Research article

Wavelet estimations of a density function in two-class mixture model

  • Received: 15 April 2024 Revised: 13 June 2024 Accepted: 18 June 2024 Published: 25 June 2024
  • MSC : 62G07, 62G20

  • This paper considers nonparametric estimations of a density function in a two-class mixture model. A linear wavelet estimator and an adaptive wavelet estimator are constructed. Upper bound estimations over $ L^{p}\; (1\leq p < +\infty) $ risk of those wavelet estimators are proved in Besov spaces. When $ \tilde{p}\geq p\geq1 $, the convergence rate of adaptive wavelet estimator is the same as the linear estimator up to a $ \ln n $ factor. The adaptive wavelet estimator can get better than the linear estimator in the case of $ 1\leq \tilde{p} < p $. Finally, some numerical experiments are presented to validate the theoretical results.

    Citation: Junke Kou, Xianmei Chen. Wavelet estimations of a density function in two-class mixture model[J]. AIMS Mathematics, 2024, 9(8): 20588-20611. doi: 10.3934/math.20241000

    Related Papers:

  • This paper considers nonparametric estimations of a density function in a two-class mixture model. A linear wavelet estimator and an adaptive wavelet estimator are constructed. Upper bound estimations over $ L^{p}\; (1\leq p < +\infty) $ risk of those wavelet estimators are proved in Besov spaces. When $ \tilde{p}\geq p\geq1 $, the convergence rate of adaptive wavelet estimator is the same as the linear estimator up to a $ \ln n $ factor. The adaptive wavelet estimator can get better than the linear estimator in the case of $ 1\leq \tilde{p} < p $. Finally, some numerical experiments are presented to validate the theoretical results.


    加载中


    [1] P. J. Huber, A robust version of the probability ratio test, Ann. Math. Statist., 36 (1965), 1753–1758. https://doi.org/10.1214/aoms/1177699803 doi: 10.1214/aoms/1177699803
    [2] H. Y. Liu, C. Gao, Density estimation with contamination: minimax rates and theory of adaptation, Electron. J. Statist., 13 (2019), 3613–3653. https://doi.org/10.1214/19-EJS1617 doi: 10.1214/19-EJS1617
    [3] M. Langaas, B. H. Lindqvist, E. Ferkingstad, Estimating the proportion of true null hypotheses, with application to DNA microarray data, J. R. Stat. Soc. Ser. B Stat. Methodol., 67 (2005), 555–572. https://doi.org/10.1111/j.1467-9868.2005.00515.x doi: 10.1111/j.1467-9868.2005.00515.x
    [4] V. H. Nguyen, C. Matias, On efficient estimators of the proportion of true null hypotheses in a multiple testing setup, Scand. J. Statist., 41 (2014), 1167–1194. https://doi.org/10.1111/sjos.12091 doi: 10.1111/sjos.12091
    [5] X. Y. Sun, Y. Fu, Local false discovery rate estimation with competition-based procedures for variable selection, Statist. Med., 43 (2023), 61–88. https://doi.org/10.1002/sim.9942 doi: 10.1002/sim.9942
    [6] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist., 33 (1962), 1065–1076. https://doi.org/10.1214/aoms/1177704472 doi: 10.1214/aoms/1177704472
    [7] G. Kerkyacharian, D. Picard, Density estimation in Besov spaces, Statist. Probab. Lett., 13 (1992), 15–24. https://doi.org/10.1016/0167-7152(92)90231-S doi: 10.1016/0167-7152(92)90231-S
    [8] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, D. Picard, Density estimation by wavelet thresholding, Ann. Statist., 24 (1996), 508–539. https://doi.org/10.1214/aos/1032894451 doi: 10.1214/aos/1032894451
    [9] G. Cleanthous, A. G. Georgiadis, G. Kerkyacharian, P. Petrushev, D. Picard, Kernel and wavelet density estimators on manifolds and more general metric spaces, Bernoulli, 26 (2020), 1832–1862. https://doi.org/10.3150/19-BEJ1171 doi: 10.3150/19-BEJ1171
    [10] S. Allaoui, S. Bouzebda, J. C. Liu, Multivariate wavelet estimators for weakly dependent processes: strong consistency rate, Comm. Statist. Theory Methods, 52 (2023), 8317–8350. https://doi.org/10.1080/03610926.2022.2061715 doi: 10.1080/03610926.2022.2061715
    [11] S. Robin, A. Bar-Hen, J. J. Daudin, L. Pierre, A semi-parametric approach for mixture models: application to local discovery rate estimation, Comput. Statist. Data Anal., 51 (2007), 5483–5493. https://doi.org/10.1016/j.csda.2007.02.028 doi: 10.1016/j.csda.2007.02.028
    [12] G. Chagny, A. Channarond, V. H. Hoang, A. Roche, Adaptive nonparametric estimation of a component density in a two-class mixture model, J. Statist. Plann. Inference, 216 (2022), 51–69. https://doi.org/10.1016/j.jspi.2021.05.004 doi: 10.1016/j.jspi.2021.05.004
    [13] U. Amato, A. Antoniadis, Adaptive wavelet series estimation in separable nonparametric regression models, Statist. Comput., 11 (2001), 373–394. https://doi.org/10.1023/A:1011929305660 doi: 10.1023/A:1011929305660
    [14] C. Angelini, D. De Canditiis, F. Leblanc, Wavelet regression estimation in nonparametric mixed effect models, J. Multivariate Anal., 85 (2003), 267–291. https://doi.org/10.1016/S0047-259X(02)00055-6 doi: 10.1016/S0047-259X(02)00055-6
    [15] T. T. Cai, H. H. Zhou, A data-driven block thresholding approach to wavelet estimation, Ann. Statist., 37 (2009), 569–595. https://doi.org/10.1214/07-AOS538 doi: 10.1214/07-AOS538
    [16] Y. P. Chaubey, C. Chesneau, F. Navarro, Linear wavelet estimation of the derivatives of a regression function based on biased data, Comm. Statist. Theory Methods, 46 (2017), 9541–9556. https://doi.org/10.1080/03610926.2016.1213287 doi: 10.1080/03610926.2016.1213287
    [17] L. W. Ding, P. Chen, Y. M. Li, Consistency for wavelet estimator in nonparametric regression model with extended negatively dependent samples, Statist. Papers, 61 (2020), 2331–2349. https://doi.org/10.1007/s00362-018-1050-9 doi: 10.1007/s00362-018-1050-9
    [18] S. Allaoui, S. Bouzebda, C. Chesneau, J. C. Liu, Uniform almost sure convergence and asymtotic distribution of the wavelet-based estimators of partial derivatives of multivariate density function under weak dependence, J. Nonparametr. Stat., 33 (2021), 170–196. https://doi.org/10.1080/10485252.2021.1925668 doi: 10.1080/10485252.2021.1925668
    [19] S. Didi, A. A. Harby, S. Bouzebda, Wavelet density and regression estimators for functional stational and ergodic data: discrete time, Mathematics, 10 (2022), 1–33. https://doi.org/10.3390/math10193433 doi: 10.3390/math10193433
    [20] S. Didi, S. Bouzebda, Wavelet density and regression estimators for continuous time functional stationary and ergodic processes, Mathematics, 10 (2022), 1–37. https://doi.org/10.3390/math10224356 doi: 10.3390/math10224356
    [21] S. Allaoui, S. Bouzebda, J. C. Liu, Asymptotic distribution of the wavelet-based estimators of multivariate regression functions under weak dependence, J. Math. Inequal., 17 (2023), 481–515. https://doi.org/10.7153/jmi-2023-17-32 doi: 10.7153/jmi-2023-17-32
    [22] U. Amato, A. Antoniadis, I. De Feis, I. Gijbels, Penalized wavelet nonparametric univariate logistic regression for irregular spaced data, Statistics, 57 (2023), 1037–1060. https://doi.org/10.1080/02331888.2023.2248679 doi: 10.1080/02331888.2023.2248679
    [23] A. Rodrigo, D. S. Sousa, N. L. Garcia, Wavelet shrinkage in nonparametric regression models with positive noise, J. Statist. Comput. Simul., 93 (2023), 3011–3033. https://doi.org/10.1080/00949655.2023.2215372 doi: 10.1080/00949655.2023.2215372
    [24] Y. Meyer, Wavelet and operators, Cambridge University Press, 1993. https://doi.org/10.1017/cbo9780511623820
    [25] W. Härdle, G. Kerkyacharian, D. Picard, A. Tsybakov, Wavelets, approximation and statistical applications, New York: Springer, 1998. https://doi.org/10.1007/978-1-4612-2222-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(83) PDF downloads(8) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog