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1. Introduction

A matrix A ∈ Rn×n is said to be stable if all its eigenvalues lie in the open left half plane, i.e., all the
eigenvalues of A have negative real parts. It is well-known that a matrix A is stable if and only if there
is a positive definite matrix P such that AT P + PA is negative definite. This implies that V(x) = xT Px
serves as a quadratic Lyapunov function for the asymptotically stable linear system

ẋ = Ax.

In this paper, we consider only real square matrices. Let A be a real n × n matrix. A ≻ 0 (A ⪰ 0,
resp.) means A is a symmetric positive definite (semidefinite, resp.) matrix.

For the sake of convenience, we will adopt the concept of positive stability. A matrix A ∈ Rn×n is
defined as positive stable if all its eigenvalues possess positive real parts. Clearly, if A is positive stable,
then −A is stable. Therefore, results in positive stability can be translated into terms of stability.

It is well-established that a matrix A ∈ Rn×n is positive stable if and only if there exists P ≻ 0 in
Rn×nsuch that
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AT P + PA ≻ 0. (1.1)

In this case, P is known as a Lyapunov solution for A or to the Lyapunov inequality (1.1). Several
numerical methods have been developed to address the problem of finding such matrices P [1–3].

A particular case emerges from (1.1) when a positive diagonal matrix D satisfies the Lyapunov
inequality. If so, D is called a Lyapunov diagonal solution for A. Furthermore, we say that A is a
Lyapunov diagonally stable matrix. The problem of Lyapunov diagonal stability is well investigated
in the literature ( [4–9] and the references therein). The importance of this problem is due to its
applications in, most significantly, population dynamics [10], communication networks [11], and
systems theory [12].

Another case of (1.1), known as Lyapunov α-scalar stability, appeard in [13]. For a partition α =
{α1, . . . , αs} of the set {1, . . . , n}, the diagonal solution D has an α-scalar structure, i.e. D[αi] = ciI,
ci ∈ R, i = 1, . . . , s, where D[αi] is the principal submatrix of D on row and column indices αi. A set
α = {α1, . . . , αs}, 1 ≤ s ≤ n, is said to be a partition of {1, . . . , n} if for all i, j ∈ {1, . . . , s}, αi , ∅,
αi ∩ α j = ∅, and αi ∪ · · · ∪ αs = {1, . . . , n}. We assume, without loss of generality, that these αi’s are
taken to have contiguous indices because our results are applicable with simultaneous row and column
permutations.

For brevity, if A ∈ Rk×k is a Lyapunov diagonally stable matrix, we will write A ∈ LDS k. Similarly,
we write A ∈ LDS αk if A is Lyapunov α-scalar stable.

A recent generalization of Lyapunov diagonal stability to a family of real matrices of the same size,
A = {A(i)}ri=1, has drawn significant interest [14–18]. This extension studies the existence of a diagonal
matrix D ≻ 0 satisfying

(A(i))T D + DA(i) ≻ 0, (1.2)

i = 1, . . . , r. If such matrix D exists, it is known as a common Lyapunov diagonal solution for A or
to (1.2). Consequently, we say A has common Lyapunov diagonal stability. From this definition, it is
clear that common Lyapunov diaognal stability can be interpreted as simultaneous Laypunov diagonal
stability for the matrices inA. The existence of a common Lyapunov diagonal solution D forA implies
that V(x) = xT Dx acts as a common Lyapunov diagonal function for the collection of asymptotically
stable linear systems

ẋ = A(i)x, i = 1, . . . , r.

An immediate observation here is that whenA = A, i.e.,A is a singleton,A ∈ CLDS is equivalent
to A ∈ LDS , andA ∈ CLDS α is equivalent to A ∈ LDS α. Additionally, it is worth mentioning that the
cardinality ofA is not relevant. For convenience, we shall fix it to be r throughout the rest of this note.

Applications of common Lyapunov diagonal stability have been found in the fields of large-scale
dynamics [19–22], as well as in the study of interconnected time-varying and switched systems [18].
Beyond these practical applications, common Lyapunov diagonal stability is also a significant research
topic in itself, as evidenced by works such as [14, 16, 17, 23].

Let A ∈ Rn×n be a nonsingular matrix. In [24], Redheffer proved that A ∈ LDS n if and only if the
(n−1)×(n−1) leading principal submatrices of A and A−1 have a common Lyapunov diagonal solution.
This result has been restated in [16, 23] using the notion of Schur complements. The new statement is
free of the nonsingularity condition. Specifically, it was shown that a matrix A ∈ LDS n if and only if
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ann > 0 and the (n − 1) × (n − 1) leading principal submatrix of A and its Schur complement have a
common Lyapunov diagonal solution.

For any vectors u, v ∈ Rn, when we write u ≫ v, it means ui > vi for all i ∈ {1, . . . , n}. For a matrix
A ∈ Rn×n, the vector u ∈ Rn with ui = aii, for i = 1, . . . , n, is denoted by diag(A). We denote the identity
matrix I ∈ Rk×k by Ik and the matrix of all ones in Rk×k by Jk.

Let A = [ai j], B = [bi j] ∈ Rn×n and C ∈ Rm×m. The Hadamard product of A and B is denoted by
A ◦ B = [ai jbi j] ∈ Rn×n. The Kronecker product of A and C is denoted by A ⊗C = [ai jC] ∈ Rnm×nm.

Let n,m ∈ N and for i = 1, . . . , n, let mi ∈ N such that m = m1 + · · · + mn, where n ≤ m. Then,
a matrix S ∈ Rm×m is an n by n block matrix if it is partitioned into blocks that conform with mi,
i = 1, . . . , n. Moreover, we denote each m j by mk block of S as S jk. Similarly, a vector u ∈ Rm is
called an n-block vector if it is partitioned into n subvectors, i.e., uT = [uT

m1
. . . uT

mn
], where umi ∈ R

mi ,
i = 1, . . . , n. Throughout this note, it is assumed that n,m and all mi, i = 1, . . . , n, are natural number
with n ≤ m and m = m1 + · · · + mn.

The Khatri-Rao product of a matrix A = [ai j] ∈ Rn×n and an n by n block matrix B = [Bi j] ∈ Rm×m

is defined as A⋆ B = [ai jBi j] ∈ Rm×m. Similarly, let v = [vi] ∈ Rn and u = [umi] ∈ R
m be n-block vector,

then v ⋆ u = [viumi] ∈ R
m.

Suppose that ∅ , α ⊆ {1, . . . , k}, |α| is the cardinality of α and αc = {1, . . . , n} \ α. We denote the
principal submatrix of A obtained by selecting rows and columns indexed by α as A[α]. Similarly, for
a vector u ∈ Rk, u[α] represents the subvector of u containing only the elements indexed by α.

Lemma 1.1. ( [25, Corollary 4.2.13]) Let A ∈ Rn×n and B ∈ Rm×m. If A and B are both positive
semidefinite matrices then A ⊗ B ∈ Rnm×nm is also a positive semidefinite matrix.

Lemma 1.2. ( [26, Theorem 3.1]) Let A ∈ Rn×n be a positive definite matrix. If B ∈ Rm×m is a positive
semidefinite n by n block matrix with Bii ≻ 0, i = 1, . . . ,m, then A ⋆ B ≻ 0.

For the remainder of this note, Q = [qi j] ∈ Rm×m denotes the nonzero n by n block matrix defined as

(Qi j)kl =

{
1 if k = l
0 if k , l.

(1.3)

Additionally, for an n by n block matrix B ∈ Rm×m , we define the matrix T (B) ∈ Rn×n such that
(T (B))i j = (Bi j)11.

Now, let us recall the definition of a P-matrix. A matrix whose principal minors are all positive is
known as a P-matrix. A well-known characterization for P-matrices in the context of real matrices is
given next.

Lemma 1.3. ( [27, Theorem 3.3]) A matrix A ∈ Rn×n is a P-matrix if and only if ui(Au)i > 0 for all
nonzero u ∈ Rn.

Motivated by Lemma 1.3, a generalization of the concept of P-matrices to Pα-matrices has been
developed in [13].

Definition 1.1. Let A ∈ Rn×n and α = {α1, . . . , αs} be a partition of {1, . . . , n}. Then, A is a Pα-matrix
if there is some k ∈ {1, . . . , s} such that u[αk]T (Au)[αk] > 0 for all nonzero u ∈ Rn.

For A ∈ Rk×k, A ∈ Pk indicates that A is a P-matrix, while A ∈ Pαk means that A is Pα-matrix.
Using the characterization in Lemma 1.3 and Definition 1.1, the P-matrix and Pα-matrix properties

were extended in [17, 28], respectively, to consider a family of real matrices.
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Definition 1.2. LetA = {A(i)}ri=1 be a family of real n× n matrices. Then,A is called a P-set and write
A ∈ Pn if for any family of vectors {u(i)}ri=1 in Rn, not all being zero, there is some k ∈ {1, . . . , n} such
that

r∑
i=1

u(i)
k (A(i)u(i))k > 0.

Definition 1.3. LetA = {A(i)}ri=1 be a family of real n × n matrices and α = {α1, . . . , αs} be a partition
of {1, . . . , n}. Then, A is called a Pα-set and write A ∈ Pαn if for any family of vectors {u(i)}ri=1 in Rn,
not all being zero, there is some k ∈ {1, . . . , s} such that

r∑
i=1

u(i)[αk]T (A(i)u(i))[αk] > 0.

Theorem 1.4. ( [14, Theorem 2]) Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n,
i = 1, . . . , r. Then,A ∈ CLDS n if and only if the matrix

r∑
i=1

A(i)H(i)

has a positive diagonal entry for any H(i) ⪰ 0 in Rn×n, i = 1, . . . , r, not all being zero.

Theorem 1.5. ( [17, Theorem 2.5]) Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n,
i = 1, . . . , r. Then, the following are equivalent:

(i) A ∈ CLDS n.

(ii) {A(i) ◦ S (i)}ri=1 ∈ CLDS n for all S (i) ⪰ 0, with diag(S (i)) ≫ 0 for i = 1, . . . , r.

(iii) {A(i) ◦ S (i)}ri=1 ∈ CLDS n for all S (i) ⪰ 0, with diag(S (i)) = e for i = 1, . . . , r.

(iv) {A(i) ◦ S (i)}ri=1 ∈ Pn for all S (i) ⪰ 0, with diag(S (i)) ≫ 0 for i = 1, . . . , r.

(v) {A(i) ◦ S (i)}ri=1 ∈ Pn for all S (i) ⪰ 0, with diag(S (i)) = e for i = 1, . . . , r.

The above two theorems provide characterizations for common Lyapunov diagonal stability.
Theorem 1.4 extends Theorem 1 from [4], while Theorem 1.5 is inspired by the work of
Kraaijevanger [8]. The primary objective of our work is to offer additional characterizations that
enhance and unify the existing results in the literature.

2. Common Lyapunov diagonal stability

We begin this section with a lemma that gives a necessary condition for the common Lyapunov
diagonal stability.

Lemma 2.1. ( [17, Theorem 2.3]) LetA = {A(i)}ri=1 be a family of real n × n matrices. IfA ∈ CLDS n,
thenA ∈ Pn.

Next, we demonstrate that if a family of matricesA of the same size forms a P-set, then any family
of principal submatrices ofA obtained by deleting the same rows and columns also forms a P-set.
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Lemma 2.2. Let A = {A(i)}ri=1 be a family of real n × n matrices and ∅ , α ⊆ {1, . . . , n}. If A ∈ Pn,
then B = {A[α]}ri=1 ∈ P|α|.

Proof. For i = 1, . . . , r, let v(i) ∈ R|α|, not all being zero. Then, for each i, construct u(i) ∈ Rn to be such
that u(i)[α] = v(i) and u(i)[αc] = 0. Clearly, not all these u(i)’s are zero vectors since not all v(i)’s are zero.
Hence, sinceA ∈ Pn , there is some k ∈ {1, . . . , n} such that

r∑
i=1

u(i)
k (A(i)u(i))k > 0.

Observe that for each i, u(i)
k = v(i)

l and (A(i)u(i))k = (A[α](i)v(i))l for some l ∈ α. Otherwise, the above
summation equals zero. From this observation, we obtain that

r∑
i=1

v(i)
l (A(i)[α]v(i))l > 0.

Therefore, by Definition 1.2, B ∈ P|α|. □

We are now ready to present our main theorem.

Theorem 2.3. LetA = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r. Then, the
following are equivalent:

(i) A ∈ CLDS n.

(ii) {A(i) ⋆ S (i)}ri=1 ∈ CLDS m for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j ≻ 0 for all

i = 1, . . . , r and j = 1, . . . , n.

(iii) {A(i) ⋆ S (i)}ri=1 ∈ CLDS m for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j = Im j for all

i = 1, . . . , r and j = 1, . . . , n.

(iv) {A(i) ⋆ S (i)}ri=1 ∈ Pm for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j ≻ 0 for all i = 1, . . . , r

and j = 1, . . . , n.

(v) {A(i)⋆S (i)}ri=1 ∈ Pm for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j = Im j for all i = 1, . . . , r

and j = 1, . . . , n.

Proof. It is trivial to see that (ii) implies (iii) and (iv) implies (v). Moreover, from Lemma 2.1, it is
clear that (ii) implies (iv) and (iii) implies (v). Hence, to finish the proof, we show that (i) implies (ii)
and (v) implies (i).

(i) ⇒ (ii): Suppose that D ≻ 0 in Rn×n is a common Lyapunov diagonal solution for A. Then, for
i = 1, . . . , r, we have (A(i))T D + DA(i) ≻ 0. Let {S (i)}ri=1 be any family of positive semidefinite n by n
block matrices in Rm×m with S (i)

j j ≻ 0 for j = 1, . . . , n and i = 1, . . . , r. Hence, according to Lemma 1.2,
we have

((A(i))T D + DA(i)) ⋆ S (i) ≻ 0, (2.1)

for i = 1, . . . , r. Since we have

((A(i))T D + DA(i)) ⋆ S (i) = ((A(i))T D) ⋆ S (i) + (DA(i)) ⋆ S (i),
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it follows from (2.1) that
((A(i))T D) ⋆ S (i) + (DA(i)) ⋆ S (i) ≻ 0. (2.2)

Now, observe that
(DA(i)) ⋆ S (i) = (D ⋆ Im)(A(i) ⋆ S (i)),

and
((A(i))T D) ⋆ S (i) = (A(i) ⋆ S (i))T (D ⋆ Im)

for each i, where Im ∈ R
m×m is the identity matrix partitioned into n by n blocks. Using these

observations, it follows from (2.2) that

(A(i) ⋆ S (i))T (D ⋆ Im) + (D ⋆ Im)(A(i) ⋆ S (i)) ≻ 0,

for i = 1, . . . , r. Clearly, the diagonal matrix D ⋆ Im ∈ R
m×m is positive definite. Hence, (ii) follows.

(v) ⇒ (i): For i = 1, . . . , r, let X(i) = [x(i)
kl ] ⪰ 0 in Rn×n, not all being zero. Now, set D(i) to be the

diagonal matrices whose diagonal elements d(i)
kk =

√
x(i)

kk for all i = 1, . . . , r and k = 1, . . . , n. Thus, for

each i, we can write X(i) = D(i)S (i)D(i) for some S (i) = [s(i)
kl ] ⪰ 0 in Rn×n with skk = 1, k = 1, . . . , n. Next,

let us fix p = max{m1, . . . ,mn}. Then, by Lemma 1.1, S (i) ⊗ Ip ⪰ 0 in Rnp×np, i = 1, . . . r. Observe that
for each i, S (i) ⋆ Q ∈ Rm×m is a principal submatrix of S (i) ⊗ Ip, where Q is a matrix defined as in (1.3).
Therefore, we conclude that S (i) ⋆ Q ⪰ 0, with (S (i) ⋆ Q) j j = Im j , i = 1, . . . , r, j = 1, . . . , n. By (v),
{A(i) ⋆ (S (i)) ⋆ Q)}ri=1 ∈ Pm. So, we obtain from Lemma 2.2 that {T (A(i) ⋆ (S (i) ⋆ Q))}ri=1 ∈ Pn. Now, let
u(i) ∈ Rn×n, i = 1, . . . , r, be such that u(i)

k = d(i)
kk , k = 1, . . . , n. It is clear that not all u(i) are zero vectors.

Thus, from the definition of P-sets, we must have

r∑
i=1

u(i)
q [(T (A(i) ⋆ (S (i) ⋆ Q)))u(i)]q > 0

for some q ∈ {1, . . . , n}. Hence, it follows that

r∑
i=1

u(i)
q [(T (A(i) ⋆ S (i) ⋆ Q))u(i)]q =

r∑
i=1

d(i)
qq

n∑
k=1

(T (A(i) ⋆ S (i) ⋆ Q))qkd
(i)
kk

=

r∑
i=1

d(i)
qq

n∑
k=1

(T ((A(i) ◦ S (i)) ⋆ Q))qkd
(i)
kk =

r∑
i=1

d(i)
qq

n∑
k=1

(a(i)
qks(i)

qkQqk)11d(i)
kk

=

r∑
i=1

d(i)
qq

n∑
k=1

a(i)
qks(i)

qkd
(i)
kk =

r∑
i=1

n∑
k=1

a(i)
qkd

(i)
qqs(i)

qkd
(i)
kk

=

r∑
i=1

n∑
k=1

a(i)
qkx(i)

qk =

r∑
i=1

n∑
k=1

a(i)
qkx(i)

kq = (
r∑

i=1

A(i)X(i))qq > 0.

From this last inequality and by Theorem 1.4, (i) holds.
The proof is complete now. □

To demonstrate the validity of Theorem 2.3, consider the following example.
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Example 2.1. Let n = 2, m = 3, m1 = 2, and m2 = 1. Then, consider the familyA = {A(i)}2i=1, where

A(1) =

[
2 −1
0 3

]
and A(2) =

[
1 −1
0 4

]
.

According to Theorem 2.3, to show that A ∈ CLDS 2 it suffices to show that {A(i) ⋆ S (i)}2i=1 ∈ P3 for
any 2 by 2 block matrices S (i) ⪰ 0 in R3×3 with S (i)

j j = Im j for all i = 1, 2 and j = 1, 2. Now, consider
the matrices

S (1) =


1 0 s(1)

13
0 1 s(1)

23
s(1)

13 s(1)
23 1

 and S (2) =


1 0 s(2)

13
0 1 s(2)

23
s(2)

13 s(2)
23 1

 .
Hence, we have

A(1) ⋆ S (1) =


2 0 −s(1)

13
0 2 −s(1)

23
0 0 3

 and A(2) ⋆ S (2) =


1 0 −s(2)

13
0 1 −s(2)

23
0 0 4

 .
Next, for i = 1, 2, let u(i) be any vectors in R3. Thus, a simple calculation shows that

(A(1) ⋆ S (1))u(1) =


2u(1)

1 − s(1)
13 u(1)

3
2u(1)

2 − s(1)
23 u(1)

3
3u(1)

3

 and (A(2) ⋆ S (2))u(2) =


u(2)

1 − s(2)
13 u(2)

3
u(2)

2 − s(2)
23 u(2)

3
4u(2)

3

 .
If at least one of u(1)

3 and u(2)
3 is nonzero, then

∑2
i=1 u(i)

3 (A(i)u(i))3 > 0. Otherwise, we must have

(A(1) ⋆ S (1))u(1) =


2u(1)

1
2u(1)

2
0

 and (A(2) ⋆ S (2))u(2) =


u(2)

1
u(2)

2
0

 .
Since u(1) and u(2) are not both zero vectors, then we must have k ∈ {1, 2} such that

∑2
i=1 u(i)

k (A(i)u(i))k > 0.
That means {A(i) ⋆ S (i)}2i=1 ∈ P3. Therefore, from Theorem 2.3, this implies that A ∈ CLDS 2. In fact,
we found that

D =
[
2

1

]
is a common Lyapunov diagonal solution forA.

We emphasize here that Theorem 2.6 is equivalent to Theorem 1.5 when m = n. Before we proceed
with the presentation of further results, we cite the following two lemmas from [28].

Lemma 2.4. ( [28, Lemma 3.2]) Let A = {A(i)}ri=1 be a family of real n × n matrices and α be any
partition of {1, . . . , n}. IfA ∈ CLDS αn , thenA ∈ Pαn .

Lemma 2.5. ( [28, Proposition 4.1]) LetA = {A(i)}ri=1 be a family of real n × n matrices and α be any
partition of {1, . . . , n}. IfA ∈ Pαn , thenA ∈ Pn.

For the remainder of this paper, let α = {α1, . . . , αn} is a partition of {1, . . . ,m} such that α1 =

{1, . . . ,m1}, α2 = {m1+1, . . . ,m1+m2}, . . . , αn = {m−mn+1, . . . ,m}. With this notation established,
we now provide another characterization of common Lyapunov diagonal stability.
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Theorem 2.6. LetA = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r. Then, the
following are equivalent:

(i) A ∈ CLDS n.

(ii) {A(i) ⋆ S (i)}ri=1 ∈ CLDS αm for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j ≻ 0 for all

i = 1, . . . , r and j = 1, . . . , n.

(iii) {A(i) ⋆ S (i)}ri=1 ∈ CLDS αm for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j = Im j for all

i = 1, . . . , r and j = 1, . . . , n.

(iv) {A(i) ⋆ S (i)}ri=1 ∈ P
α
m for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)

j j ≻ 0 for all i = 1, . . . , r
and j = 1, . . . , n.

(v) {A(i)⋆S (i)}ri=1 ∈ P
α
m for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)

j j = Im j for all i = 1, . . . , r
and j = 1, . . . , n.

Proof. It is clear that (ii) ⇒ (iii) and (iv) ⇒ (v). In addition, according to Lemma 2.4, (ii) ⇒ (iv) and
(iii)⇒ (v).

(i) ⇒ (ii): Let {S (i)}ri=1 be a family of positive semidefinite matrices given as in (ii) and D be
a common Lyapunov diagonal solution for A. Then, D ⋆ Im is a positive α-scalar matrix, where
Im ∈ R

m×m is the identity matrix partitioned into n by n blocks. Thus, as we have seen in the proof of
Theorem 2.3, we have

(A(i) ⋆ S (i))T (D ⋆ Im) + (D ⋆ Im)(A(i) ⋆ S (i)) ≻ 0,

for i = 1, . . . , r.
(v) ⇒ (i): Using Lemma 2.5, we can see that (v) here implies (v) in Theorem 2.3. Therefore, (i)

holds. □

Now, we extend Theorem 2.6 by considering different partitions of {1, . . . ,m}. Before presenting
our next result, let us set the stage first.

Let us define a bijective function τ : αi → βi that maps each element j ∈ αi to some βi for
i ∈ {1, . . . , n}. Hence, τ is a permutation of {1, . . . ,m}, and β is a partition of {1, . . . ,m}. Clearly, for
every i, the cardinality of αi is the same as the cardinality of βi. For the remainder of this section, β
denotes such partitions. In addition, construct the permutation matrix P such that P jτ( j) = 1 for all
j = 1, . . . ,m and zero everywhere else. For any permutation matrix P, we write CP = PCPT , where
C ∈ Rm×m. Then, the following observation can be easily verified.

Observation 2.1. Let P be a permutation matrix associated with some partition β. Then, we have

(1) S ⪰ 0 (S ≻ 0, resp.) if and only if S P ⪰ 0 (S P ≻ 0, resp.), S ∈ Rm×m.

(2) D is β-scalar matrix if and only if DP is α-scalar matrix, D ∈ Rm×m.

(3) {A(i)}ri=1 ∈ P
β
m if and only if {A(i)

P }
r
i=1 ∈ P

α
m, where A(i) ∈ Rm×m, i = 1, . . . , r.

Lemma 2.7. Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r and P
be a permutation matrix associated with some partition β. Then, {A(i)}ri=1 ∈ CLDS βn if and only if
{A(i)

P }
r
i=1 ∈ CLDS αn .
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Proof. The conclusion follows directly from observation 2.1 and noting that

((A(i))T D + DA(i))P = (A(i))T
PDP + DPA(i)

P ,

for all i. □

Theorem 2.8. Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r and P be
a permutation matrix associated with some partition β. Then, the following are equivalent:

(i) A ∈ CLDS n.

(ii) {(PT (A(i) ⋆ Jm)P) ◦ S (i)}ri=1 ∈ CLDS βm for all matrices S (i) ⪰ 0 in Rm×m with S (i)[β j] ≻ 0 for all
i = 1, . . . , r and j = 1, . . . , n.

(iii) {(PT (A(i) ⋆ Jm)P) ◦ S (i)}ri=1 ∈ CLDS βm for all matrices S (i) ⪰ 0 in Rm×m with S (i)[β j] = Im j for all
i = 1, . . . , r and j = 1, . . . , n.

(iv) {(PT (A(i)⋆Jm)P)◦S (i)}ri=1 ∈ P
β
m for all matrices S (i) ⪰ 0 inRm×m with S (i)[β j] ≻ 0 for all i = 1, . . . , r

and j = 1, . . . , n.

(v) {(PT (A(i) ⋆ Jm)P) ◦ S (i)}ri=1 ∈ P
β
m for all matrices S (i) ⪰ 0 in Rm×m with S (i)[β j] = Im j for all

i = 1, . . . , r and j = 1, . . . , n.

Proof. Clearly, the condition (ii) gives (iii) and (iv) gives (v). Moreover, (ii) leads to (iv) and (iii) to (v)
by Lemma 2.4.

(i) ⇒ (ii): For i = 1, . . . , r, let S (i) ⪰ 0 in Rm×m be given as in (ii). Then, for each i, S (i)
P ⪰ 0 n by n

block matrix with (S (i)
P ) j j ≻ 0, j = 1, . . . , n. Hence, it follows from Theorem 2.6 that {A(i) ⋆ S (i)

P }
r
i=1 ∈

CLDS αm. Now, by observing that

A(i) ⋆ S (i)
P = (A(i) ⋆ Jm) ◦ S (i)

P = ((PT (A(i) ⋆ Jm)P) ◦ S (i))P (2.3)

for each i, we conclude that {((PT (A(i)⋆Jm)P)◦S (i))P}
r
i=1 ∈ CLDS αm. Hence, by Lemma 2.7, (ii) follows.

(v) ⇒ (i): From observation 2.1, {((PT (A(i) ⋆ Jm)P) ◦ S (i))P}
r
i=1 ∈ P

α
m. This, by (2.3), means {A(i) ⋆

S (i)
P }

r
i=1 ∈ P

α
m. Finally, using Theorem 2.6, we obtain (i). This completes the proof. □

A final remark before moving to the next section is that Theorems 2.3, 2.6, and 2.8 are equivalent
to Theorems 4, 9, and 10 in [29] whenA is a singleton.

3. Common Lyapunov α-scalar stability

In this section, we generalize the main results of Section 2 to provide more characterizations for
common Lyapunov α-scalar stability. In this section, let γ = {γ1, . . . , γs} be any partition of {1, . . . , n}.
Then, δ = {δ1, . . . , δs}, where

δ1 =

|γ1 |⋃
i=1

αi, δ2 =

|γ1 |+|γ2 |⋃
i=|γ1 |+1

αi, . . . , δs =

n⋃
i=n−|γs |+1

αi

is a partition of {1, . . . ,m}, where α = {α1, . . . , αn} is the partition of {1, . . . ,m} defined in Section 2.
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Lemma 3.1. Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r and
γ = {γ1, . . . , γs} be any partition of {1, . . . , n}. If {A(i) ⋆ Q}ri=1 ∈ P

δ
m, then {T (A(i) ⋆ Q)}ri=1 ∈ P

γ
n.

Proof. Let u(i) ∈ Rn, i = 1, . . . , r, not all being zero. Then, let v = [vm j] ∈ R
m be the nonzero n-block

vector defined as follows

(vm j)k =

{
1 if k = 1
0 if k , 1.

Then, for each i, choose z(i) = u(i) ⋆ v. Clearly, z(i) ∈ Rm, i = 1, . . . , r, and not all being zero vectors
since not all u(i) are zero. Furthermore, we have T (z(i)) = u(i) and T (z(i)[δl]) = u(i)[γl] for l ∈ {1, . . . , s}.
Now, because {A(i) ⋆ Q}ri=1 ∈ P

δ
m, there is some l ∈ {1, . . . s} such that

r∑
i=1

z(i)[δl]T ((A(i) ⋆ Q)z(i))[δl] > 0 (3.1)

Now, observe that

r∑
i=1

z(i)[δl]T ((A(i) ⋆ Q)z(i))[δl] =
r∑

i=1

T (z(i)[δl]T )T (((A(i) ⋆ Q)z(i))[δl]).

Consequently, it follows from (3.1) that

0 <
r∑

i=1

z(i)[δl]T ((A(i) ⋆ Q)z(i))[δl] =
r∑

i=1

T (z(i)[δl]T )T (((A(i) ⋆ Q)z(i))[δl])

=

r∑
i=1

u(i)[γl]T (T (A(i) ⋆ Q)T (z(i)))[γl] =
r∑

i=1

u(i)[γl]T (T (A(i) ⋆ Q)u(i))[γl].

Therefore, by Definition 1.3, the result follows. □

Lemma 3.2. ( [28, Corollary 2.1]) Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for
i = 1, . . . , r and γ = {γ1, . . . , γs} be a partition of {1, . . . , n}. Then, A ∈ CLDS γn if and only if there is
l ∈ {1, . . . , s} such that

tr
r∑

i=1

(A(i)X(i))[γl] > 0

for any X(i) ⪰ 0, X(i) ∈ Rn×n, i = 1, . . . , r, not all being zero matrices.

Theorem 3.3. Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r and
γ = {γ1, . . . , γs} be any partition of {1, . . . , n}. Then, the following are equivalent:

(i) A ∈ CLDS γn.

(ii) {A(i) ⋆ S (i)}ri=1 ∈ CLDS δm for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j ≻ 0 for all

i = 1, . . . , r and j = 1, . . . , n.

(iii) {A(i) ⋆ S (i)}ri=1 ∈ CLDS δm for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)
j j = Im j for all

i = 1, . . . , r and j = 1, . . . , n.
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(iv) {A(i) ⋆ S (i)}ri=1 ∈ P
δ
m for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)

j j ≻ 0 for all i = 1, . . . , r
and j = 1, . . . , n.

(v) {A(i)⋆S (i)}ri=1 ∈ P
δ
m for all n by n block matrices S (i) ⪰ 0 in Rm×m with S (i)

j j = Im j for all i = 1, . . . , r
and j = 1, . . . , n.

Proof. It is clear that (ii) implies (iii) and (iv) implies (v). Besides, from Lemma 2.4, it is clear that (ii)
implies (iv) and (iii) implies (v).

(i) ⇒ (ii): Clearly, if D is a positive γ-scalar matrix, then D ⋆ Im is a positive δ-scalar matrix.
Moreover, if D is a common Lyapunov γ-scalar solution for A, then, by Lemma 1.2, for any S (i)’s
given as in (ii), we have

((A(i))T D + DA(i)) ⋆ S (i) = (A(i) ⋆ S (i))T (D ⋆ Im) + (D ⋆ Im)(A(i) ⋆ S (i)) ≻ 0,

for i = 1, . . . , r. This last inequality means that {A(i) ⋆ S (i)}ri=1 has (D ⋆ Im) as a common Lyapunov
δ-scalar solution.

(v) ⇒ (i): Let X(i) = [xkl] ⪰ 0, X(i) ∈ Rn×n i = 1, . . . , r, not all being zero. Next, let D(i) ∈ Rn×n,

i = 1, . . . , r, be a diagonal matrix such that d(i)
kk =

√
x(i)

kk for j = 1, . . . , n. Thus, for each i, there

is S (i) = [skl] ⪰ 0, S (i) ∈ Rn×n with s(i)
kk = 1, k = 1, . . . , n, such that X(i) = D(i)S (i)D(i). By setting

p = max{m1, . . . ,mn}, we conclude, using to Lemma 1.1, that S (i) ⊗ Ip ⪰ 0 in Rnp×np, i = 1, . . . , r.
Since, for each i, S (i) ⋆ Q is a principal submatrix of S (i) ⊗ Ip, then S (i) ⋆ Q ⪰ 0 ,Q here is the matrix
in (1.3). Furthermore, each diagonal block (S (i) ⋆ Q) j j = Im j , i = 1, . . . , r. So, {A(i) ⋆ (S (i) ⋆ Q)}ri=1 =

{(A(i) ◦ S (i))⋆Q}ri=1 ∈ P
δ
m, by (v). Consequently, according to Lemma 3.1, {T ((A(i) ◦ S (i))⋆Q)}ri=1 ∈ P

γ
n.

Set u(i) = D(i)e, i = 1, . . . , r, where e is the vector of all ones in Rn. By the construction of these u(i)’s,
it is easy to see that not all of them are zero vectors. Therefore, there is some index q ∈ {1, . . . , s} such
that

r∑
i=1

u(i)[γq]T ((T ((A(i) ◦ S (i)) ⋆ Q))u(i))[γq] =
r∑

i=1

(D(i)e)[γq]T ((T ((A(i) ◦ S (i)) ⋆ Q))(D(i)e))[γq]

=

r∑
i=1

e[γq]T D(i)[γq]((T ((A(i) ◦ (S (i)D(i))) ⋆ Q))e)[γq]

=

r∑
i=1

e[γq]T ((T ((A(i) ◦ (D(i)S (i)D(i))) ⋆ Q))e)[γq]

=

r∑
i=1

e[γq]T ((T ((A(i) ◦ X(i)) ⋆ Q))e)[γq]

=

r∑
i=1

e[γq]T ((A(i) ◦ X(i))e)[γq]

= tr
r∑

i=1

(A(i)X(i))[γq] > 0.

Therefore, (i) follows by Lemma 3.2. This finishes the proof. □
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This last Theorem can be generalized to provide more characterizations for common Lyapunov α-
scalar stability. Recall that in Section 2, we defined β to be a partition of {1, . . . ,m} obtained from α
through a permutation function τ. Using this notation and the definition of δ above, for any partition
γ = {γ1, . . . , γs} of {1, . . . , n}, we define another partition of {1, . . . ,m} called ϵ = {ϵ1. . . . , ϵs}, where

ϵ1 =

|γ1 |⋃
i=1

βi, ϵ2 =

|γ1 |+|γ2 |⋃
i=|γ1 |+1

βi, . . . , ϵs =

n⋃
i=n−|γs |+1

βi.

Clearly, if we replace α with δ and β with ϵ, Observation 2.1 will hold true for a permutation matrix P
associated with β. Now, we have the following theorem, whose proof follows the lines of the proof of
Theorem 2.8 and is therefore omitted.

Theorem 3.4. Let A = {A(i)}ri=1 be a family of matrices such that A(i) ∈ Rn×n for i = 1, . . . , r and
γ = {γ1, . . . , γs} be any partition of {1, . . . , n}. In addition, let P be a permutation matrix associated
with some partition β. Then, the following are equivalent:

(i) A ∈ CLDS γn.

(ii) {(PT (A(i) ⋆ Jm)P) ◦ S (i)}ri=1 ∈ CLDS ϵm for all matrices S (i) ⪰ 0 in Rm×m with S (i)[ϵ j] ≻ 0 for all
i = 1, . . . , r and j = 1, . . . , n.

(iii) {(PT (A(i) ⋆ Jm)P) ◦ S (i)}ri=1 ∈ CLDS ϵm for all matrices S (i) ⪰ 0 in Rm×m with S (i)[ϵ j] = Im j for all
i = 1, . . . , r and j = 1, . . . , n.

(iv) {(PT (A(i)⋆Jm)P)◦S (i)}ri=1 ∈ P
ϵ
m for all matrices S (i) ⪰ 0 in Rm×m with S (i)[ϵ j] ≻ 0 for all i = 1, . . . , r

and j = 1, . . . , n.

(v) {(PT (A(i) ⋆ Jm)P) ◦ S (i)}ri=1 ∈ P
ϵ
m for all matrices S (i) ⪰ 0 in Rm×m with S (i)[ϵ j] = Im j for all

i = 1, . . . , r and j = 1, . . . , n.

We remark here that Theorems 3.3 and 3.4 are the same as Theorems 2.6 and 2.8, respectively, when
γ = {{1}, {2}, . . . , {n}}. Additionally, when r = 1, i.e., A is a singleton, these last two theorems reduce
to the following corollaries, whose proofs shall be omitted.

Corollary 3.5. Let A ∈ Rn×n and γ = {γ1, . . . , γs} be any partition of {1, . . . , n}. Then, the following are
equivalent:

(i) A ∈ LDS γn.

(ii) A ⋆ S ∈ LDS δm for all n by n block matrices S ⪰ 0 in Rm×m with S j j ≻ 0, j = 1, . . . , n.

(iii) A ⋆ S ∈ LDS δm for all n by n block matrices S ⪰ 0 in Rm×m with S j j = Im j , j = 1, . . . , n.

(iv) A ⋆ S ∈ Pδm for all n by n block matrices S ⪰ 0 in Rm×m with S j j ≻ 0, j = 1, . . . , n.

(v) A ⋆ S ∈ Pδm for all n by n block matrices S ⪰ 0 in Rm×m with S j j = Im j , j = 1, . . . , n.

Corollary 3.6. Let A ∈ Rn×n and γ = {γ1, . . . , γs} be any partition of {1, . . . , n}. In addition, let P be a
permutation matrix associated with some partition β. Then, the following are equivalent:
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(i) A ∈ LDS γn.

(ii) (PT (A ⋆ Jm)P) ◦ S ∈ LDS ϵm for all matrices S ⪰ 0 in Rm×m with S [ϵ j] ≻ 0, j = 1, . . . , n.

(iii) (PT (A ⋆ Jm)P) ◦ S ∈ LDS ϵm for all matrices S ⪰ 0 in Rm×m with S [ϵ j] = Im j , j = 1, . . . , n.

(iv) (PT (A ⋆ Jm)P) ◦ S ∈ Pϵm for all matrices S ⪰ 0 in Rm×m with S [ϵ j] ≻ 0, j = 1, . . . , n.

(v) (PT (A ⋆ Jm)P) ◦ S ∈ Pϵm for all matrices S ⪰ 0 in Rm×m with S [ϵ j] = Im j , j = 1, . . . , n.

4. Conclusions

Motivated by the work in [29], we have presented new characterizations for common Lyapunov
diagonal stability using the Khatri-Rao product. The notions of P-sets and Pα-sets have been used to
formulate these results. Moreover, these characterizations have been extended to the notion of common
Lyapunov α-scalar stability. Our work here extends and broadens the scope of results in [17, 28].
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