Research article Special Issues

A characterization of common Lyapunov diagonal stability using Khatri-Rao products

  • Received: 19 May 2024 Revised: 09 June 2024 Accepted: 13 June 2024 Published: 25 June 2024
  • MSC : 15A45, 15B48, 34D20, 37C75, 93D05

  • Using the Khatri-Rao product, we presented new characterizations for the common Lyapunov diagonal stability for a family of real matrices $ \mathcal{A} $. For special partitions $ \alpha $, we used the notion of $ \mathcal{P}^{\alpha} $-sets and common $ \alpha $-scalar Lyapunov stability to formulate further characterizations. Furthermore, generalizations of these results to the common $ \alpha $-scalar Lyapunov stability were developed. Our goal of this paper was to unify and enhance relevant work.

    Citation: Ali Algefary. A characterization of common Lyapunov diagonal stability using Khatri-Rao products[J]. AIMS Mathematics, 2024, 9(8): 20612-20626. doi: 10.3934/math.20241001

    Related Papers:

  • Using the Khatri-Rao product, we presented new characterizations for the common Lyapunov diagonal stability for a family of real matrices $ \mathcal{A} $. For special partitions $ \alpha $, we used the notion of $ \mathcal{P}^{\alpha} $-sets and common $ \alpha $-scalar Lyapunov stability to formulate further characterizations. Furthermore, generalizations of these results to the common $ \alpha $-scalar Lyapunov stability were developed. Our goal of this paper was to unify and enhance relevant work.


    加载中


    [1] L. Sadek, A. Bataineh, O. Isik, H. Alaoui, I. Hashim, A numerical approach based on Bernstein collocation method: Application to differential Lyapunov and Sylvester matrix equations, Math. Comput. Simul., 212 (2023) 475–488. https://doi.org/10.1016/j.matcom.2023.05.011 doi: 10.1016/j.matcom.2023.05.011
    [2] L. Sadek, Fractional BDF methods for solving fractional differential matrix equations, Int. J. Appl. Comput. Math., 8 (2022), 238. https://doi.org/10.1007/s40819-022-01455-6 doi: 10.1007/s40819-022-01455-6
    [3] L. Sadek, The methods of fractional backward differentiation formulas for solving two-term fractional differential Sylvester matrix equations, Appl. Set-Valued Anal. Optim., 6 (2024), 137–155. https://doi.org/10.23952/asvao.6.2024.2.02 doi: 10.23952/asvao.6.2024.2.02
    [4] G. Barker, A. Berman, R. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear Multilinear Algebra, 5 (1978), 249–256. https://doi.org/10.1080/03081087808817203 doi: 10.1080/03081087808817203
    [5] A. Berman, D. Hershkowitz, Matrix diagonal stability and its implications, SIAM J. Algebr. Discr. Meth., 4 (1983), 377–382. https://doi.org/10.1137/0604038 doi: 10.1137/0604038
    [6] G. Cross, Three types of matrix stability, Linear Algebra Appl., 20 (1978), 253–263. https://doi.org/10.1016/0024-3795(78)90021-6 doi: 10.1016/0024-3795(78)90021-6
    [7] H. Khalil, On the existence of positive diagonal $P$ such that $PA+ A^{T} P< 0$, IEEE Trans. Autom. Control, 27 (1982), 181–184. https://doi.org/10.1109/TAC.1982.1102855 doi: 10.1109/TAC.1982.1102855
    [8] J. Kraaijevanger, A characterization of Lyapunov diagonal stability using Hadamard products, Linear Algebra Appl., 151 (1991), 245–254. https://doi.org/10.1016/0024-3795(91)90366-5 doi: 10.1016/0024-3795(91)90366-5
    [9] N. Oleng, K. Narendra, On the existence of diagonal solutions to the Lyapunov equation for a third order system, In: Proceedings of the 2003 American Control Conference, 3 (2003), 2761–2766. https://doi.org/10.1109/ACC.2003.1243497
    [10] J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9781139173179
    [11] S. Meyn, Control Techniques for Complex Networks, Cambridge: Cambridge University Press, 2008. http://doi.org/10.1017/CBO9780511804410
    [12] E. Kaszkurewicz, A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Berlin: Springer, 2012. https://doi.org/10.1007/978-1-4612-1346-8
    [13] D. Hershkowitz, N. Mashal, P$^ \alpha$-matrices and Lyapunov scalar stability, Elect. J. Linear Algebra, 4 (1998), 39–47. http://doi.org/10.13001/1081-3810.1024 doi: 10.13001/1081-3810.1024
    [14] A. Berman, C. King, R. Shorten, A characterisation of common diagonal stability over cones, Linear Multilinear Algebra, 60 (2012), 1117–1123. https://doi.org/10.1080/03081087.2011.647018 doi: 10.1080/03081087.2011.647018
    [15] T. Büyükköroğlu, Common diagonal Lyapunov function for third order linear switched system, J. Comput. Appl. Math., 236 (2012), 3647–3653. https://doi.org/10.1016/j.cam.2011.06.013 doi: 10.1016/j.cam.2011.06.013
    [16] M. Gumus, J. Xu, On common diagonal Lyapunov solutions, Linear Algebra Appl., 507 (2016), 32–50. https://doi.org/10.1016/j.laa.2016.05.032 doi: 10.1016/j.laa.2016.05.032
    [17] M. Gumus, J. Xu, A new characterization of simultaneous Lyapunov diagonal stability via Hadamard products, Linear Algebra Appl., 531 (2017), 220–233. https://doi.org/10.1016/j.laa.2017.05.049 doi: 10.1016/j.laa.2017.05.049
    [18] O. Mason, R. Shorten, On the simultaneous diagonal stability of a pair of positive linear systems, Linear Algebra Appl., 413 (2006), 13–23. https://doi.org/10.1016/j.laa.2005.07.019 doi: 10.1016/j.laa.2005.07.019
    [19] P. Moylan, D. Hill, Stability criteria for large-scale systems, IEEE Trans. Automat. Control, 23 (1978), 143–149. https://doi.org/10.1109/TAC.1978.1101721 doi: 10.1109/TAC.1978.1101721
    [20] L. Sadek, H. Alaoui, Application of MGA and EGA algorithms on large-scale linear systems of ordinary differential equations, J. Comput. Sci., 62 (2022), 101719. https://doi.org/10.1016/j.jocs.2022.101719 doi: 10.1016/j.jocs.2022.101719
    [21] L. Sadek, H. Alaoui, Numerical methods for solving large-scale systems of differential equations, Ricerche Mate., 72 (2023), 785–802. https://doi.org/10.1007/s11587-021-00585-1 doi: 10.1007/s11587-021-00585-1
    [22] L. Sadek, E. Sadek, H. Alaoui, On some numerical methods for solving large differential nonsymmetric stein matrix equations, Math. Comput. Appl., 27 (2022), 69. https://doi.org/10.3390/mca27040069 doi: 10.3390/mca27040069
    [23] R. Shorten, K. Narendra, On a theorem of Redheffer concerning diagonal stability, Linear Algebra Appl., 431 (2009), 2317–2329. https://doi.org/10.1016/j.laa.2009.02.035 doi: 10.1016/j.laa.2009.02.035
    [24] R. Redheffer, Volterra multipliers Ⅰ, SIAM J. Algebr. Discr. Meth., 6 (1985), 612–623. https://doi.org/10.1137/0606059 doi: 10.1137/0606059
    [25] R. Horn, C. Johnson, Topics in Matrix Analysis, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371
    [26] R. Horn, R. Mathias, Block-matrix generalizations of Schur's basic theorems on Hadamard products, Linear Algebra Appl., 172 (1992), 337–346. https://doi.org/10.1016/0024-3795(92)90033-7 doi: 10.1016/0024-3795(92)90033-7
    [27] M. Fiedler, V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J., 12 (1962), 382–400.
    [28] M. Gumus, J. Xu, On common $\alpha$-scalar Lyapunov solutions, Linear Algebra Appl., 563 (2019), 123–141. https://doi.org/10.1016/j.laa.2018.10.026 doi: 10.1016/j.laa.2018.10.026
    [29] M. Wanat, The $\alpha$-scalar diagonal stability of block matrices, Linear Algebra Appl., 414 (2006), 304–309. https://doi.org/10.1016/j.laa.2005.10.008 doi: 10.1016/j.laa.2005.10.008
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(537) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog