Previously, several characterization of local Pre-Hausdorffness and $ D $-connectedness have been examined in distinct topological categories. In this paper, we give the characterization of local $ T_{0} $ (resp. local $ T_{1} $) $ \mathcal{L} $-valued closure spaces, examine how their mutual relationship. Furthermore, we give the characterization of a closed point and $ D $-connectedness in $ \mathcal{L} $-valued closure spaces and examine their relations with local $ T_{0} $ and local $ T_{1} $ objects. Finally, we examine the characterization of local Pre-Hausdorff and local Hausdorff $ \mathcal{L} $-valued closure spaces and study their relationship with generic Hausdorff objects and $ D $-connectedness.
Citation: Naveed Ahmad Malik, Sana Khyzer, Muhammad Qasim. Local Pre-Hausdorffness and D-connectedness in $ \mathcal{L} $-valued closure spaces[J]. AIMS Mathematics, 2022, 7(5): 9261-9277. doi: 10.3934/math.2022513
Previously, several characterization of local Pre-Hausdorffness and $ D $-connectedness have been examined in distinct topological categories. In this paper, we give the characterization of local $ T_{0} $ (resp. local $ T_{1} $) $ \mathcal{L} $-valued closure spaces, examine how their mutual relationship. Furthermore, we give the characterization of a closed point and $ D $-connectedness in $ \mathcal{L} $-valued closure spaces and examine their relations with local $ T_{0} $ and local $ T_{1} $ objects. Finally, we examine the characterization of local Pre-Hausdorff and local Hausdorff $ \mathcal{L} $-valued closure spaces and study their relationship with generic Hausdorff objects and $ D $-connectedness.
[1] | D. Aerts, Foundations of quantum physics: A general realistic and operational approach, Int. J. Theor. Phys., 38 (1999), 289–358. https://doi.org/10.1023/A:1026605829007 doi: 10.1023/A:1026605829007 |
[2] | D. Aerts, E. Colebunders, A. Van der Voorde, B. Van Steirteghem, State property systems and closure spaces: A study of categorical equivalence, Int. J. Theor. Phys., 38 (1999), 359–385. https://doi.org/10.1023/A:1026657913077 doi: 10.1023/A:1026657913077 |
[3] | G. Aumann, Kontakt-relationen, 1970, 67–77. |
[4] | J. Adamek, H. Herrlich, G. E. Strecker, Abstract and concrete categories, New York: John Wiley & Sons, 1990. |
[5] | G. Birkhoff, Lattice theory, American Mathematical Society, 1940. |
[6] | M. Baran, Separation properties, Indian J. Pure Ap. Mat., 23 (1991), 333–341. |
[7] | M. Baran, The notion of closedness in topological categories, Comment. Math. Univ. Ca., 34 (1993), 383–395. |
[8] | M. Baran, H. Altındiş, $T_{2}$ objects in topological categories, Acta Math. Hung., 71 (1996), 41–48. https://doi.org/10.1007/BF00052193 doi: 10.1007/BF00052193 |
[9] | M. Baran, Separation properties in topological categories, Math. Balkanica, 10 (1996), 39–48. |
[10] | M. Baran, A note on compactness in topological categories, Publ. Math. Debrecen, 50 (1997), 221–234. |
[11] | M. Baran, $T_{3}$ and $T_{4}$-objects in topological categories, Indian J. Pure Ap. Mat., 29 (1998), 59–69. |
[12] | M. Baran, Completely regular objects and normal objects in topological categories, Acta Math. Hung., 80 (1998), 211–224. https://doi.org/10.1023/A:1006550726143 doi: 10.1023/A:1006550726143 |
[13] | M. Baran, Closure operators in convergence spaces, Acta Math. Hung., 87 (2000), 33–45. https://doi.org/10.1023/A:1006768916033 doi: 10.1023/A:1006768916033 |
[14] | M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Appl. Categor. Struct., 10 (2002), 403–415. https://doi.org/10.1023/A:1016388102703 doi: 10.1023/A:1016388102703 |
[15] | M. Baran, M. Kula, A note on connectedness, Publ. Math. Debrecen, 68 (2006), 489–501. |
[16] | M. Baran, Pre $T_{2}$ objects in topological categories, Appl. Categor. Struct., 17 (2009), 591–602. https://doi.org/10.1007/s10485-008-9161-4 doi: 10.1007/s10485-008-9161-4 |
[17] | M. Baran, S. Kula, T. M. Baran, M. Qasim, Closure operators in semiuniform convergence spaces, Filomat, 30 (2016), 131–140. https://doi.org/10.2298/FIL1601131B doi: 10.2298/FIL1601131B |
[18] | M. Baran, H. Abughalwa, Sober spaces, Turk. J. Math., 46 (2022), 299–310. https://doi.org/10.3906/mat-2109-95 doi: 10.3906/mat-2109-95 |
[19] | E. Čech, On bicompact spaces, Ann. Math., 38 (1937), 823–844. |
[20] | D. Deses, E. Giuli, E. Lowen-Colebunders, On the complete objects in the category of $T_{0}$ closure spaces, Appl. Gen. Topol., 4 (2003), 25–34. https://doi.org/10.4995/agt.2003.2007 doi: 10.4995/agt.2003.2007 |
[21] | D. Dikranjan, E. Giuli, Closure operators I, Topol. Appl., 27 (1987), 129–143. https://doi.org/10.1016/0166-8641(87)90100-3 doi: 10.1016/0166-8641(87)90100-3 |
[22] | A. Erciyes, T. M. Baran, M. Qasim, Closure operators in constant filter convergence spaces, Konuralp J. Math., 8 (2020), 185–191. |
[23] | M. Erné, Lattice representations for categories of closure spaces, In: Categorical topology, 1984,197–222. |
[24] | R. C. Flagg, Quantales and continuity spaces, Algebra Univ., 37 (1997), 257–276. |
[25] | P. Hertz, Über Axiomensysteme für beliebige Satzsysteme, Math. Ann., 87 (1922), 246–269. https://doi.org/10.1007/BF01459067 doi: 10.1007/BF01459067 |
[26] | G. Jäger, Probabilistic approach spaces, Math. Bohem., 142 (2017), 277–298. https://doi.org/10.21136/MB.2017.0064-15 doi: 10.21136/MB.2017.0064-15 |
[27] | K. Kuratowski, Sur L'operation $\overline{A}$ de l'analysis situs, Fund. Math., 3 (1992), 182–199. |
[28] | M. Kula, S. Özkan, $T_{2}$ and $T_{3}$ objects at $p$ in the category of proximity spaces, Math. Bohem., 145 (2020), 177–190. https://doi.org/10.21136/MB.2019.0144-17 doi: 10.21136/MB.2019.0144-17 |
[29] | H. Lai, W. Tholen, Quantale-valued topological spaces via closure and convergence, Topol. Appl., 30 (2017), 599–620. https://doi.org/10.1016/j.topol.2017.08.038 doi: 10.1016/j.topol.2017.08.038 |
[30] | H. Lai, W. Tholen, A note on the topologicity of quantale-valued topological spaces, Log. Meth. Comput. Sci., 13 (2017), 1–13. https://doi.org/10.23638/LMCS-13(3:12)2017 doi: 10.23638/LMCS-13(3:12)2017 |
[31] | R. Lowen, Approach spaces: The missing link in the topology-uniformity-metric triad, Oxford University Press, 1997. |
[32] | E. H. Moore, On a form of general analysis with applications to linear differential and integral equations, Tipografia della R. Accademia dei Lincei, proprietà del cav. V. Salviucci, 1909. |
[33] | B. Pang, L. Zhao, Characterizations of $ L $-convex spaces, Iran. J. Fuzzy Syst., 13 (2016), 51–61. https://dx.doi.org/10.22111/ijfs.2016.2595 doi: 10.22111/ijfs.2016.2595 |
[34] | G. Preuss, Foundations of topology, an approach to convenient topology, Dordrecht: Kluwer Academic Publishers, 2002. |
[35] | R. S. Pierce, Closure spaces with applications to ring theory, In: Lectures on rings and modules, Berlin: Springer, 1972. https://doi.org/10.1007/BFb0059570 |
[36] | M. Qasim, S. Özkan, The notions of closedness and $D$-connectedness in quantale-valued approach spaces, Categ. Gen. Algebraic, 12 (2020), 149–173. https://doi.org/10.29252/CGASA.12.1.149 doi: 10.29252/CGASA.12.1.149 |
[37] | M. Qasim, B. Pang, Pre-Hausdorff and Hausdorff objects in the category of quantale-valued closure spaces, Hacet. J. Math. Stat., 50 (2021), 612–623. https://doi.org/10.15672/hujms.740593 doi: 10.15672/hujms.740593 |
[38] | M. Qasim, M. Baran, H. Abughalwa, Closure operators in convergence approach spaces, Turk. J. Math., 45 (2021), 139–152. https://doi.org/10.3906/mat-2008-65 doi: 10.3906/mat-2008-65 |
[39] | G. J. Seal, Canonical and op-canonical lax algebras, Theor. Appl. Categ., 14 (2005), 221–243. |
[40] | G. J. Seal, A Kleisli-based approach to lax algebras, Appl. Categor. Struct., 17 (2009), 75–89. https://doi.org/10.1007/s10485-007-9080-9 doi: 10.1007/s10485-007-9080-9 |