Citation: Tynysbek Kalmenov, Nurbek Kakharman. An overdetermined problem for elliptic equations[J]. AIMS Mathematics, 2024, 9(8): 20627-20640. doi: 10.3934/math.20241002
[1] | D. Hào, T. Van, R. Gorenflo, Towards the Cauchy problem for the Laplace equation, Banach Center Publ., 27 (1992), 111–128. https://doi.org/10.4064/-27-1-111-128 doi: 10.4064/-27-1-111-128 |
[2] | J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), 304–318. https://doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468 |
[3] | H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Ration. Mech. Anal., 43 (1971), 319–320, https://doi.org/10.1007/BF00250469 |
[4] | I. Fragalà, F. Gazzola, J. Lamboley, M. Pierre, Counterexamples to symmetry for partially overdetermined elliptic problems, Analysis, 29 (2009), 85–93. https://doi.org/10.1524/anly.2009.1016 |
[5] | A. Greco, F. Pisanu, Improvements on overdetermined problems associated to the $p$-Laplacian, Math. Eng., 4 (2022), 1–14. https://doi.org/10.3934/mine.2022017 |
[6] | A. Farina, E. Valdinoci, Partially and globally overdetermined problems of elliptic type, Adv. Nonlinear Anal., 1 (2012), 27–45. https://doi.org/10.1515/ana-2011-0002 doi: 10.1515/ana-2011-0002 |
[7] | S. Dipierro, G. Poggesi, E. Valdinoci, A Serrin-type problem with partial knowledge of the domain, Nonlinear Anal., 208 (2021), 112330. https://doi.org/10.1016/j.na.2021.112330 |
[8] | M. Onodera, Dynamical approach to an overdetermined problem in potential theory, J. Math. Pures Appl., 106 (2016), 768–796. https://doi.org/10.1016/j.matpur.2016.03.011 doi: 10.1016/j.matpur.2016.03.011 |
[9] | M. Onodera, Linear stability analysis of overdetermined problems with non-constant data, Math. Eng., 5 (2023), 1–18. https://doi.org/10.3934/mine.2023048 doi: 10.3934/mine.2023048 |
[10] | C. Araúz, A. Carmona, A. M. Encinas, Overdetermined partial boundary value problems on finite networks, J. Math. Anal. Appl., 423 (2015), 191–207. https://doi.org/10.1016/j.jmaa.2014.09.025 doi: 10.1016/j.jmaa.2014.09.025 |
[11] | M. I. Višik, On general boundary problems for elliptic differential equations, Tr. Mosk. Mat. Obs., 1 (1952), 187–246. |
[12] | B. K. Kokebayev, M. Otelbaev, A. N. Shynybekov, On questions of expansion and restriction of operators, Dokl. Akad. Nauk SSSR, 271 (1983), 1307–1310. |
[13] | N. Kakharman, K. Tulenov, L. Zhumanova, On hyponormal and dissipative correct extensions and restrictions, Math. Methods Appl. Sci., 45 (2022), 9049–9060. https://doi.org/10.1002/mma.8292 doi: 10.1002/mma.8292 |
[14] | A. V. Bitsadze, A. A. Samarskii, On some simple generalizations of linear elliptic boundary value problems, Russian Academy of Sciences, 1969. |
[15] | R. Dalmasso, A note on the Schiffer conjecture, Hokkaido Math. J., 28 (1999), 373–383. https://doi.org/10.14492/hokmj/1351001220 doi: 10.14492/hokmj/1351001220 |
[16] | T. Sh. Kal'menov, D. Suragan, To spectral problems for the volume potential, Dokl. Math., 80 (2009), 646–649. https://doi.org/10.1134/S1064562409050032 doi: 10.1134/S1064562409050032 |
[17] | T. Sh. Kal'menov, D. Suragan, Boundary conditions for the volume potential for the polyharmonic equation, Differ. Equations, 48 (2012), 604–608. https://doi.org/10.1134/S0012266112040155 doi: 10.1134/S0012266112040155 |
[18] | M. Ruzhansky, D. Suragan, Layer potentials, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups, Adv. Math., 308 (2017), 483–528. https://doi.org/10.1016/j.aim.2016.12.013 doi: 10.1016/j.aim.2016.12.013 |
[19] | L. E. Fraenkel, Introduction to maximum principles and symmetry in elliptic problems, Cambridge University Press, 2000. https://doi.org/10.1017/cbo9780511569203 |
[20] | H. Shahgholian, A characterization of the sphere in terms of single-layer potentials, Proc. Amer. Math. Soc., 115 (1992), 1167–1168. https://doi.org/10.1090/S0002-9939-1992-1162956-7 doi: 10.1090/S0002-9939-1992-1162956-7 |
[21] | C. Miranda, Partial differential equations of elliptic type, Springer, 1970. https://doi.org/10.1007/978-3-642-87773-5 |
[22] | A. N. Tikhonov, A. A. Samarskii, Equations of mathematical physics, Courier Corporation, 1963. |
[23] | S. T. Yau, Problem section, Semin. Differ. Geom., 102 (1982), 669–706. https://doi.org/10.1515/9781400881918-035 doi: 10.1515/9781400881918-035 |
[24] | T. Sh. Kal'menov, D. Suragan, Transfer of Sommerfeld radiation conditions to the boundary of a bounded domain, Zh. Vychisl. Mat. Mat. Fiz., 52 (2012), 1063–1068. |
[25] | C. A. Berenstein, D. Khavinson, Do solid tori have the Pompeiu property? Libraries University Press, 1996. |