Citation: Ghazanfar Latif, Jaafar Alghazo, Majid Ali Khan, Ghassen Ben Brahim, Khaled Fawagreh, Nazeeruddin Mohammad. Deep convolutional neural network (CNN) model optimization techniques—Review for medical imaging[J]. AIMS Mathematics, 2024, 9(8): 20539-20571. doi: 10.3934/math.2024998
[1] | V. Sharma, M. G. Dastidar, S. Sutradhar, V. Raj, K. De Silva, S. Roy, A step toward better sample management of COVID-19: On-spot detection by biometric technology and artificial intelligence, COVID-19 Sustain, Develop. Goals, 2022 (2022), 349–380. https://doi.org/10.1016/B978-0-323-91307-2.00017-1 doi: 10.1016/B978-0-323-91307-2.00017-1 |
[2] | G. Latif, H. Morsy, A. Hassan, J. Alghazo, Novel coronavirus and common pneumonia detection from CT scans using deep learning-based extracted features, Viruses, 14 (2022), 1667. https://doi.org/10.3390/v14081667 doi: 10.3390/v14081667 |
[3] | A. Islam, T. Rahim, M. Masuduzzaman, S. Y. Shin, A blockchain-based artificial intelligence-empowered contagious pandemic situation supervision scheme using internet of drone things, IEEE Wirel. Commun., 28 (2021), 166–173. https://doi.org/10.1109/MWC.001.2000429 doi: 10.1109/MWC.001.2000429 |
[4] | T. Rahim, M. A. Usman, S. Y. Shin, A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging, Comput. Med. Imag. Grap., 85 (2020), 101767. https://doi.org/10.1016/j.compmedimag.2020.101767 doi: 10.1016/j.compmedimag.2020.101767 |
[5] | G. Latif, DeepTumor: Framework for brain MR image classification, segmentation and tumor detection, Diagnostics, 12 (2022), 2888. https://doi.org/10.3390/diagnostics12112888 doi: 10.3390/diagnostics12112888 |
[6] | T. Rahim, S. A. Hassan, S. Y. Shin, A deep convolutional neural network for the detection of polyps in colonoscopy images, Biomed. Signal Proces., 68 (2021), 102654. https://doi.org/10.1016/j.bspc.2021.102654 doi: 10.1016/j.bspc.2021.102654 |
[7] | A. Bashar, G. Latif, G. Ben Brahim, N. Mohammad, J. Alghazo, COVID-19 pneumonia detection using optimized deep learning techniques, Diagnostics, 11 (2021), 1972. https://doi.org/10.3390/diagnostics11111972 doi: 10.3390/diagnostics11111972 |
[8] | E. Hussain, M. Hasan, M. A. Rahman, I. Lee, T. Tamanna, M. Z. Parvez, CoroDet: A deep learning based classification for COVID-19 detection using chest X-ray images, Chaos Soliton. Fract., 142 (2021), 110495. https://doi.org/10.1016/j.chaos.2020.110495 doi: 10.1016/j.chaos.2020.110495 |
[9] | G. Latif, G. Ben Brahim, D. N. F. A. Iskandar, A. Bashar, J. Alghazo, Glioma tumors' classification using deep-neural-network-based features with SVM classifier, Diagnostics, 12 (2022), 1018. https://doi.org/10.3390/diagnostics12041018 doi: 10.3390/diagnostics12041018 |
[10] | I. Iqbal, M. Younus, K. Walayat, M. U. Kakar, J. Ma, Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images, Comput. Med. Imag. grap, 88 (2021), 101843. https://doi.org/10.1016/j.compmedimag.2020.101843 doi: 10.1016/j.compmedimag.2020.101843 |
[11] | I. Iqbal, K. Walayat, M. U. Kakar, J. Ma, Automated identification of human gastrointestinal tract abnormalities based on deep convolutional neural network with endoscopic images, Intell. Syst. Appl., 16 (2022), 200149. https://doi.org/10.1016/j.iswa.2022.200149 doi: 10.1016/j.iswa.2022.200149 |
[12] | V. Shah, R. Keniya, A. Shridharani, M. Punjabi, J. Shah, N. Mehendale, Diagnosis of COVID-19 using CT scan images and deep learning techniques, Emerg. Radiol., 28 (2021), 497–505. https://doi.org/10.1007/s10140-020-01886-y doi: 10.1007/s10140-020-01886-y |
[13] | M. M. Rahaman, C. Li, Y. Yao, K. Frank, M. A. Rahman, Q. Wang, et al., Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches, J. X-Ray Sci. Technol., 28 (2020), 821–839. https://doi.org/10.3233/XST-200715 doi: 10.3233/XST-200715 |
[14] | A. S. Al-Waisy, S. Al-Fahdawi, M. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. S. Maashi, et al., COVID-CheXNet: Hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images, Soft Comput., 27 (2020), 2657–2672. https://doi.org/10.1007/s00500-020-05424-3 doi: 10.1007/s00500-020-05424-3 |
[15] | Y. Chang, X. Jing, Z. Ren, B. Schuller, CovNet: A transfer learning framework for automatic COVID-19 detection from crowd-sourced cough sounds, Front. Digit. Health, 3 (2022), 799067. https://doi.org/10.3389/fdgth.2021.799067 doi: 10.3389/fdgth.2021.799067 |
[16] | M. Elpeltagy, H. Sallam, Automatic prediction of COVID-19 from chest images using modified ResNet50, Multimed. Tools Appl., 80 (2021), 26451–26463. https://doi.org/10.1007/s11042-021-10783-6 doi: 10.1007/s11042-021-10783-6 |
[17] | R. K. Patel, M. Kashyap, Automated diagnosis of COVID stages from lung CT images using statistical features in 2-dimensional flexible analytic wavelet transform, Biocybern. Biomed. Eng., 42 (2022), 829–841. https://doi.org/10.1016/j.bbe.2022.06.005 doi: 10.1016/j.bbe.2022.06.005 |
[18] | D. K. Redie, A. E. Sirko, T. M. Demissie, S. S. Teferi, V. K. Shrivastava, O. P. Verma, et al., Diagnosis of COVID-19 using chest X-ray images based on modified DarkCovidNet model, Evol Intell., 16 (2022), 729–738. https://doi.org/10.1007/s12065-021-00679-7 doi: 10.1007/s12065-021-00679-7 |
[19] | F. Özyurt, Efficient deep feature selection for remote sensing image recognition with fused deep learning architectures, J. Supercomput, 76 (2020), 8413–8431. https://doi.org/10.1007/s11227-019-03106-y doi: 10.1007/s11227-019-03106-y |
[20] | D. H. Hubel, T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J. Physiol., 160 (1962), 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837 doi: 10.1113/jphysiol.1962.sp006837 |
[21] | Y. LeCun, Y. Bengio, Convolutional networks for images, speech, and time series, In: The handbook of brain theory and neural networks, 1995. |
[22] | G. Latif, J. Alghazo, L. Alzubaidi, M. N. Nasser, Y. Alghazo, Deep convolutional neural network for recognition of unified multi-language handwritten numerals, In: 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR), 2018. https://doi.org/10.1109/ASAR.2018.8480289 |
[23] | A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks. Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386 |
[24] | C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, 2014, arXiv: 1409.4842. |
[25] | S. Alghamdi, M. Alabkari, F. Aljishi, G. Latif, A. Bashar, Lung cancer detection from LDCT images using deep convolutional neural networks, In: International Conference on Communication, Computing and Electronics Systems, Singapore: Springer, 733 (2021), 363–374. https://doi.org/10.1007/978-981-33-4909-4_27 |
[26] | D. A. Alghmgham, G. Latif, J. Alghazo, L. Alzubaidi, Autonomous traffic sign (ATSR) detection and recognition using deep CNN, Procedia Comput. Sci., 163 (2019), 266–274. https://doi.org/10.1016/j.procs.2019.12.108 doi: 10.1016/j.procs.2019.12.108 |
[27] | G. Latif, N. Mohammad, R. AlKhalaf, R. AlKhalaf, J. Alghazo, M. Khan, An automatic arabic sign language recognition system based on deep CNN: An assistive system for the deaf and hard of hearing, Int. J. Comput. Digital Syst., 9 (2020), 715–724. http://doi.org/10.12785/ijcds/090418 doi: 10.12785/ijcds/090418 |
[28] | B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep features for scene recognition using places database, In: NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems, 1 (2014), 487–495. |
[29] | M. M. Butt, G. Latif, D. N. F. A. Iskandar, J. Alghazo, A. H. Khan, Multi-channel convolutions neural network based diabetic retinopathy detection from fundus images, Procedia Comput. Sci., 163 (2019), 283–291. https://doi.org/10.1016/j.procs.2019.12.110 doi: 10.1016/j.procs.2019.12.110 |
[30] | D. C. Cireşan, U. Meier, J. Masci, L. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, 2011, 1237–1242. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210 |
[31] | G. Lokku, G. H. Reddy, M. N. G. Prasad, OPFaceNet: Optimized face recognition network for noise and occlusion affected face images using hyperparameters tuned convolutional neural network, Appl. Soft Comput., 117 (2022), 108365. https://doi.org/10.1016/j.asoc.2021.108365 doi: 10.1016/j.asoc.2021.108365 |
[32] | S. Y. Kim, Z. W. Geem, G. Han, Hyperparameter optimization method based on harmony search algorithm to improve performance of 1D CNN human respiration pattern recognition system, Sensors, 20 (2020), 3697. https://doi.org/10.3390/s20133697 doi: 10.3390/s20133697 |
[33] | G. Latif, K. Bouchard, J. Maitre, A. Back, L. P. Bedard, Deep-learning-based automatic mineral grain segmentation and recognition, Minerals, 12 (2022), 455. https://doi.org/10.3390/min12040455 doi: 10.3390/min12040455 |
[34] | J. Bruna, S. Mallat, Invariant scattering convolution networks, IEEE T. Pattern Anal., 35 (2013), 1872–1886. https://doi.org/10.1109/TPAMI.2012.230 doi: 10.1109/TPAMI.2012.230 |
[35] | S. Lawrence, C. L. Giles, A. C. Tsoi, What size neural network gives optimal generalization? Convergence properties of backpropagation, In: Digital Repository at the University of Maryland, 1998. |
[36] | L. Wan, M. Zeiler, S. Zhang, Y. Cun, R. Fergus, Regularization of neural networks using dropconnect, In: ICML'13: Proceedings of the 30th International Conference on International Conference on Machine Learning, 28 (2013), 1058–1066. |
[37] | Q. Xu, M. Zhang, Z. Gu, G. Pan, Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs, Neurocomputing, 328 (2019), 69–74. https://doi.org/10.1016/j.neucom.2018.03.080 doi: 10.1016/j.neucom.2018.03.080 |
[38] | S. R. Dubey, S. K. Singh, B. B. Chaudhuri, Activation functions in deep learning: A comprehensive survey and benchmark, Neurocomputing, 503 (2022), 92–108. https://doi.org/10.1016/j.neucom.2022.06.111 doi: 10.1016/j.neucom.2022.06.111 |
[39] | S. Akbar, M. Peikari, S. Salama, S. Nofech-Mozes, A. Martel, The transition module: A method for preventing overfitting in convolutional neural networks, Comput. Methods Biomech. Biomed. Eng.: Imaging Vis., 7 (2019), 260–265. https://doi.org/10.1080/21681163.2018.1427148 doi: 10.1080/21681163.2018.1427148 |
[40] | H. Wu, X. Gu, Towards dropout training for convolutional neural networks, Neural Networks, 71 (2015), 1–10. https://doi.org/10.1016/j.neunet.2015.07.007 doi: 10.1016/j.neunet.2015.07.007 |
[41] | M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, S. Mougiakakou, Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, IEEE T. Med. Imaging, 35 (2016), 1207–1216. https://doi.org/10.1109/TMI.2016.2535865 doi: 10.1109/TMI.2016.2535865 |
[42] | J. Chen, Y. Shen, The effect of kernel size of CNNs for lung nodule classification, In: 2017 9th International Conference on Advanced Infocomm Technology (ICAIT), 2017,340–344. https://doi.org/10.1109/ICAIT.2017.8388942 |
[43] | B. Chen, W. Deng, J. Du, Noisy softmax: Improving the generalization ability of DCNN via postponing the early softmax saturation, In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 4021–4030. https://doi.org/10.1109/CVPR.2017.428 |
[44] | Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, In: Advances in Neural Information Processing Systems 19 (NIPS 2006), 2006. |
[45] | K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,770–778. https://doi.org/10.1109/CVPR.2016.90 |
[46] | S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connections for efficient neural network, In: NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems, 1 (2015), 1135–1143. |
[47] | P. Ochs, A. Dosovitskiy, T. Brox, T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM J. Imaging Sci., 8 (2015), 331–372. https://doi.org/10.1137/140971518 doi: 10.1137/140971518 |
[48] | P. Murugan, S. Durairaj, Regularization and optimization strategies in deep convolutional neural network, 2017, arXiv: 1712.04711. |
[49] | J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, et al., Scalable Bayesian optimization using deep neural networks, In: ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, 37 (2015), 2171–2180. |
[50] | D. Cheng, Y. Gong, S. Zhou, J. Wang, N. Zheng, Person re-identification by multi-channel parts-based CNN with improved triplet loss function, In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 1335–1344. https://doi.org/10.1109/CVPR.2016.149 |
[51] | Y. S. Aurelio, G. M. de Almeida, C. L. de Castro, A. P. Braga, Learning from imbalanced data sets with weighted cross-entropy function, Neural Process Lett., 50 (2019), 1937–1949. https://doi.org/10.1007/s11063-018-09977-1 doi: 10.1007/s11063-018-09977-1 |
[52] | M. Bouten, J. Schietse, C. Van. den Broeck, Gradient descent learning in perceptrons: A review of its possibilities, Phys. Rev. E, 52 (1995), 1958–1967. https://doi.org/10.1103/PhysRevE.52.1958 doi: 10.1103/PhysRevE.52.1958 |
[53] | A. El-Sawy, M. Loey, H. El-Bakry, Arabic handwritten characters recognition using convolutional neural network, WSEAS Trans. Comput. Res., 5 (2017), 11–19. |
[54] | Y. Sun, W. Zhang, H. Gu, C. Liu, S. Hong, W. Xu, et al., Convolutional neural network based models for improving super-resolution imaging, IEEE Access, 7 (2019), 43042–43051. https://doi.org/10.1109/ACCESS.2019.2908501 doi: 10.1109/ACCESS.2019.2908501 |
[55] | G. D. Rubin, C. J. Ryerson, L. B. Haramati, N. Sverzellati, J. P. Kanne, S. Raoof, et al., The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the Fleischner society, Radiology, 296 (2020), 172–180. https://doi.org/10.1148/radiol.2020201365 doi: 10.1148/radiol.2020201365 |
[56] | B. Xu, Y. Xing, J. Peng, Z. Zheng, W. Tang, Y. Sun, et al., Chest CT for detecting COVID-19: A systematic review and meta-analysis of diagnostic accuracy, Eur Radiol, 30 (2020), 5720–5727. https://doi.org/10.1007/s00330-020-06934-2 doi: 10.1007/s00330-020-06934-2 |
[57] | A. M. Rahmani, E. Azhir, M. Naserbakht, M. Mohammadi, A. H. M. Aldalwie, M. K. Majeed, et al., Automatic COVID-19 detection mechanisms and approaches from medical images: A systematic review, Multimed. Tools Appl., 81 (2022), 28779–28798. https://doi.org/10.1007/s11042-022-12952-7 doi: 10.1007/s11042-022-12952-7 |
[58] | E. E. Hemdan, M. A. Shouman, M. E. Karar, COVIDX-Net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images, 2020, arXiv: 2003.11055. |
[59] | M. Polsinelli, L. Cinque, G. Placidi, A light CNN for detecting COVID-19 from CT scans of the chest, Pattern Recogn. Lett., 140 (2020), 95–100. https://doi.org/10.1016/j.patrec.2020.10.001 doi: 10.1016/j.patrec.2020.10.001 |
[60] | A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks, Pattern Anal, Appl., 24 (2021), 1207–1220. https://doi.org/10.1007/s10044-021-00984-y doi: 10.1007/s10044-021-00984-y |
[61] | P. Mooney, Chest X-ray images (Pneumonia), 2018. Available from: https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. |
[62] | T. Rahman, COVID-19 radiography database, 2020. Available from: https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database. |
[63] | I. D. Apostolopoulos, T. A. Mpesiana, Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Phys. Eng. Sci. Med., 43 (2020), 635–640. https://doi.org/10.1007/s13246-020-00865-4 doi: 10.1007/s13246-020-00865-4 |
[64] | P. K. Sethy, S. K. Behera, P. K. Ratha, P. Biswas, Detection of coronavirus disease (COVID-19) based on deep features and support vector machine, Int. J. Math. Eng. Manage. Sci., 5 (2020), 643–651. https://doi.org/10.33889/IJMEMS.2020.5.4.052 doi: 10.33889/IJMEMS.2020.5.4.052 |
[65] | Y. Wang, M. Hu, Q. Li, X. Zhang, G. Zhai, N. Yao, Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner, 2020, arXiv: 2002.05534. |
[66] | J. Zhang, Y. Xie, G. Pang, Z. Liao, J. Verjans, W. Li, et al., Viral pneumonia screening on chest X-rays using confidence-aware anomaly detection, IEEE T. Med. Imaging, 40 (2021), 879–890. https://doi.org/10.1109/TMI.2020.3040950 doi: 10.1109/TMI.2020.3040950 |
[67] | P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis, A. Mohammadi, COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images, Pattern Recogn. Lett., 138 (2020), 638–643. https://doi.org/10.1016/j.patrec.2020.09.010 doi: 10.1016/j.patrec.2020.09.010 |
[68] | M. E. H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir, Z. B. Mahbub, et al., Can AI help in screening viral and COVID-19 pneumonia? IEEE Access, 8 (2020), 132665–132676. https://doi.org/10.1109/ACCESS.2020.3010287 doi: 10.1109/ACCESS.2020.3010287 |
[69] | L. O. Hall, R. Paul, D. B. Goldgof, G. M. Goldgof, Finding Covid-19 from chest X-rays using deep learning on a small dataset, 2020, arXiv: 2004.02060. |
[70] | T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, U. R. Acharya, Automated detection of COVID-19 cases using deep neural networks with X-ray images, Comput. Biol. Med., 121 (2020), 103792. https://doi.org/10.1016/j.compbiomed.2020.103792 doi: 10.1016/j.compbiomed.2020.103792 |
[71] | R. M. Pereira, D. Bertolini, L. O. Teixeira, C. N. Silla, Y. M. G. Costa, COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios, Comput. Meth. Prog. Bio., 194 (2020), 105532. https://doi.org/10.1016/j.cmpb.2020.105532 doi: 10.1016/j.cmpb.2020.105532 |
[72] | L. Mahdy, K. Ezzat, H. Elmousalami, H. Ella, A. Hassanien, Automatic X-ray COVID-19 lung image classification system based on multi-level thresholding and support vector machine, 2020, medRxiv preprint. https://doi.org/10.1101/2020.03.30.20047787 |
[73] | K. El Asnaoui, Y. Chawki, A. Idri, Automated methods for detection and classification pneumonia based on X-ray images using deep learning, In: Artificial intelligence and blockchain for future cybersecurity applications, Springer, Cham, 2021,257–284. https://doi.org/10.1007/978-3-030-74575-2_14 |
[74] | D. Singh, V. Kumar, V. Kaur, M. Kaur, Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks, Eur. J. Clin. Microbiol. Infect. Dis., 39 (2020), 1379–1389. https://doi.org/10.1007/s10096-020-03901-z doi: 10.1007/s10096-020-03901-z |
[75] | M. Yamac, M. Ahishali, A. Degerli, S. Kiranyaz, M. E. H. Chowdhury, M. Gabbouj, Convolutional sparse support estimator-based COVID-19 recognition from X-ray images, IEEE T. Neur. Net. Lear. Syst., 32 (2021), 1810–1820. https://doi.org/10.1109/TNNLS.2021.3070467 doi: 10.1109/TNNLS.2021.3070467 |
[76] | U. Özkaya, Ş. Öztürk, M. Barstugan, Coronavirus (COVID-19) classification using deep features fusion and ranking technique, In: Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach, Springer, Cham, 2020,281–295. https://doi.org/10.1007/978-3-030-55258-9_17 |
[77] | C. Salvatore, M. Interlenghi, C. Monti, D. Ippolito, D. Capra, A. Cozzi, et al., Artificial intelligence applied to chest X-ray for differential diagnosis of COVID-19 pneumonia, Diagnostics, 11 (2021), 530. https://doi.org/10.3390/diagnostics11030530 doi: 10.3390/diagnostics11030530 |
[78] | T. T. Nguyen, Q. V. H. Nguyen, D. T. Nguyen, S. Yang, P. W. Eklund, T. Huynh-The, et al., Artificial intelligence in the battle against coronavirus (COVID-19): A survey and future research directions, 2020, arXiv: 2008.07343. |
[79] | E. Neri, V. Miele, F. Coppola, R. Grassi, Use of CT and artificial intelligence in suspected or COVID-19 positive patients: Statement of the Italian society of medical and interventional radiology, La radiologia medica, 125 (2020), 505–508. https://doi.org/10.1007/s11547-020-01197-9 doi: 10.1007/s11547-020-01197-9 |
[80] | L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, et al., Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy, Radiology, 296 (2020), E65–E71. https://doi.org/10.1148/radiol.2020200905 doi: 10.1148/radiol.2020200905 |
[81] | M. A. Amou, K. Xia, S. Kamhi, M. Mouhafid, A novel MRI diagnosis method for brain tumor classification based on CNN and Bayesian optimization, Healthcare, 10 (2022), 494. https://doi.org/10.3390/healthcare10030494 doi: 10.3390/healthcare10030494 |
[82] | S. Z. Kurdi, M. H. Ali, M. M. Jaber, T. Saba, A. Rehman, R. Damaševičius, Brain tumor classification using meta-heuristic optimized convolutional neural networks, J. Pers. Med, 13 (2023), 181. https://doi.org/10.3390/jpm13020181 doi: 10.3390/jpm13020181 |
[83] | E. Irmak, Multi-classification of brain tumor MRI images using deep convolutional neural network with fully optimized framework, Iran. J. Sci. Technol. Trans. Electr. Eng., 45 (2021), 1015–1036. https://doi.org/10.1007/s40998-021-00426-9 doi: 10.1007/s40998-021-00426-9 |
[84] | C. Venkatesh, K. Ramana, S. Y. Lakkisetty, S. S. Band, S. Agarwal, A. Mosavi, A neural network and optimization based lung cancer detection system in CT images, Front. Public Health, 10 (2022), 769692. https://doi.org/10.3389/fpubh.2022.769692 doi: 10.3389/fpubh.2022.769692 |
[85] | D. Paikaray, A. K. Mehta, D. A. Khan, Optimized convolutional neural network for the classification of lung cancer, J. Supercomput., 80 (2024), 1973–1989. https://doi.org/10.1007/s11227-023-05550-3 doi: 10.1007/s11227-023-05550-3 |
[86] | C. Lin, S. Jeng, M. Chen, Using 2D CNN with Taguchi parametric optimization for lung cancer recognition from CT images, Appl. Sci., 10 (2020), 2591. https://doi.org/10.3390/app10072591 doi: 10.3390/app10072591 |