11708.



11703

—M —Fm
Proof. (1) Let JI; - (v3) be Q; of @, for any v5 € V5, we will show that JIE( 1)(173) is an Q; of Q,. By
—M; —F (M)
Lemma 5.3 we have F <Jll (v3)> =JI, (v3).
—M —M
i. Let p,¢ € F(JI; (v3)). Then there exists 7,8 € JI; ' (v3) such that F(r) = p and F(8) = g.
—M —M.
Since JI; (v3) is an Q; of Q; so, rvVs EJI "(vy). By Lemma 5.3 (5) we have f(rv ) €
—M —M
FOIL " (03)). As (F,8) is SWML, thus pV g =F(r) VF(s) =F(r v s) € F(I; (v3)). Thus,
—M
PVag TN, (v).

ii. Letp,qg € Q,Consider p < g and g € f‘(ﬁiﬁl (v3)). Then there exists 8 € ﬁiwl (vg)andr €
Q, such that F(r) = p and F(8) = g. Thus, F(r) <F(s). As (F, &) is SWMI so, F(rvs) =

Fr)VF(s) =F(s) € f(ﬁiwl(vs,)) = F(rvs)e f(ﬁiwl(vrs)).By Lemma 5.3 (5), (rv s) €

<ﬁiv[1 (v3)>. Thereby, r <r V.. As ﬁivrl (v3)is Q;, sor € ﬁivrl (vg). Thus, F(r) € f(ﬁiwl(vg)).

—My
Consequently, p € F (Jll (v3)>.
_Ml . _Ml
iii. Let y€Q and p € f<ﬂ1 (v3)>. Then there exists r € JI; (vg) such that F(r) =p.

As ﬁf[l(vg,) is Q; of @ so, y xr € ﬁf[l(vg,). Then by Lemma 5.3 (5) we have F(y *r) €

F(T; " (v2)). Since (F,€) is SWMI thus, y +F(r) = F(y *7) € F(Tly ' (v). Thereby, y *
_Ml _Ml

F(r) € F(JI; (vs).Hence,y xp € J (JI; (v3)).

—F (M- . =M .
Conversely, let J]z( 1)(173) be a Q; of Q, for any v € V3, we will show that JI; "(vy)is a 0Q; of Q4.

—M —F(M
By Lemma 5.3 we have F (Jll 1(173)) = JIJ;( 1)(173).

i Let p,g € Ty (v5) = F(). F(q) € f(ﬁi”l(vg)). smcef@f‘l(vg)) is an Q; of @, so,

@) VF (@) €EF (ﬁfﬁ (v3)>. As (F,§) is SWML thus F(») VF(@) = F(p v @) €FCL ().
Thereby, F(p V g) € f‘(ﬁiv[l (v3)). By Lemma 5.3 (5),pV g € ﬁiwl (vg).
ii. Let p,g € Q,. Consider, p < g and g € ﬁi%l(vg). Thus, F(p) <F(@)€EFT (ﬁi‘/[l (v3)>. Since

—M . My —M
F <Jll (v3)> isan Q; of @, so, F(p) € F(JI; (v3)).ByLemma 5.3 (5)p € J; (v3).
iii. Lety €Qand p € ﬁf[l (v3). Thereby, F(p) € F (ﬁf[l (v3)>. Since | <ﬁiwl (v3)> is Q; of Q, so,

y *F(p) Ef(ﬁfﬁ(vs)) Since (F,§) is SWMI, thus, y *F(p)=F{ *p)€

—M. —M.
f(]]lwl[(v3)). Then by Lemma 5.3 (5) we havey xp € JI; 1(;7/[3).
(2) Let JI; (v3) be a Qg of @, for any vs € Vs we will show that ﬁi( v (v3) is Qg of Q5. By Lemma 5.3

—M —F(M
we hawef(]]1 1(173)) = JIJ;( 1)(173).
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—M —M
i. Let g; € FUI; (v3)) for | € L. Then there exists §; € JI;  (v3) such that F(s;) = g;. Since
—M —M
Ty () is an Qs of Q1 50, Viey 8 € Iy (v3). As (F,€) is SWML, thus Vie, gy =Vie, F(8) =

—M. —M:
FVier 81) € f(fh 1(”3)) = Vier gy €T (13)).
.. —My . —M;
ii.Let S €0Q and g € f(]]l (v3)>. Then there exists 8 € JI; (v3) such that F(8) =g .
As ﬁf[l(vg,) isQgof Q; 80, B x8 € ﬁf[l(vg,). Then by Lemma 5.3 (5) we have F(8 *8) € F

(T (v3)). Since (F,€) is SWMI thus, B *F(s) = F(B %) € F (T, *(v3)). Thercby, B *

M —M
Fs) € FUIL | (v3)). Hence, g € FUL " (v5)). y
Conversely, let ﬁi( 1)(1]3) be a Qg of Q, for any vs € Vs, we will show that JTI; (v3) is a Qg of Q;.

By Lemma 5.3 we have J <ﬁiv[1 (v3)> = ﬁi(Ml)(vg).
. —My —My . —My .
i.Let g; € JI; (vg) forl€L= F(q)) € f<ﬂ1 (v3)>. Since f<ﬂ1 (v3)> is an Qg of Q,

so, Vier F (1) € f(ﬁiwl(vs)> . As (F,8) is SWMI, thus Ve, F(g) =F(Vier g1) €

F(Ty " (v3)). Thereby, F(Vier 1) € F(Ty * (v3)). By Lemma 5.3 (5), Vi, 4 € Ty (v3).
ii. Let B € Qand g € T (vy). Thereby, F(g) € F (ﬁf“ (v3)>. Since F (ﬁfﬁ (v3)> is Og of 9, so,

B *xF(a) Ef(ﬁiwl(vs)) Since  (F,§) is  SWMI  thus, B xf(g)=F(B *xq)€

f‘(ﬁiﬂl (v3)). Then by Lemma 5.3 (5), we have § * g € ﬁiwl (v3).
Theorem 5.5. Let (M, V;) be soft weak isomorphic to (N, V,) with SWMI (F, §). Let (JI,, V3) be a
SCMPR over Q, and (M;,V3) € (M,V;). Define JI;(v3) = {(a,4) € Q; X Q,: (F(a),F(#)) €
J1,(v3)} for any v5 € V3. Then the following holds,

(D ﬂf/[l(vrs) isQ; of Q; & ﬂg(Ml)(vg,) isQ; of Q, V v5 € V3.

2) ﬂfﬁ (v3)is Qs 0f Q; & ﬂZ(Ml)(U3) is Qg of Q, V v5 € V5.

Proof. Similar to proof of Theorem 5.4.
6. An application of the decision-making approach

This section proposes decision-making techniques based on soft rough set theory based on soft
binary relations. This strategy makes it possible to utilize the data provided by decision-makers
without the need for additional information.

—M

We obtain two values JI™ (v;) and JI (v;) which are most closed with respect to the aftersets

by the soft lower and upper approximations of the soft set M. Therefore, the choice value §; is
redefined with respect to the aftersets as follows:

n
6 = ZEU +
=
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In a decision making problem, the maximum choice value §; is the optimum decision for the
object x; € U and the minimum choice value §; is the worst decision for the object x; € U. For the
given decision making problem, if the same maximum choice value §; belongs to two or more
objects x; € U, then take one of them as the optimum decision randomly.

Algorithm
An algorithm is designed to approach a decision-making problem with respect to the aftersets is
provided below. The decision algorithm is as follows:

(1) Compute the lower soft set approximation JI* and upper soft set approximation ﬁMof a soft set
M with respect to the aftersets.

(2) Corresponding to each x; € U, we calculate d;; which is 0 if x; JM (vj) and is 1 if x; €
M (v]-). Similarly, we calculate Ei j whichis O if x; & ﬁM (v]-) andis 1 ifx; € ﬁM(vj).

(3) Compute the choice value 6; = X7_; d;; + X4 d; ; with respect to the aftersets.

(4) The best decision is x;, € U if 6, = max; &;, i=1, 2,..., |U|.

(5) The worst decision is x;, € U if 6, = min; §;, i=1, 2,..., |U|.

(6) If the value of k is more than one, then we can choose any one of x;. In a similar way, we can
define an algorithm for foresets.

By an example in this subsection, an application of the decision-making approach is given.

Example 6.1. Suppose that Mr. X wants to buy a shirt for his own use. Let U =
{the set of all shirts designs} = {d;,d,,d5,d,, ds, dg } and W=
{the colors of all designs} = {c,,c,,c3,¢c4} and the set of attributes be V = {v,,v,,v3} =
{the set of stores near his house}. Define JI: V. — P(U X W) by

(dlf Cl)' (dl; CZ)' (dlf C3), (dZJ CZ)' (dZ' C4),}
(d4, CZ); (d4' CB)' (d5, C3), (dS' 64)' (d6' Cl) ’

JI(vy) = {(dq,c3), (d2, ¢3), (da, 1), (ds, ¢1), (dg, €2), (dg, €3)},
-}I(v?,) = {(d?)l C3), (dB' Cl)l (dZJ C4), (d5, C?,); (dS' C4)}-

Represents the relation between designs and colors available on store v; for 1 < i < 3.
Then

diJ1(v1) = {c1, €2, €33, da1(v1) = {c2, €4}, d3/1(W1) = B, dy 1(v1) = { ¢z, c3},
dsJ1(v;) = {cy, c3}, deJ1(v1) = {c1}, and diJ1(v;) = {c3}, dp/1(v2) = { c3},
d3J1(v,) = {0}, dyJ1(v,) = {c1}, ds1(v,) = {c1}, dg1(v,) = {cy, 3} and
diJ1(v3) = {@}, dpJ1(v3) = {cg}, d3/1(v3) = {c1, c3}, duJ1(v3) = O,

dsJI(v3) = {c4, c3}, dg/1(v3) = { 0}

ey = {

Where diﬂ(vj) represents the color of the design d; available on store v;. Further

N(v1)ey = {dy, de}, N(v1)cy = {dy, dy, dy}, N(vy)c3 = {dy, ds, du},
N(v1)cy = {dy, ds}, and J1(vy) ey = {dy, ds}, JI(v)c, = {dg},
N(vy)cs = {dy,dp, de}, N(vy)cy = {0 }, and J1(v3)c; = {d3}, 1(v3)c, = {0},
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JN(v3)cs = {d3,ds}, 1(v3)cy = { dy, ds}

Where Jl(vj)ci represents the design of the color ¢; available on store v;.

Define M : V — P(W) which represents the preference of the color given by Mr. X such that

M (1) = {c1, €4}, M (v5) = {cz, c5}, M (v3) = {c3, ¢35, ¢4} and define
H : V - P(U) which represents the preference of the design given by Mr. X such that

H(vy) = {dy,d3,de}, H(vy) = {dy,d3}, H(v3) = {dy, d5, ds, de}-

Consider the following table after applying the above algorithm (see Table 9).

Table 9. The results of the decision algorithm with respect to aftersets.

din diz di3 di d;, d;s S;?lleczi
d, 0 0 1 1 0 0 2
d, 0 0 I I 0 I 3
ds I I 0 0 0 I 3
dy 0 0 1 0 0 0 1
ds 0 0 1 1 0 1 3
de 1 0 1 1 1 0 4

Here the choice value §; = 2}11 d;j + zizla j is calculated with respect to aftersets. The shirt of
design dg scores the maximum choice value §;, = 4 = §,, and the decision is in favor of the shirt of
design dg for selection. Moreover, the shirts of designs d, are totally ignored. Hence, Mr. X will
choose the shirt of design d for his personal use and he will not select the shirt of design d, with
respect to the aftersets.

7. Conclusions

There are many applications of soft set and rough set theories. Their combination involved many
researchers to develop many concepts in mathematics. In this paper, major role of rough soft sets with
substructures of quantale module are discussed. Some characterizations of soft substructures of quantale
modules are introduced. The detailed study of approximations of soft substructure in quantale module are
presented. During this process, we have made further detailed discussion how soft substructures of one
quantale module can be related to that of another quantale module under soft quantale homomorphism.
Additionally, we describe the algebraic relationships between the upper (lower) approximations of soft
substructures of quantale modules and the upper (lower) approximations of their homomorphic images
using the concept of soft quantale module homomorphism. For further work, one can proceed this type of
approximations to different algebraic structures especially to substructures of hyperquantales and fuzzy
hypersubstructures of hyperquantales.
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