
Citation: Ahmed Ramadan, Anwar Fawakhreh, Enas Elkordy. Novel categorical relations between L-fuzzy co-topologies and L-fuzzy ideals[J]. AIMS Mathematics, 2024, 9(8): 20572-20587. doi: 10.3934/math.2024999
[1] | Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Manuel De la Sen . Generalized common best proximity point results in fuzzy multiplicative metric spaces. AIMS Mathematics, 2023, 8(11): 25454-25476. doi: 10.3934/math.20231299 |
[2] | Warud Nakkhasen, Teerapan Jodnok, Ronnason Chinram . Intra-regular semihypergroups characterized by Fermatean fuzzy bi-hyperideals. AIMS Mathematics, 2024, 9(12): 35800-35822. doi: 10.3934/math.20241698 |
[3] | Naveed Ahmad Malik, Sana Khyzer, Muhammad Qasim . Local Pre-Hausdorffness and D-connectedness in L-valued closure spaces. AIMS Mathematics, 2022, 7(5): 9261-9277. doi: 10.3934/math.2022513 |
[4] | Hui Yang, Yi Shi . L-biconvex sets on some fuzzy algebraic substructures. AIMS Mathematics, 2020, 5(5): 4311-4321. doi: 10.3934/math.2020275 |
[5] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[6] | Elif Altintas Kahriman . Fuzzy collineations of 3-dimensional fuzzy projective space from 4-dimensional fuzzy vector space. AIMS Mathematics, 2024, 9(9): 26182-26194. doi: 10.3934/math.20241279 |
[7] | Shoubin Sun, Lingqiang Li, Kai Hu, A. A. Ramadan . L-fuzzy upper approximation operators associated with L-generalized fuzzy remote neighborhood systems of L-fuzzy points. AIMS Mathematics, 2020, 5(6): 5639-5653. doi: 10.3934/math.2020360 |
[8] | Saif Ur Rehman, Arjamand Bano, Hassen Aydi, Choonkil Park . An approach of Banach algebra in fuzzy metric spaces with an application. AIMS Mathematics, 2022, 7(5): 9493-9507. doi: 10.3934/math.2022527 |
[9] | Wen Sun . Fuzzy knowledge spaces based on β evaluation criteria. AIMS Mathematics, 2023, 8(11): 26840-26862. doi: 10.3934/math.20231374 |
[10] | Hassen Aydi, M. A. Barakat, Erdal Karapinar, Zoran D. Mitrović, Tawseef Rashid . On L-simulation mappings in partial metric spaces. AIMS Mathematics, 2019, 4(4): 1034-1045. doi: 10.3934/math.2019.4.1034 |
Primitively, Ward and Dilworth [1] introduced a structure of truth value in many valued logics which gave a hand to Bělohlávek [2] to use fuzzy relations with truth values in modeling intelligent systems with insufficient and vacuous information. Then, Höhle and Šostak [3] used various algebraic structures (quantales, cqm, MV-algebra) of truth values to give the concepts of L-fuzzy topologies. Later, in the works [3,4,5,6], various attitudes toward studying mathematics in addition to logic and L-fuzzy topologies were introduced by these algebraic structures.
In 1977, the idea of filters in IX for I=[0,1] as a unit interval of the real line was developed by Lowen [7]. He called it pre-filters and discussed the convergence in fuzzy topological spaces. Then, in 1999, Burton et al. [8] introduced the concept of generalized filters as a mapping from 2X to I. Subsequently Höhle and Šostak developed the notion of L-filters [3]. Recently in 2013, Jäger [9] introduced the stratified LM-filters using stratification mapping, where L and M are frames. The dual of smooth filters [10] is the concept of smooth ideal as a mapping from IX to I, and, were introduced by Ramadan et al. in [11]. It has developed in many directions, such as L-fuzzy filters [12], fuzzy ideals[13], L-filters[14], fuzzy filters[15], soft closure spaces[16], hyperlattice[17], fuzzy sets[18].
In this paper, we identify L-fuzzy co-topological spaces and L-fuzzy pre-proximity spaces induced by L-fuzzy (prime) ideals and study categorical interrelations among L-fuzzy (prime) ideal spaces, L-fuzzy co-topological spaces, and L-fuzzy pre-proximity spaces. The study obtains four novel functors among the categories of L-fuzzy (prime) ideal spaces, L-fuzzy co-topological spaces, and L-fuzzy pre-proximity spaces.
Definition 1. [1,18] A complete residuated lattice is an algebra (L,∧,∨,⊙,→,▽,△) that fulfils the next terms:
(CRL1) L is a complete lattice denoted by (L,≤,∨,∧,△,▽) with the greatest (least) elements △(▽) resp.
(CRL2) L with ⊙ and △ forms a commutative monoid.
(CRL3) For all a,b,c∈L, we have a⊙b≤c iff a≤b→c.
In the upcoming proofs, we presume that (L,≤,⊙,∗) is a complete residuated lattice accompanied by ∗ as an order reversing involution such that for each x∈L,
a⊕b=(a∗⊙b∗)∗,a∗=a→▽,(a∗)∗=a. |
Finally, L has the idempotence property if a⊙a=a for all a∈L.
Some essential operations on L-fuzzy sets and lattice elements are given in the next lemma, and they were previously proposed in many papers [1,5,18].
Lemma 1. For a complete residuated lattice L accompanied by order reversing involution ∗ and for each a,b,c,aj,bj,d∈L,j∈Γ, we have the next operations:
(1) a→b=⋁{c:c⊙a≤b};
(2) △→a=a,▽⊙a=▽ and a≤b iff a→b=△;
(3) If b≤c, then a⊙b≤a⊙c,a⊕b≤a⊕c,a→b≤a→c and c→a≤b→a;
(4) (⋀j∈Γaj)∗=⋁j∈Γa∗j,(⋁j∈Γaj)∗=⋀j∈Γa∗j;
(5) a⊙(⋁j∈Γbj)=⋁j∈Γ(a⊙bj) and (⋀j∈Γaj)⊕b=⋀j∈Γ(aj⊕b);
(6) ⋁j∈Γaj→⋁j∈Γbj≥⋀j∈Γ(aj→bj),⋀j∈Γaj→⋀j∈Γbj≥⋀j∈Γ(aj→bj);
(7) (a⊙b)⊙(c⊕d)≤(a⊙c)⊕(b⊙d);
(8) (a⊕c)⊙(b⊕d)≤(a⊕b)⊕(c⊙d).
A map p: X→L is called L-subset on a set X [19]. The collection of all L-subsets on X is denoted by LX. For the L-subset p and q, we define (p→q),△a,△∗a and (p⊙q)∈LX by
(p→q)(a)=p(a)→q(a),(p⊙q)(a)=p(a)⊙q(a),△a(b)={△,ifb=a,▽,otherwise,△∗a(b)={▽,ifb=a,△,otherwise. |
Lemma 2. [2,4,20] Let X be a nonempty set. Define a binary mapping S: LX×LX→L for the degree of subsethood of p,q∈LX by
S(p,q)=⋀a∈X(p(a)→q(a)). |
Hence, for all r,s,pj,qj∈LX,j∈Γ, the next conditions apply:
(SH1) S(p,q)=△⇔p≤q;
(SH2) p≤q⇒S(p,r)≥S(q,r) and S(r,p)≤S(r,q);
(SH3) S(p,q)⊙S(r,s)≤S(p⊙r,q⊙s);
(SH4) S(p,q)⊙S(r,s)≤S(p⊕r,q⊕s);
(SH5)
⋀j∈ΓS(pj,qj)≤S(⋁j∈Γpj,⋁j∈Γqj) |
and
⋀j∈ΓS(pj,qj)≤S(⋀j∈Γpj,⋀j∈Γqj). |
Definition 2. [21] If C is a category and W: C→Set is a faithful functor, then the pair (C,W) is a concrete category. For every C-object X,W(X) is the underlying set of X. Hence, all objects in a concrete category can be taken as structured sets.
Shortly in this paper, we take C for (C,W) if the concrete functor is clear.
A concrete functor H: E→K is a functor between two concrete categories (E,U) and (K,V) with U=V∘H, where H modifies the structures on the underlying sets. Thus, to define a concrete functor H: E→K, we satisfy the next two conditions:
(1) We appoint to each E-object X, a K-object H(X) in which
V(G(X))=U(X). |
(2) We confirm that if a function ψ: U(X)→U(Y) is a E-morphism for X→Y then it is also K-morphism for H(X)→H(Y).
Definition 3. [5,18,20] An L-fuzzy co-topological space (X,F) is a mapping F: LX→L on a nonempty set X that fulfills the next conditions for each p,q∈LX:
(CTP1) F(▽X)=F(△X)=△;
(CTP2) F(p⊕q)≥F(p)⊙F(q);
(CTP3) F(⋀j∈Γpj)≥⋀j∈ΓF(pj) for every {pj:j∈Γ}⊆LX.
An L-fuzzy co-topological space (X,F) is:
(AL) Alexandrov if F(⋁j∈Γpj)≥⋀j∈ΓF(pj) for every {pj:j∈Γ}⊆LX;
(SP) separated if F(△∗a)=△ for all a∈X.
We define the LF-continuous map ψ: X→Y for two L-fuzzy co-topological spaces (X,FX) and (Y,FY) by
FY(p)≤FX(ψ←(p)) |
for each p∈LY.
The category of L-fuzzy co-topological spaces with LF-continuous maps as morphisms is denoted by LF-CTP.
Definition 4. [11,13] An L-fuzzy ideal space (X,I) is a mapping I: LX→L on a nonempty set X fulfils the next conditions for all p,q∈LX:
(ID1) I(▽X)=△;
(ID2) p≤q⇒I(p)≥I(q);
(ID3) I(p⊕q)≥I(p)⊙I(q).
An L-fuzzy ideal space (X,I) is called:
(AL) Alexandrov if I(⋁j∈Γpj)≥⋀j∈ΓI(pj) for all {pj:j∈Γ}⊆LX;
(SP) separated if I(△∗a)=△ for all a∈X.
We define the LF-ideal map ψ: X→Y for two L-fuzzy ideal spaces (X,IX) and (Y,IY) by
IY(p)≤IX(ψ←(p)) |
for each p∈LY.
The category of L-fuzzy ideal spaces with LF-ideal maps as morphisms is denoted by LF-I.
Remark 1. In addition to the above axioms, if
(ID4) I(△X)=▽.
Then, (X,I) is an L-fuzzy prime ideal space.
The category of L-fuzzy prime ideal spaces with LF-ideal maps as morphisms is denoted by LF-PI.
The following two theorems give a functor from LF-PI to LF-CTP.
Theorem 1. Given (X,I) as an L-fuzzy prime ideal space, we define FI: LX→L by
FI(p)=⋀a∈Xp(a)⊕p∗(a)⊙I(p). |
Then,
(1) (X,FI) is an L-fuzzy co-topological space.
(2) Let
⋀j∈Γ(aj⊙bj)=⋀j∈Γaj⊙⋀j∈Γbj,∀aj,bj∈L, |
then FI is Alexandrov if I is so.
(3) FI is separated if I is so.
Proof. (1) (CTP1)
FI(▽X)=⋀a∈X▽X(a)⊕△X(a)⊙I(▽X)=△ |
and
FI(△X)=⋀a∈X△X(a)⊕▽X(a)⊙I(△X)=△. |
(CTP2) For p,q∈LX, we have
FI(p)⊙FI(q)=(⋀a∈Xp(a)⊕p∗(a)⊙I(p))⊙(⋀a∈Xq(a)⊕q∗(a)⊙I(q))≤⋀a∈X(p(a)⊕p∗(a)⊙I(p))⊙(q(a)⊕q∗(a)⊙I(q))≤⋀a∈X(p(a)⊕q(a))⊕(p∗(a)⊙I(p)⊙q∗(a)⊙I(q))≤⋀a∈X(p⊕q)(a)⊕(p⊕q)∗(a)⊙I(p⊕q)=FI(p⊕q). |
(CTP3) For each family {pj:j∈Γ}, we have
FI(⋀j∈Γpj)=⋀a∈X(⋀j∈Γpj)(a)⊕(⋁j∈Γp∗j)(a)⊙I(⋀j∈Γpj)=⋀a∈X⋀j∈Γpj(a)⊕(⋁j∈Γp∗j(a)⊙I(⋀j∈Γpj))≥⋀a∈X⋀j∈Γpj(a)⊕(⋁j∈Γp∗j(a)⊙I(pj))≥⋀j∈Γ⋀a∈Xpj(a)⊕p∗j(a)⊙I(pj)=⋀j∈ΓFI(pj). |
Thus, (X,FI) is an L-fuzzy co-topological space.
(2) For each family {pj:j∈Γ}, we have
⋀j∈ΓFI(pj)=⋀j∈Γ⋀a∈Xpj(a)⊕p∗j(a)⊙I(pj)=⋀a∈X(⋀j∈Γpj)(a)⊕⋀j∈Γ(p∗j(a)⊙I(pj))=⋀a∈X(⋀j∈Γpj)(a)⊕(⋀j∈Γp∗j(a)⊙⋀j∈ΓI(pj))≤⋀a∈X(⋁j∈Γpj)(a)⊕(⋁j∈Γpj)∗(a)⊙I(⋁j∈Γpj)=FI(⋁j∈Γpj). |
(3)
FI(△∗a)=⋀b∈X△∗a(b)⊕△a(b)⊙I(△∗a)=(△∗a(a)⊕△a(a)⊙I(△∗a))⊙⋀b∈X,b≠a(△∗a(b)⊕△a(b)⊙I(△∗a))=(▽⊕△⊙△)⊙⋀b∈X,b≠a(△⊕▽⊙△)=△. |
Theorem 2. Let ψ: X→Y be an LF-ideal map for (X,IX) and (Y,IY) two L-fuzzy prime ideal spaces, then ψ: (X,FIX)→(Y,FIY) is an LF-continuous map.
Proof. For any p∈LY, we have
FIX(ψ←(p))=⋀a∈Xψ←(p)(a)⊕ψ←(p∗)(a)⊙IX(ψ←(p))≥⋀a∈Xp(ψ(a))⊕p∗(ψ(a))⊙IY(p)≥⋀b∈Yp(b)⊕p∗(b)⊙IY(p)=FIY(p). |
Corollary 1. Υ: LF-PI→LF-CTP is a concrete functor defined by
Υ(X,IX)=(X,FIX),Υ(φ)=φ. |
Further, the following two theorems give a rise to another functor from LF-PI to LF-CTP.
Theorem 3. Given (X,I) as an L-fuzzy prime ideal space, we define FI1: LX→L by
FI1(p)=S(p∗,p∗⊙I(p)). |
Then,
(1) (X,FI1) is an L-fuzzy co-topological space;
(2) FI1 is separated if I is so;
(3) Let
⋀j∈Γ(aj⊙bj)=⋀j∈Γaj⊙⋀j∈Γbj∀aj,bj∈L, |
then FI1 is Alexandrov if I is so.
Proof. (1) (CTP1)
FI1(▽X)=S(△X,△X⊙I(▽X))=S(△X,△X)=△ |
and
FI1(△X)=S(▽X,▽X⊙I(△X))=S(▽X,▽X)=△. |
(CTP2) For p,q∈LX, we have
FI1(p)⊙FI1(q)=S(p∗,p∗⊙I(p))⊙S(q∗,q∗⊙I(q))≤S(p∗⊙q∗,I(p)⊙I(q)⊙(p∗⊙q∗))≤S((p⊕q)∗,I(p⊕q)⊙(p⊕q)∗)=FI1(p⊕q). |
(CTP3) For each family {pj:j∈Γ}, we have
FI1(⋀j∈Γpj)=S(⋁j∈Γp∗j,⋁j∈Γp∗j⊙I(⋀j∈Γpj))=S(⋁j∈Γp∗j,⋁j∈Γ(p∗j⊙I(⋀j∈Γpj)))≥S(⋁j∈Γp∗j,⋁j∈Γ(p∗j⊙I(pj)))≥⋀j∈ΓS(p∗j,p∗j⊙I(pj))=⋀j∈ΓFI1(pj). |
Hence, (X,FI1) is an L-fuzzy co-topological space.
(2)
FI1(△∗a)=S(△a,△a⊙I(△∗a))=S(△a,△a⊙△)=△. |
(3) For each family {pj:j∈Γ}, we have
⋀j∈ΓFI1(pj)=⋀j∈ΓS(pj,p∗j⊙I(pj))≤S(⋀j∈Γp∗j,⋀j∈Γ(p∗j⊙I(pj)))=S(⋀j∈Γp∗j,⋀j∈Γp∗i⊙⋀j∈ΓI(pj))=S((⋁j∈Γpj)∗,(⋁j∈Γpj)∗⊙⋀j∈ΓI(pj))≤S((⋁j∈Γpj)∗,(⋁j∈Γpj)∗⊙I(⋁j∈Γpj))=FI1(⋁j∈Γpj). |
Theorem 4. Let ψ: X→Y be an LF-prime ideal map for (X,IX) and (Y,IY) two L-fuzzy prime ideal spaces, then ψ: (X,FIX1)→(Y,FIY1) is an LF-continuous map.
Proof. For all p∈LY and by Lemma 1(3), we have
FIX1(ψ←(p))=S(ψ←(p∗),ψ←(p∗)⊙IX(ψ←(p)))=⋀a∈X(p∗(ψ(a))→(p∗(ψ(a))⊙IX(ψ←(p))))≥⋀b∈Y(p∗(b)→(p∗(b)⊙IX(ψ←(p))))≥⋀b∈Y(p∗(b)→(p∗(b)⊙IY(p)))=S(p∗,p∗⊙IY(p))=FIY1(p). |
Corollary 2. Ω: LF-PI→LF-CTP is a concrete functor.
Finally, the following two theorems provide yet another functor from LF-I to LF-CTP.
Theorem 5. Given (X,I) as an L-fuzzy ideal space, we define FI2: LX→L by
FI2(p)={I(p),ifp≠△X,△,ifp=△X. |
Then,
(1) (X,FI2) is an L-fuzzy co-topological space;
(2) FI2 is separated (Alexandrov) if I is so respectively.
Proof. (1) (CTP1) By definition, we have:
FI2(△X)=△ |
and
FI2(▽X)=I(▽X)=△. |
(CTP2) For any p,q∈LX, we have:
Case 1. If p⊕q=△X, then
FI2(p⊕q)=△≥FI2(p)⊙FI2(q). |
Case 2. If p⊕q≠△X, then p≠△X and q≠△X. So,
FI2(p⊕q)=I(p⊕q)≥I(p)⊙I(q)=FI2(p)⊙FI2(q). |
(CTP3) For each family {pj:j∈Γ}, we have:
Case 1. If
⋀j∈Γpj=△X, |
then pj=△X,j∈Γ. So,
FI2(⋀j∈Γpj)=△≥⋀j∈ΓFI2(pj). |
Case 2. If
⋀j∈Γpj≠△X, |
then pj0≠△X for some j0∈Γ. So,
⋀j∈ΓFI2(pj)≤I(pj0)≤I(⋀j∈Γpj)=FI2(⋀j∈Γpj). |
Hence, (X,FI2) is an L-fuzzy co-topological space.
(2) (SP) FI2(△∗a)=I(△∗a)=△.
(AL) For each family {pj:j∈Γ}, we have:
Case 1. If
⋁j∈Γpj=△X, |
then
FI2(⋁j∈Γpj)=△≥⋀j∈ΓFI2(pj). |
Case 2. If
⋁j∈Γpj≠△X, |
then pj≠△X for each j∈Γ. So,
FI2(⋁j∈Γpj)=I(⋁j∈Γpj)≥⋀j∈ΓI(pj)=⋀j∈ΓFI2(pj). |
Theorem 6. Let ψ: X→Y be an LF-ideal map for (X,IX) and (Y,IY) two L-fuzzy ideal spaces, then ψ: (X,FIX2)→(Y,FIY2) is an LF-continuous map.
Proof. For any p∈LY, we have
Case 1. If ψ←(p)=△X, then
FIX2(ψ←(p))=△≥FIY2(p). |
Case 2. If ψ←(p)≠△X, then p≠△Y. So,
FIX2(ψ←(p))=IX(ψ←(p))≥IY(p)=FIY2(p). |
Corollary 3. Δ: LF-I→LF-CTP is a concrete functor.
Example 1. Let X={a} be a single set and
L={▽,x,y,z,w,△} |
be a lattice whose Hasse diagram is given by Figure 1. Simple calculations show (L,∨,∧,⊙,→,▽,△) is a regular residuated lattice in which the commutative operation ⊙ is given by Table 1, and the operation "→" is given by
a→b=⋁{c∈L∣a⊙c≤b} |
for any a,b∈L. Then,
LX={▽_,x_,y_,z_,w_,△_},▽_∗=△_,△_∗=▽_,x_∗=w_,w_∗=x_,y_∗=z_,z_∗=y_. |
⊙ | ▽ | x | y | z | w | △ |
▽ | ▽ | ▽ | ▽ | ▽ | ▽ | ▽ |
x | ▽ | x | ▽ | x | ▽ | x |
y | ▽ | ▽ | ▽ | ▽ | y | y |
z | ▽ | x | ▽ | x | y | z |
w | ▽ | ▽ | y | y | w | w |
△ | ▽ | x | y | z | w | △ |
We define the mapping I: LX→L by
I(p)={△,if p=▽_,z,if p=x_,y,if p=y_,z_,▽,otherwise. |
Then, (X,I) is an L-fuzzy prime ideal space. By Theorem 1(1), we obtain an L-fuzzy co-topology FI: LX→L on X by
FI(p)={z,if p=x_,z_,y,if p=y_,w,if p=w_,△,otherwise. |
By Theorem 3(1), we obtain an L-fuzzy co-topology FI1: LX→L on X by
FI1(p)={z,if p=x_,z_,y,if p=y_,w,if p=w_,△,otherwise. |
By Theorem 5(1), we obtain an L-fuzzy co-topology FI2: LX→L on X by
FI2(p)={z,if p=x_,y,if p=y_,z_,▽,if p=w_,△,otherwise. |
In this section, we give a relationship between L-fuzzy pre-proximity spaces [22,23] and L-fuzzy ideal spaces. In addition, we find and prove the functor between LF-I and LF-PRX.
Definition 5. An L-fuzzy pre-proximity on X is a mapping δ: LX×LX→L such that for all p,q,p1,p2,q1,q2∈LX, we have
(PX1) δ(p,▽X)=▽;
(PX2)
δ(p,q)≥⋁a∈Xp(a)⊙q(a); |
(PX3) If p1≤p2 and q1≤q2, then δ(p1,q1)≤δ(p2,q2);
(PX4) δ(p1⊙p2,q1⊕q2)≤δ(p1,q1)⊕δ(p2,q2).
An L-fuzzy pre-proximity space (X,δ) is called:
(SP) separated if δ(△a,△∗a)=δ(△∗a,△a)=▽;
(AL) Alexandrov if
δ(p,⋁j∈Γqj)≤⋁j∈Γδ(p,qj) |
for all {pj,qj:j∈Γ}⊆LX.
We define the LF-proximity map ψ: X→Y between two L-fuzzy pre-proximity spaces (X,δX) and (Y,δY) by
δX(ψ←(p),ψ←(q))≤δY(p,q) |
for all p,q∈LY.
The category of L-fuzzy pre-proximity spaces with LF-proximity maps is denoted by LF-PRX.
Theorem 7. Given (X,δ) an L-fuzzy pre-proximity space with idempotent L. We define a mapping Iδr: LX⟶L by Iδr(p)=δ∗(r,p) for all r∈LX. Then, Iδr is L-fuzzy ideal on X.
Proof. (ID1) Iδr(▽X)=δ∗(r,▽X)=△.
(ID2) Let p≤r, then Iδr(q)=δ∗(r,p)≥δ∗(r,q)=Iδr(q).
(ID3) Iδr(p⊕q)=δ∗(r,p⊕q)≥δ∗(r,p)⊙δ∗(r,q)=Iδr(p)⊙Iδr(q).
Now, let Π(X) be the family of all L-fuzzy ideals and P(X) be the family of all L-fuzzy pre-proximities on X.
Theorem 8. Let L be idempotent and G: P(X)×Π(X)→Π(X) be a mapping defined for all p∈LX by
G(δ,I)(p)=⋁q∈LXδ∗(q,p)⊙I(p). |
Then, we have the next results:
(1) G(δ,I)∈Π(X);
(2) G(δ,Iδr)=Iδr for all r∈LX.
Proof. (1) (ID1)
G(δ,I)(▽X)=⋁q∈LXδ∗(q,▽X)⊙I(▽X)=△. |
(ID2) Let s∈LX and p≤s, then
G(δ,I)(s)=⋁q∈LXδ∗(q,s)⊙I(s)≤⋁q∈LXδ∗(q,p)⊙I(p)=G(δ,I)(p). |
(ID3)
G(δ,I)(p⊕s)=⋁q∈LXδ∗(q,p⊕s)⊙I(p⊕s)≥⋁q∈LX(δ∗(q,p)⊙δ∗(q,s))⊙(I(p)⊙I(s))=(⋁q∈LXδ∗(q,p)⊙I(p))⊙(⋁q∈LXδ∗(q,s)⊙I(s))=G(δ,I)(p)⊙G(δ,I)(s). |
(2) G(δ,Iδr)(p)=⋁q∈LXδ∗(q,p)⊙Iδr(p)≤△⊙Iδr(p)=Iδr(p).
Conversely,
G(δ,Iδr)(p)=⋁q∈LXδ∗(q,p)⊙Iδr(p)=⋁q∈LXδ∗(q,p)⊙δ∗(r,p)≥δ∗(r,p)⊙δ∗(r,p)=δ∗(r,p)=Iδr(p). |
Hence, G(δ,Iδr)=Iδr.
Theorem 9. Given (X,I) as an L-fuzzy ideal space such that I(q)≤q∗(a) for each a∈X and q∈LX. Define a mapping δI: LX×LX→L by
δI(p,q)=⋁a∈Xp(a)⊙I∗(q). |
Then, (X,δI) is an L-fuzzy pre-proximity space. Moreover, δI is separated (Alexandrov) if I is so, respectively.
Proof. (PX1) Since I(▽X)=△, then we have
δI(p,▽X)=⋁a∈Xp(a)⊙I∗(▽X)=▽. |
(PX2) Since I(q)≤q∗(a), then
δI(p,q)=⋁a∈Xp(a)⊙I∗(q)≥⋁a∈Xp(a)⊙q(a). |
(PX3) Let p1≤p2 and q1≤q2, then we have
δI(p1,q1)=⋁a∈Xp1(a)⊙I∗(q1)≤⋁a∈Xp2(a)⊙I∗(q2)=δI(p2,q2). |
(PX4) For all p1,p2,q1,q2∈LX and by Lemma 1(8), we have
δI(p1⊙p2,q1⊕q2)=⋁a∈X(p1⊙p2)(a)⊙I∗(q1⊕q2)≤⋁a∈X(p1(a)⊙p2(a))⊙(I∗(q1)⊕I∗(q2))≤⋁a∈X(p1(a)⊙I∗(q1))⊕(p2(a)⊙I∗(q2))≤(⋁a∈Xp1(a)⊙I∗(q1))⊕(⋁a∈Xp2(a)⊙I∗(q2))=δI(p1,q1)⊕δI(p2,q2). |
Other properties can be proved easily.
Example 2. (1) If we define I1: LX→L as
I1(p)=⋀a∈Xp∗(a), |
then (X,I1) is an Alexandrov L-fuzzy ideal space by simple calculations. But, I1 is not separated since
I1(△a∗)=⋀b∈X△a(b)=△a(a)∧⋀b≠a△a(b)=▽. |
By Theorem 9, we have
δI1(p,q)=⋁a∈Xp(a)⊙(I1)∗(q)=⋁a∈Xp(a)⊙⋁b∈Xq(b). |
(2) We define I2: LX→L by
I2(p)=p∗(a), |
then (X,I2) is an Alexandrov L-fuzzy ideal space simply. But, I2 is not separated since for all b∈X, we have
I2(△b∗)=△b(a)={△,ifa=b,▽,otherwise. |
By Theorem 9, we have
δI2(p,q)=⋁a∈Xp(a)⊙(I2)∗(q)=⋁a∈∗p(a)⊙q(a). |
Theorem 10. Let ψ: X→Y be an LF-ideal map for (X,IX) and (Y,IY) two L-fuzzy ideal spaces, then ψ: (X,δIX)→(Y,δIY) is an LF-proximity map.
Proof. For all p,q∈LY, we have
δIX(ψ←(p),ψ←(q))=⋁a∈Xψ←(p)(a)⊙I∗(ψ←(q))≤⋁a∈Xp(ψ(a))⊙I∗Y(q)≤⋁b∈Yp(b)⊙I∗Y(q)=δIY(p,q). |
Corollary 4. Υ: LF-I→LF-PRX is a concrete functor.
This paper has established novel categorical relationships between L-fuzzy ideal spaces, L-fuzzy co-topological spaces, and L-fuzzy pre-proximity spaces in complete residuated lattices. The main contributions are:
(1) Four new functors were introduced between the categories LF-PI,LF-CTP, and LF-PRX of L-fuzzy prime ideal spaces, L-fuzzy co-topological spaces, and L-fuzzy pre-proximity spaces, respectively.
(2) Theorems proving that L-fuzzy prime ideal spaces can be converted into L-fuzzy co-topological spaces via three distinct functors Υ,Ω, and Δ. Important properties like separation and Alexandrov are preserved.
(3) Theorems showing L-fuzzy pre-proximity spaces can be constructed from L-fuzzy ideal spaces via the functor Υ. Key properties again carry over under mild conditions.
(4) Theorems demonstrating reverse relationships, building L-fuzzy ideal spaces from L-fuzzy pre-proximities, and recovering the original L-fuzzy pre-proximity via the mapping G.
(5) The categorical perspective yields new insight into the intrinsic connections between these different structures fundamental to fuzzy mathematics. The functors provide mathematical machinery to translate between ideals, topologies, and proximities in a fuzzy setting. The results and examples lay the groundwork for further categorical research related to fuzzy mathematical concepts.
Ahmed Ramadan: ideas, states, proofs, first draft, and revision; Anwar Fawakhreh, states, proofs, and edition; Enas Elkordy: states, proofs, edition, submission, and revision of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors clarify that there is no conflicts of interest.
[1] | M. Ward, R. P. Dilworth, Residuated lattices, Trans. Amer. Math. Soc., 45 (1939), 335–354. https://doi.org/10.1090/S0002-9947-1939-1501995-3 |
[2] | R. Bělohlávek, Fuzzy relational systems, Kluwer Academic Publishers, 2002. https://doi.org/10.1007/978-1-4615-0633-1 |
[3] | U. Höhle, A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, In: U. Höhle, S. E. Rodabaugh, Mathematics of fuzzy sets, Springer, 1999,123–272. https://doi.org/10.1007/978-1-4615-5079-2_5 |
[4] |
J. Fang, The relationships between L-ordered convergence structures and strong L-topologies, Fuzzy Sets Syst., 161 (2010), 2923–2944. https://doi.org/10.1016/j.fss.2010.07.010 doi: 10.1016/j.fss.2010.07.010
![]() |
[5] |
D. Zhang, An enriched category approach to many valued topology, Fuzzy Sets Syst., 158 (2007), 349–366. https://doi.org/10.1016/j.fss.2006.10.001 doi: 10.1016/j.fss.2006.10.001
![]() |
[6] |
J. M. Oh, Y. C. Kim, Fuzzy Galois connections on Alexandrov L-topologies, J. Intell. Fuzzy Syst., 40 (2021), 251–270. https://doi.org/10.3233/JIFS-191548 doi: 10.3233/JIFS-191548
![]() |
[7] |
R. Lowen, Convergence in fuzzy topological spaces, General Topol. Appl., 10 (1977), 147–160. https://doi.org/10.1016/0016-660X(79)90004-7 doi: 10.1016/0016-660X(79)90004-7
![]() |
[8] | M. H. Burton, M. Muraleetharan, J. G. Garcia, Generalised filters 2, Fuzzy Sets Syst., 106 (1999), 393–400. https://doi.org/10.1016/S0165-0114(97)00261-3 |
[9] |
G. Jäger, A note on stratified LM-filters, Iran. J. Fuzzy Syst., 10 (2013), 135–142. https://doi.org/10.22111/IJFS.2013.1053 doi: 10.22111/IJFS.2013.1053
![]() |
[10] | A. A. Ramadan, Smooth filter structures, J. Fuzzy Math., 5 (1997), 297–308. |
[11] | A. A. Ramadan, M. A. Abdel-Sattar, Y. C. Kim, Some properties of smooth ideals, Indian J. Pure Appl. Math., 34 (2003), 247–264. |
[12] |
A. A. Ramadan, L-fuzzy filters on complete residuated lattices, Soft Comput., 27 (2023), 15497–15507. https://doi.org/10.1007/s00500-023-09057-0 doi: 10.1007/s00500-023-09057-0
![]() |
[13] |
Y. Liu, Y. Qin, X. Qin, Y. Xu, Ideals and fuzzy ideals on residuated lattices, Int. J. Mach. Learn. Cyber., 8 (2017), 239–253. https://doi.org/10.1007/s13042-014-0317-2 doi: 10.1007/s13042-014-0317-2
![]() |
[14] | K. J. Mi, Y. C. Kim, Alexandrov L-filters and Alexandrov L-convergence spaces, J. Intell. Fuzzy Syst., 35 (2018), 3255–3266. https://doi.org/10.3233/JIFS-171723 |
[15] |
M. Tonga, Maximality on fuzzy filters of lattice, Afr. Math., 22 (2011), 105–114. https://doi.org/10.1007/s13370-011-0009-y doi: 10.1007/s13370-011-0009-y
![]() |
[16] |
R. Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, I. Ibedou, Soft closure spaces via soft ideals, AIMS Math., 9 (2024), 6379–6410. https://doi.org/10.3934/math.2024311 doi: 10.3934/math.2024311
![]() |
[17] | B. N. Koguep, C. Nkuimi, C. Lele, On fuzzy ideals of hyperlattice, Int. J. Algebra, 2 (2008), 739–750. |
[18] | S. E. Rodabaugh, E. P. Klement, Topological and algebraic structures in fuzzy sets, Springer, 2003. https://doi.org/10.1007/978-94-017-0231-7 |
[19] | J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–174. https://doi.org/10.1016/0022-247X(67)90189-8 |
[20] |
J. Fang, Y. Yue, L-fuzzy closure systems, Fuzzy Sets Syst., 161 (2010), 1242–1252. https://doi.org/10.1016/j.fss.2009.10.002 doi: 10.1016/j.fss.2009.10.002
![]() |
[21] | J. Adámek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, Wiley, 1990. |
[22] |
A. A. Ramadan, M. A. Usama, A. A. El-Latif, L-fuzzy pre proximities, L-fuzzy filters and L-fuzzy grills, J. Egypt. Math. Soc., 28 (2020), 47. https://doi.org/10.1186/s42787-020-00105-4 doi: 10.1186/s42787-020-00105-4
![]() |
[23] |
A. A. Ramadan, Y. C. Kim, E. H. Elkordy, L-fuzzy pre-proximities and application to L-fuzzy topologies, J. Intell. Fuzzy Syst., 38 (2020), 4049–4060. https://doi.org/10.3233/JIFS-182652 doi: 10.3233/JIFS-182652
![]() |
⊙ | ▽ | x | y | z | w | △ |
▽ | ▽ | ▽ | ▽ | ▽ | ▽ | ▽ |
x | ▽ | x | ▽ | x | ▽ | x |
y | ▽ | ▽ | ▽ | ▽ | y | y |
z | ▽ | x | ▽ | x | y | z |
w | ▽ | ▽ | y | y | w | w |
△ | ▽ | x | y | z | w | △ |