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1. Introduction

The Cauchy problem for the Laplace equation can only have a solution if the given (initial) data has
strong compatibility or smoothness conditions. Hadamard proved that if the compatibility relationship
among the Cauchy data is not satisfied, then there cannot be a global solution. He also demonstrated
that even if the data satisfies the conditions for a classical solution to exist, this solution will not depend
continuously on the data. We refer to [1] and the references therein for detailed discussions in the field.
In many studies, Cauchy data for Poisson’s equation can be posed on a part of the boundary rather
than on the whole boundary. Probably one of the best-known results on Cauchy-type overdetermined
problems for Poisson’s equation in Ω ⊂ Rn with both the Dirichlet and Neumann conditions on the
entire boundary ∂Ω goes back to [2]:

∆u(x) = 1, x ∈ Ω ⊂ Rn (1.1)

with
u(x)

∣∣∣
x∈∂Ω
= 0,

∂u(x)
∂nx

∣∣∣∣∣
x∈∂Ω
= const, (1.2)

where ∂
∂nx

is an outer normal derivative on the boundary. Serrin proved that if this overdetermined
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boundary value problem admits a solution, then Ω must be a ball and u is radially symmetric about
its center. Shortly later, Weinberger in [3] introduced an alternative proof based on the analysis of the
subharmonic function. These two methods have been instrumental in generalizing Serrin’s theorem to
various settings and nonlinearities. See [4, 5] and the literature cited therein for other delicate issues
related to symmetry problems in general. For further discussions, see also e.g., [6–9] and references
therein.

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with a smooth connected boundary ∂Ω. In this paper, we
analyse the following overdetermined problem:

∆u = f (x), x ∈ Ω ⊂ Rn (1.3)

with
u(x)

∣∣∣
x∈∂Ω
= 0,

∂u(x)
∂nx

∣∣∣∣∣
x∈∂Ω
= 0. (1.4)

The main aim of this paper is to establish a criterion for the solvability of the overdetermined
Cauchy-type problems (1.3) and (1.4). We will also discuss some consequences and extensions. Note
that overdetermined boundary value problems are crucial, for example, for solving inverse boundary
value problems on finite networks since they provide the theoretical foundations for the recovery
algorithm (see, e.g., [10]).

As usual, a minimal Laplace operator

∆0 : D(∆0)→ R(∆0)

is the closure of the differential operator ∆ on a subset of the functions u ∈ C2+α(Ω), α > 0, with

u
∣∣∣
x∈∂Ω
=
∂u
∂nx

∣∣∣∣∣
x∈∂Ω
= 0.

It is known that if u0 ∈ D(∆0), then u0 ∈
◦

W2
2(Ω), and the inequality

∥∆0u0∥L2(Ω) ≥ c∥u0∥ ◦W2
2(Ω)

(1.5)

holds. Here and in the sequel, we denote the standard Sobolev spaces by W (with corresponding
indexes).

It is a natural question to find the function f ∈ R(∆0), such that

∆0u0 = f (x), u0

∣∣∣
x∈∂Ω
=
∂u0

∂nx

∣∣∣∣∣
x∈∂Ω
= 0. (1.6)

By ∆∗0, we denote the adjoint operator to the operator ∆0 in the space L2(Ω), and its kernel is denoted
by ker∆∗0.

Further, the operators ∆0 and ∆∗0 are called the minimal and maximal operators, respectively,
generated by the Laplacian. Using the properties of ∆0 and ker∆∗0 by the method of regular extension
of the operator ∆0, Vishik [11] described all (regular) boundary value problems for Poison’s
equation (1.3) in the Hilbert space L2(Ω). An operator ∆K is called a regular extension of the operator
∆0, if

∆0 ⊂ ∆K ⊂ ∆
∗
0 and ∥∆−1

k ∥ < ∞,
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u ∈ D(∆k)⇔ u = u0 + Kv + L−1
Q v, ∆Ku = ∆∗0u = ∆0u0 + v,

v ∈ ker∆∗0, K : ker∆∗0 → ker∆∗0,

where K is a linear bounded operator and LQ is a fixed differential operator generated by Eq (1.3) and
the regular boundary conditions, see [12, 13].

Otelbaev et al. [12] extended Vishik’s result to Banach spaces. They also described the correct
restriction of the maximal operator ∆∗0, which can handle not only boundary value problems but also
problems with internal “boundary” conditions. Such problems include the Bitsadze–Samarskii
problem [14], which arises in the study of liquid plasma motion.

The boundary conditions of problems (1.3) and (1.4) are overdetermined along the entire boundary
∂Ω, making it an ill-posed problem. Therefore, the main objective of this paper is to identify conditions
that ensure the solvability of problems (1.3) and (1.4).

We begin by noting that since

D(∆0) =
◦

W2
2(Ω)

is dense in L2(Ω), we have the following equality:

L2(Ω) = R(∆0) ⊕ ker∆∗0. (1.7)

Thus, the condition for the operator ∆0 to be invertible coincides with the condition for f to be
orthogonal to the whole ker∆∗0, that is, to all harmonic functions. This viewpoint from the perspective
of operator theory provides us with an understanding of the solvability of the overdetermined
problems (1.3) and (1.4). Nevertheless, ensuring the fulfillment of this condition can pose significant
challenges.

Alternatively, suppose L−1
D f is the solution of the Dirichlet problem. Then, we have

u = L−1
D f =

∫
Ω

G(x, ξ) f (ξ)dξ,

where G(x, ξ) is the Green’s function of the Dirichlet problem, satisfying:

L−1
D f

∣∣∣
x∈∂Ω
= 0.

Hence, one of the necessary conditions for the overdetermined problem is satisfied, so that u ∈
D(∆0) is necessary and sufficient for

∂

∂nx

∫
∂Ω

G(x, ξ) f (ξ)dξ
∣∣∣∣∣
x∈∂Ω
= 0. (1.8)

However, it is typically challenging to verify the above condition (1.8) due to the lack of an explicit
formula for Green’s function G(x, ξ) in Ω, which is only known for some specific domains.

Let ε(x) denote the fundamental solution of Eq (1.3), which satisfies:

∆xε(x) = δ(x), (1.9)
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where δ(x) is the Dirac delta function. We use the representations of ε(x) given by:

ε(x) =
1

2π
ln |x|, x ∈ R2,

ε(x) = −
1

(n − 2)ωn

1
|x|n−2 , x ∈ Rn, n ≥ 3,

(1.10)

where ωn is the surface area of the unit sphere in Rn.
We define the Newton potential in the following form

u(x) =
∫
Ω

ε(x − y) f (y)dy. (1.11)

In the present paper, we establish a solvability criterion for the overdetermined problems (1.3)
and (1.4) in terms of the Newton potential. Our approach not only addresses this specific problem but
also offers potential extensions to more general elliptic operators. Additionally, we demonstrate the
applicability of our method in solving the Schiffer problem from [15].

This short paper has a simple structure: In Section 2, we present a solvability criterion for the
problems (1.3) and (1.4) in L2(Ω). That is, we provide a necessary and sufficient condition for the
problems (1.3) and (1.4) to be uniquely solvable in L2(Ω). The proof of this criterion relies on the
boundary condition of the Newton potential, which was constructed in [16]. We also refer to [17,18] for
more general cases. In Section 3, we demonstrate the consequences of our result with one-dimensional
examples that involve explicit computations. In Section 4, we apply our result to provide a novel
characterization of the Schiffer property of sets. By employing our findings, we offer new insights into
the Schiffer problem. Finally, in Section 5, we discuss some extensions of our results to general elliptic
equations.

2. Main result

We state the main result of this paper below.

Theorem 2.1. The Cauchy problem for Poisson’s equation (1.3) with the condition (1.4) on the entire
boundary ∂Ω, that is, the minimal operator ∆0 is invertible in L2(Ω) if and only if the following
condition holds ∫

Ω

ε(x − y) f (y)dy

∣∣∣∣∣∣∣∣
x∈∂Ω

= 0, (2.1)

where the kernel ε is the fundamental solution of the Laplacian.

It is important to note that the Newton potential of a ball of constant density is constant on the
surface of the ball. Interestingly, this property in fact uniquely characterizes the balls for any dimension
n ≥ 2, as was shown by Fraenkel [19] (see also [20]). In essence, the Newton potential of constant
mass density is constant on the boundary ∂Ω if and only if Ω is a ball.

Observing Theorem 2.1, it is straightforward to discern that if the density f is a constant other than
zero, there exists no solution for the overdetermined boundary value problems (1.3) and (1.4) for any
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Ω ⊂ Rn, n ≥ 3. This is because the fundamental solution is negative when n ≥ 3. As an example, the
overdetermined torsion problem, where f = −2, also lacks a solution in any Ω ⊂ Rn, n ≥ 3.

The proof of Theorem 2.1 is based on the boundary property of the Newton potential u(x) given by
Eq (1.11), which was obtained in [16, Theorem 1]:

Theorem 2.2. For any f ∈ L2(Ω), the Newton potential defined by the formula (1.11) belongs to W2
2 (Ω)

and satisfies the following boundary condition:

−
u(x)

2
+

∫
∂Ω

(
ε(x − y)

∂u(y)
∂ny

−
∂ε(x − y)
∂ny

u(y)
)

dy = 0, x ∈ ∂Ω. (2.2)

Conversely, if u ∈ W2
2 (Ω) satisfies Eq (1.3) and the boundary condition (2.2), then it coincides with the

Newton potential in Ω.

Note that the special boundary condition (2.2) can be called the boundary condition of the Newton
potential.

Proof of Theorem 2.1. Necessity. Let u ∈ D(∆0) and ∆0u = f , then

u
∣∣∣
x∈∂Ω
= 0

and
∂u
∂nx

∣∣∣
x∈∂Ω
= 0.

Hence, u(x) satisfies the boundary condition (2.2). According to Theorem 2.2, the function u(x) is the
Newton potential and satisfies

u(x)
∣∣∣
x∈∂Ω
=

∫
Ω

ε(x − y) f (y)dy
∣∣∣
x∈∂Ω
= 0. (2.3)

Thus, the necessity condition (2.1) is proven.
Sufficiency. If the condition (2.1) is satisfied, then we seek the solution of ∆0u = f in the form

u(x) =
∫
Ω

ε(x − y) f (y)dy, x ∈ Ω.

By Theorem 2.2, this Newton potential satisfies the boundary condition (2.2), and it also satisfies the
Dirichlet boundary condition

u|x∈∂Ω = 0

according to (2.1).
Therefore, combining (2.2) with (2.1), we have∫

∂Ω

ε(x − y)
∂

∂ny
u(y)dy = 0, x ∈ ∂Ω. (2.4)
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Hence, the function

v(x) =
∫
∂Ω

ε(x − y)
∂

∂ny
u(y)dy, x ∈ Ω (2.5)

is a solution to the Laplace equation

∆xv(x) = 0, x ∈ Ω (2.6)

with the Dirichlet boundary condition
v(x)

∣∣∣
x∈∂Ω
= 0. (2.7)

From the uniqueness of the solution of the Dirichlet problem, it follows that v(x) ≡ 0 in Ω. If we
continue v(x) throughout Rn by 0, and use the property of the simple-layer potential, then we arrive at

0 =
∂v
∂nx

∣∣∣
x∈∂Ω+

−
∂v
∂nx

∣∣∣
x∈∂Ω−

=
∂u
∂nx

∣∣∣
x∈∂Ω
.

Here, ∂Ω+ denotes an exterior domain, while ∂Ω− denotes an interior domain. Indeed, the simple-layer
potential v(x) is harmonic in Ω and Rn \ Ω, and it has a jump discontinuity across the boundary ∂Ω
(see [21, 22])

∂v
∂nx

∣∣∣
x∈∂Ω+

−
∂v
∂nx

∣∣∣
x∈∂Ω−

=
∂u
∂nx

∣∣∣
x∈∂Ω
.

Since v(x) = 0 inside Ω, then we have
∂v
∂nx

∣∣∣∣∣
x∈∂Ω−

= 0,

and its normal derivative from outside ∂Ω+ is zero.
The proof is now complete. □

3. One-dimensional case

In the one-dimensional case, the Newton potential u(x) is given by the formula

u(x) =
1
2

1∫
0

|x − ξ| f (ξ)dξ. (3.1)

Let us find the boundary condition for the integral (3.1).
Substituting f (ξ) by d2

dξ2 u(ξ) in (3.1) and integrating by part, we obtain

u(x) =
1
2

∫ 1

0
|x − ξ| f (ξ)dξ =

1
2

∫ 1

0
|x − ξ|

d2

dξ2 u(ξ)dξ

=
1
2

∫ x

0
(x − ξ)

d2

dξ2 u(ξ)dξ +
1
2

∫ 1

x
(ξ − x)

d2

dξ2 u(ξ)dξ

=
1
2

[
(x − ξ)

d
dξ

u(ξ)
∣∣∣x
0
+ u(ξ)|x0 + (ξ − x)

d
dξ

u(ξ)
∣∣∣1
x
− u(ξ)|1x

]
= u(x) +

1
2

[
−xu′(0) − u(0) + (1 − x)u′(1) − u(1)

]
.

(3.2)
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Thus,
x(−u′(0) − u′(1)) − u(0) + u′(1) − u(1) = 0, x ∈ (0, 1).

Since x ∈ (0, 1) is arbitrary, it follows that

u′(0) + u′(1) = 0, u′(1) = u(0) + u(1). (3.3)

Thus, the condition (3.3) is the boundary condition for the one-dimensional Newton potential (3.1),
that is, it is the one-dimensional analogue of (2.2).

Now, we rewrite the condition ∫
Ω

ε(x − y) f (y)dy
∣∣∣
x∈∂Ω
= 0

in the one-dimensional case. A direct calculation gives

u(0) =
1
2

∫ 1

0
|x − ξ| f (ξ)dξ

∣∣∣
x=0

=
1
2

∫ 1

0
ξ f (ξ)dξ

= 0,

hence,

u(1) =
1
2

∫ 1

0
|x − ξ| f (ξ)dξ

∣∣∣
x=1

=
1
2

∫ 1

0
f (ξ)dξ

= 0.

That is, in the one-dimensional case, the condition (2.1) is equivalent to f (x) being orthogonal to
both 1 and x. To show the sufficiency of this condition, let us assume that f (x) is orthogonal to both 1
and x. Taking into account (3.3) and

u(0) = u(1) = 0,

it follows that
u(0) = u(1) = u′(0) = u′(1) = 0.

It means that the solution
u ∈

◦

W2
2(0, 1)

defined by the formula (3.1) satisfies the (one-dimensional) condition (2.1).
Now let us show necessity. We need to show that if the problem

v′′(x) = f (x), x ∈ (0, 1) (3.4)

with the overdetermined conditions

v(0) = v(1) = v′(0) = v′(1) = 0 (3.5)
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has a solution, then f (x) is orthogonal to both 1 and x. If a solution exists, it can be written in the form

v(x) =
1
2

1∫
0

|x − ξ| f (ξ)dξ +C1x +C2. (3.6)

According to the boundary conditions, we have

v(0) =
1
2

1∫
0

ξ f (ξ)dξ +C2 = 0,

v(1) =
1
2

1∫
0

f (ξ)dξ −
1
2

1∫
0

ξ f (ξ)dξ +C1 +C2 = 0,

v′(0) = u′(0) +C1 = 0,
v′(1) = u′(1) +C1 = 0.

This confirms Theorem 2.1, where ∫ 1

0

1
2
|x − y| f (y)dy

∣∣∣
x=0,1
= 0

or equivalently, f is orthogonal to 1 and x. That is, the overdetermined problem

u′′(x) = f (x), x ∈ (0, 1) (3.7)

with the boundary condition
u(0) = u(1) = u′(0) = u′(1) = 0 (3.8)

has a solution if and only if f (x) is orthogonal to both 1 and x. For example, set

f (x) = x2 − x +
1
6
.

Since ∫ 1

0
f (x)dx = 0

and ∫ 1

0
f (x)xdx = 0,

in this case, the overdetermined problems (3.4)–(3.8) must have a solution. Indeed, the solution is

u(x) =
1

12
x2(1 − x)2.
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4. Characterization of the Schiffer property

A domain Ω ⊂ Rn (n ≥ 2) with a smooth connected boundary is said to have the Schiffer property if
there is no λ > 0 such that the overdetermined boundary value problem

∆u + λu = −1

in Ω, with

u =
∂u
∂nx
= 0

on ∂Ωwhere nx is the exterior normal to ∂Ω, has a solution. For further details on the original statement
of this problem, we refer to [15] and [23, Problem 80].

Let us consider the following: non-homogeneous Helmholtz equation

∆u(x) + λu(x) = f (x), x ∈ Ω, (4.1)

with
u(x)

∣∣∣
x∈∂Ω
= 0,

∂u(x)
∂nx

∣∣∣∣∣
x∈∂Ω
= 0. (4.2)

The analog of Theorem 2.2 for the non-homogeneous Helmholtz equation was proved in [24].
Imitating the proof of Theorem 2.1, we obtain that the overdetermined boundary value problems (4.1)
and (4.2) have a solution if and only if∫

Ω

ελ(x − y) f (y)dy

∣∣∣∣∣∣∣∣
x∈∂Ω

= 0, (4.3)

where ελ is the fundamental solution of the Helmholtz equation satisfying the Sommerfield radiation
condition

lim
|x|→∞
|x|(n−1)/2

(
∂ελ
∂|x|
+ i
√
λελ

)
= 0.

That is, Ω has the Schiffer property if and only if

∫
Ω

ελ(x − y)dy

∣∣∣∣∣∣∣∣
x∈∂Ω

, 0 (4.4)

for all λ > 0.
Thus, it gives a definitive answer to the Schiffer problem, which consists of deciding which sets Ω

have the Schiffer property. Note that it is also related to the so-called Pompeiu property (see, e.g., [25]).

5. On general elliptic case

Let Ω ⊂ Rn (n ≥ 2) with a smooth connected boundary. Consider the following elliptic (Newton)
potential

u(x) =
∫
Ω

ε(x, ξ)ρ(ξ)dξ, (5.1)
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where ε(x, ξ) is the fundamental solution of the second order linear elliptic equation, i.e.,

Lu(x) : = −
n∑

i, j=1

∂

∂xi
ai j(x)

∂

∂x j
u(x) + a(x)u

= ρ(x),

(5.2)

where

n∑
i, j=1

ai j(x)ξiξ j ≥ δ|ξ|
2, δ > 0,

|ξ|2 =

n∑
i, j=1

ξ2
i ,

ai j(x) ∈ C3(Ω̄), a(x) ∈ C2(Ω̄), and a(x) ≥ 0.
Now we recall briefly a method for constructing the fundamental solution of Eq (5.2) according to

the classical approach proposed by Bitsadze [14].
Let us denote by Ai j the division ratios of the algebraic complement of the elements ai j of the matrix

∥ai j∥ of the leading coefficients of Eq (5.2) in the determinant

a = det
∥∥∥ai j

∥∥∥ .
We introduce the function:

σ(x, ξ) =
n∑

i, j,ξ

Ai j(x)(xi − ξi)(x j − ξ j),

where x and ξ are arbitrary points in Ω.
Suppose

ai j(x) ∈ C3(Ω̄) and a(x) ∈ C1(Ω̄).

It is known that (5.1) is uniformly elliptic, and there are positive constants k0 and k1 such that

k0|x − ξ|2 ≤ σ(x, ξ) ≤ k1|x − ξ|2.

For x , ξ we define the function

ε (x, ξ) =

 σ0(ξ)σ(x, ξ)
2−n

2 , n > 2,
− 1

2πσ0

√
a(ξ)

lnσ(x, ξ), n = 2, (5.3)

where for n > 2,

σ0(ξ) =
[
ωn(n − 2)

√
|a(ξ)|

]−1
,

ωn is the area of an n-dimensional unit sphere, and a(ξ) is the determinant of the matrix {ai, j}.
The following theorem is analogous to Theorem 2.2, and the proof is similar (see [16, Theorem 1]).
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Theorem 5.1. Let ρ ∈ L2(Ω), then the elliptic potential defined by formula (5.1) satisfies the following
boundary condition:

−
u(x)

2
+

∫
∂Ω

u(ξ)
n∑

i, j=1

niai j(ξ)
∂

∂ξ j
ε(x, ξ)dξ −

∫
∂Ω

ε(x, ξ)
n∑

i, j=1

niai j(ξ)
∂

∂ξ j
u(ξ)dξ = 0, x ∈ ∂Ω. (5.4)

Conversely, if a function u ∈ W2
2 (Ω) satisfies Eq (5.2) and the boundary condition (5.4), then u(x)

coincides with elliptic potential (5.1).

Now, we have the following (elliptic) extensions of the results stated in Section 2.

Theorem 5.2. For all f ∈ L2(Ω), the following Cauchy problem

Lu = f , x ∈ Ω,

u
∣∣∣
x∈∂Ω
=
∂u
∂nx

∣∣∣
x∈∂Ω
= 0,

has a unique solution if and only if ∫
Ω

ε(x, y) f (y)dy
∣∣∣
x∈∂Ω
= 0,

where ε(x, y) is the fundamental solution of the elliptic operator L.

Proof. Necessity. Let u ∈ D(∆0) and ∆0u = f , then

u
∣∣∣
x∈∂Ω
= 0

and
∂u
∂nx

∣∣∣
x∈∂Ω
= 0.

Hence, u(x) satisfies the boundary condition (5.4). According to Theorem 5.1, the function u(x) is the
volume potential and satisfies

u(x)
∣∣∣
x∈∂Ω
=

∫
Ω

ε(x, y) f (y)dy
∣∣∣
x∈∂Ω
= 0. (5.5)

Thus, the necessity condition is proved.
Sufficiency. Assuming that the condition (5.5) is fulfilled, we propose the solution to ∆0u = f as

follows:

u(x) =
∫
Ω

ε(x − y) f (y) dy, x ∈ Ω.

By Theorem 5.1, this Newton potential satisfies the boundary condition (5.4). Now sufficiency can be
established using the same method as demonstrated in the proof of Theorem 2.1. □
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6. Conclusions

In this paper, we establish a criterion for the solvability of the overdetermined problem for Poisson’s
equation

∆u = f (x), x ∈ Ω ⊂ Rn

with both the Dirichlet and Neumann conditions on the entire boundary

u(x)
∣∣∣
x∈∂Ω
= 0,

∂u(x)
∂nx

∣∣∣∣∣
x∈∂Ω
= 0.

The proof is based on the boundary condition formula for the Newton potential

−
u(x)

2
+

∫
∂Ω

(
ε(x − y)

∂u(y)
∂ny

−
∂ε(x − y)
∂ny

u(y)
)

dy = 0, x ∈ ∂Ω.

The obtained results are also extended to general second-order linear elliptic equations. As a byproduct,
we present a characterization of the Schiffer property. It gives a definitive answer to the Schiffer
problem.
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