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1. Introduction

Closure operators play a significant influence not just in mathematics, such as algebra [35],
logic [25], calculus [32], and topology [19, 27], but also in physics, such as representation theory of
physical systems and quantum logic [1, 2]. G.Birkhoff [5] discovered that a complete lattice is a class
of all closed sets of closure space in the year 1940. Their relationships became key concerns for
mathematicians [23] after that. Moreover, G. Aumann [3] also looked into the closure structures on
contact relations which have applications in social science.

Due to the widely recognized usefulness of closure space in research, it has been generalized by
introducing some suitable quantales on closure structure [29, 30, 33, 40].

Several generalizations of the classical separation axioms at some point p (locally) have been
inspected in [6] by Baran where the primary purpose of this generalization was to interpret the notion
of closed sets and strongly closed sets in the arbitrary set based topological categories. He also
showed that these notions of closedness induce closure operators in the sense of Guili and
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Dikranjan [21] in some well-known topological categories (see [13, 17, 22, 38]). In addition,
Baran [6, 16] introduced local pre-Hausdorff objects in an arbitrary topological category which are
reduced to local pre-Hausdorff topological space (Y, τ). The most important use of these local
pre-Hausdorff objects is to define various forms of local Hausdorff objects [8], local T3 and T4

objects [11], regular, completely regular, normal objects [12] and the notion of compactness [10] and
connectedness [15], Soberness [18] in Categorical Topology, and these notions have been studies in
several topological categories (see [14, 28, 36]).

The main objectives of this paper are stated as under:

(i) to characterize local T0 and local T1 objects inL-valued Closure Spaces and examine their mutual
relationship;

(ii) to examine the characterization of the notion of closedness and D-connectedness in L-valued
Closure Spaces, and to show their relation with local T0 and local T1 objects;

(iii) to give the characterization of local Pre-Hausdorff (resp. Hausdorff) objects in L-valued Closure
Spaces, and to examine relationship among local Hausdorff (resp. Hausdorff) L-valued Closure
Spaces defined in [37] and D-connected L-valued Closure Spaces.

2. Preliminaries

In this paper, let L = (L,⊗, λ) be a quantale (unital, but not necessarily a commutative quantale),
i.e., a complete lattice with a monoid structure and “⊗” is binary operation satisfies the followings: for
all ψi, η ∈ L, ∨i∈I(ψi ⊗ η) = (∨i∈Iψi) ⊗ η and ∨i∈I(η ⊗ ψi) = η ⊗ (∨i∈Iψi), where λ is an identity (neutral)
element.

The quantale L is called an integral quantale if the identity element λ = >, where > is the greatest
element in L.

In a quantale (L,⊗, λ), if s ∈ L and s , >, then s is called the prime element if y ∧ x ≤ s implies
y ≤ s or x ≤ s for all y, x ∈ L.

Let Y be a nonempty set, PY denotes the power set of Y and LY denotes the set of all mappings
from Y to L.

Definition 2.1. (cf. [30]) AnL-valued closure structure on set Y is a mapping C : PY −→ LY satisfying

(i) ∀y ∈ A ⊆ Y : λ ≤ (CA)(y) (Reflexivity),
(ii) ∀A, B ⊆ Y, y ∈ Y: (

∧
x∈B(CA)(x)) ⊗ (CB)(y) ≤ (CA)(y) (Transitivity).

The pair (Y,C) is called an L-valued closure space.

Definition 2.2. (cf. [30]) An L-valued topological structure on set Y is a mapping C : PY −→ LY

satisfying

(i) C is an L-valued closure structure on Y,
(ii) For all y ∈ Y and ∅, the empty set: (C∅)(y) = ⊥,

(iii) For all y ∈ Y and ∀A, B ⊆ Y: C(A ∪ B)(y) = (CA)(y) ∨ (CB)(y).

The pair (Y,C) is called an L-valued topological space.
A mapping f : (Y,C) −→ (X,D) is called continuous if (CA)(y) ≤ D( f A)( f x) for all A ⊆ Y and y ∈ Y.
LetL-Cls (resp.L-Top) denotes the category withL-valued closure spaces (resp. L-valued topological
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spaces) as objects and contractive mappings as morphisms. Note that L-Top is the full subcategory of
L-Cls [30].

Example 2.1. (i) The quantaleL = ([0,∞],≥,+, 0) is called Lawvere’s quantale [24], then category
of L-valued topological spaces is equivalent to approach spaces (App denotes the category of
approach spaces and morphisms are contraction mappings) [31] i.e., L-Top � App . Moreover,
we have L-Cls � Cls′, where Cls′ is the category considered in [39].

(ii) For terminal quantale 1, Set � 1-Cls � 1-Top [30].
(iii) Consider L = (2,∧,>), where 2 = {⊥ < >}, then 2-Cls � Cls and 2-Top � Top [30], where Top

is the category of topological spaces and continuous mappings, and Cls is the category of closure
spaces and continuous mappings [20].

(iv) Consider the quantale p& = (p,⊗, λ) of all distance distribution functions ψ : [0,∞]→ [0, 1] that
satisfy ψ(π2) = sup

π1<π2

ψ(π1) for all π2 ∈ [0,∞] with (ψ ⊗ ξ)(γ) = sup
π1+π2<γ

ψ(π1)&ξ(π2), where & is

Lukasiewicz t-norm on [0, 1] defined by π1&π2 = min{π1, π2}. The ⊗-neutral function λ satisfies
λ(0) = 0 and λ(π1) = 1 for all π1 > 0. Then, p&-Top � ProbApp& [29, 30], where ProbApp& is
the category of probabilistic approach spaces and contraction mappings defined in [26].

Recall, [4,34], a functor F : C → Set (the category of sets and functions) is called topological if (i)
F is concrete (i.e., faithful and amnestic) (ii) F consists of small fibers and (iii) every F -source has
a unique initial lift, i.e., if for every source ( fi : X → (Xi, ζi))i∈I there exists a unique structure ζ on X
such that g : (Y, η) → (X, ζ) is a morphism iff for each i ∈ I, fi ◦ g : (Y, η) → (Xi, ζi) is a morphism.
Moreover, a topological functor is called a discrete (resp. indiscrete) if it has a left (resp. right) adjoint.

Lemma 2.1. (cf. [30]) Let L be a quantale, (Yi,Ci) be a collection of L-valued closure spaces and
fi : Y −→ (Yi,Ci) be a source. Then, for all y ∈ Y and A ⊆ Y,

(CA)(y) =
∧
i∈I

Ci( fiA)( fiy)

is an initial structure on Y.

Lemma 2.2. (cf. [30]) Let Y be a non-empty set and (Y,C) be an L-valued closure space. For all
y ∈ Y, A ⊆ Y,

(i) the discrete L-valued closure structure on Y is given by

(CdisA)(y) =

λ, y ∈ A,

⊥, y < A.

(ii) the indiscrete L-valued closure structure on Y is given by (CindA)(y) = >.

Note that for a quantale L, the category L-Cls is a topological category over Set [30].

3. Local T0 and local T1 L-valued closure spaces

Let Y be a non-empty set and the wedge product Y ∨p Y be two copies of Y which are identified
at the point p. That is to say, the pushout of p : Y → Y2 along itself. More precisely, if i1 and
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i2 : Y → Y ∨p Y denote the inclusion of Y as the first and second factor, respectively, then i1 p = i2 p is
the pushout diagram [6].

A point y in Y ∨p Y is denoted by y1 (resp. y2) if it is in the first (resp. second) component.

Definition 3.1. (cf. [6]) A mapping Ap : Y ∨p Y −→ Y2 is called principal at p-axis mapping satisfying

Ap(yi) =

(y, p), i = 1,

(p, y), i = 2.

Definition 3.2. (cf. [6]) A mapping S p : Y ∨p Y −→ Y2 is called skewed p-axis mapping satisfying

S p(yi) =

(y, y), i = 1,

(p, y), i = 2.

Definition 3.3. (cf. [6]) A mapping ∇p : Y ∨p Y −→ Y is called folding mapping at p satisfying
∇p(yi) = y for i = 1, 2.

Definition 3.4. Let F : C −→ Set be topological, and Y ∈ Ob j(C) with F (Y) = X and p ∈ X.

(i) Y is T0 at p or local T0 iff the initial lift of the F -source {Ap : X ∨p X −→ F (Y2) = X2 and
∇p : X ∨p X −→ FD(X) = X} is discrete, where D is the discrete functor [6].

(ii) Y is T1 at p or local T1 iff the initial lift of the F -source {S p : X ∨p X −→ F (Y2) = X2 and
∇p : X ∨p X −→ FD(X) = X} is discrete [6].

Remark 3.1. In Top (the category of topological spaces and continuous mappings), an object Y, i.e.,
Y ∈ Ob j(Top) is local T0 (resp. local T1) in (classical sense) iff Y is local T0 (resp. local T1) [9].

Theorem 3.1. Let (Y,C) be an L-valued closure space and p ∈ Y. (Y,C) is local T0 iff ∀y ∈ Y with
y , p, there exists U ⊆ Y with y ∈ U, p < U or there exists V ⊆ Y with p ∈ V, y < V such that
⊥ =
∧
{C(U)(p),C(V)(y), λ}, where λ is an identity element.

Proof. Suppose (Y,C) is local T0 and for all y ∈ Y with y , p. Let B ⊆ Y ∨pY and y1 ∈ Y ∨p Y with
y1 < B, and pro ji : Y2 −→ Y , i = 1, 2 are projection maps. Note that

Cdis(∇pB)(∇py1) =Cdis(∇pB)(y) = λ,

λ ≤ C(pro j1ApB)(pro j1Apy1) =C(pro j1ApB)(y) = C(V)(y),

since y ∈ pro j1ApB,

C(pro j2ApB)(pro j2Apy1) = C(pro j2ApB)(p) = C(U)(p).

Since y1 < B and (Y,C) is local T0, by Lemma 2.1,

C(B)(y1) =
∧
{C(pro j1ApB)(pro j1Apy1),C(pro j2ApB)(pro j2Apy1),

Cdis(∇pB)(∇py1)}.

=
∧
{C(pro j1ApB)(y),C(pro j2ApB)(p),Cdis(∇pB)(y)},
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=
∧
{C(V)(y),C(U)(p), λ}.

Since (Y,C) is local T0, it follows that
∧
{C(V)(y),C(U)(p), λ} = ⊥.

Conversely, let C be an initial structure induced by Ap : Y ∨p Y −→ (Y2,C2) and ∇p: Y ∨p Y −→
(Y,Cdis), where C2 is a product structure on Y2 and pro ji : Y2 −→ Y , i = 1, 2 are projection maps, and
Cdis is a discrete structure on Y .

Suppose w ∈ Y ∨p Y and B is a non empty subset of Y ∨p Y . We have the following cases.
Case I: If ∇pw = p ∈ ∇pB for some p ∈ Y , then w = p1 = p2 ∈ B, it follows from Lemma 2.1,
(CB)(w) = λ.
Case II: If ∇pw = p < ∇pB, by Lemma 2.2, (Cdis∇pB)(∇pw) = ⊥ and consequently,

(CB)(w) =
∧
{(C(pro j1ApB))(pro j1Apw), (C(pro j2ApB))(pro j2Apw),

(Cdis(∇pB))(∇pw)} = ⊥.

Case III: Suppose ∇pw = y for some y ∈ Y with y , p and it follows that w = yi for i = 1, 2.

(i) If w = y1 = y2 ∈ B, then ∇pw ∈ ∇pB and pro jiApw ∈ pro jiApB for i = 1, 2, by Lemma 2.1,
(CB)(w) =

∧
{(C(pro jiApB))(pro jiApw), (Cdis(∇pA))(∇pw)} = λ.

(ii) If w = y1, y2 < B, then ∇pw < ∇pB and it follows by Lemma 2.1, (CB)(w) = ⊥.

(iii) Suppose that w = y1 < B but y2 ∈ B, by Lemma 2.2

(Cdis∇pB)(∇pw) = λ.

and
C(pro j1ApB))(pro j1Apw) = C(pro j1ApB)(p),

C(pro j2ApB))(pro j2Apw) = C(pro j2ApB)(y).

By Lemma 2.2, it follows that

(CB)(w) =
∧
{C(pro j1ApB)(p),C(pro j2ApB)(y),Cdis(∇pB)(∇pw)},

=
∧
{C(U)(p),C(V)(y), λ} = ⊥.

Hence, for all w ∈ Y ∨p Y and B ⊆ Y ∨p Y , we have

(CB)(w) =

λ, w ∈ B,

⊥, w < B.

By Lemma 2.2 (i), C is an L-valued discrete structure on Y ∨p Y . Thus, (Y,C) is local T0. �

Corollary 3.1. Let (Y,C) be an L-valued closure space and p ∈ Y, where L is an integral quantale
and L has a prime bottom element. (Y,C) is local To iff ∀y ∈ Y with y , p, there exists U ⊆ Y with
y ∈ U, p < U or there exists V ⊆ Y with p ∈ V, y < V such that C(U)(p) = ⊥ or C(V)(y) = ⊥.

Proof. It follows from definitions of prime bottom element, integral quantales and Theorem 3.1. �
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Theorem 3.2. Let (Y,C) be an L-valued closure space and p ∈ Y. (Y,C) is local T1 iff ∀y ∈ Y with
y , p, there exists U ⊆ Y with y ∈ U, p < U and there exists V ⊆ Y with p ∈ V, y < V such that
C(U)(p) ∧ λ = ⊥ = C(V)(y) ∧ λ, where λ is an identity element.

Proof. Suppose (Y,C) is local T1 and ∀ y ∈ Y with y , p. Let B ⊆ Y ∨p Y and y1 ∈ Y ∨p Y with y1 < B.
Note that

Cdis(∇pB)(∇py1) = Cdis(∇pB)(y) = λ,

λ ≤ C(pro j1S pB)(pro j1S py1) = C(pro j1S pB)(y) = C(V)(y),

since y ∈ pro j1S pB,
C(pro j2S pB)(pro j2S py1) = C(pro j2S pB)(y).

Since y1 < B and (Y,C) is local T1, by Lemma 2.1,

C(B)(y1) =
∧
{C(pro j1S pB)(pro j1S py1),C(pro j2S pB)(pro j2S py1),

Cdis(∇pB)(∇py1)},

=
∧
{C(pro j1S pB)(y), (C(pro j2S pB)(y), λ},

=
∧
{C(V)(y), λ},

and by assumption C(B)(y1) = ⊥ and consequently, C(V)(y) ∧ λ = ⊥.
Similarly, suppose B ⊆ Y ∨p Y and y2 ∈ Y ∨p Y with y2 < B, then we have

⊥ =
∧
{C(U)(p), λ},

and consequently, C(U)(p) ∧ λ = ⊥.
Conversely, let C be an initial structure induced by S p : Y ∨p Y −→ (Y2,C2) and ∇p : Y ∨p Y −→

(Y,Cdis), where C2 is a product structure on Y2 and pro ji : Y2 −→ Y , i = 1, 2 are projection maps and
Cdis is a discrete structure on Y and w ∈ Y ∨p Y . We have the following cases.
Case I: If ∇pw = p ∈ ∇pB, then w = p1 = p2 ∈ B, it follows from Lemma 2.1, (CB)(w) = λ.
Case II: If ∇pw = p < ∇pB, by Lemma 2.2

(Cdis∇pB)(∇pw) = ⊥,

and consequently,

(CB)(w) =
∧
{C(pro j1S pB)(pro j1S pw),C(pro j2S pB)(pro j2S pw),Cdis(∇pB)(∇pw)} = ⊥.

Case III: If ∇pw = y for some y ∈ Y with y , p, it follows that, w = y1 or w = y2.

(i) If w = yi ∈ B for i = 1, 2, then ∇pw ∈ ∇pB and pro jiS pw ∈ pro jiS pB, by Lemma 2.1,

(CB)(w) =
∧
{C(pro jiS pB)(pro jiS pw),Cdis(∇pB)(∇pw)} = λ.

(ii) If w = yi < B for i = 1, 2, then ∇pw < ∇pB, by Lemma 2.2,

Cdis(∇pB)(∇pw) = Cdis(∇pB)(y) = ⊥,

and consequently, (CB)(w) = ⊥.
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(iii) Suppose w = y1 < B but y2 ∈ B, by Lemma 2.2

Cdis(∇pB)(∇pw) = Cdis(∇pB)(y) = λ

and
C(pro j1S pB)(pro j1S pw) = C(pro j1S pB)(y) = C(V)(y),

C(pro j2S pB)(pro j2S pw) = C(pro j2S pB)(p) = C(U)(p).

By Lemma 2.1,

(CB)(w) =
∧
{C(pro jiS pB)(pro jiS pw),Cdis(∇pB)(∇pw)},

(CB)(w) =
∧
{C(V)(y), λ}

and by our assumption,
∧
{C(V)(y), λ} = ⊥ and consequently, (CB)(w) = ⊥.

Similar to above, if w = y2 < B but y1 ∈ B, then we have

(CB)(w) = ⊥.

Therefore, for all w ∈ Y ∨p Y and B ⊆ Y ∨p Y , we have

(CB)(w) =

λ, w ∈ B,

⊥, w < B.

By Lemma 2.2, C is an L-valued discrete structure on Y ∨p Y and by Definition 3.4 (ii), (Y,C) is
local T1. �

Corollary 3.2. Let (Y,C) be an L-valued closure space and p ∈ Y, where L is an integral quantale.
(Y,C) is local T1 iff ∀y ∈ Y with y , p, there exists U ⊆ Y with y ∈ U, p < U and there exists V ⊆ Y
with p ∈ V, y < V such that C(U)(p) = ⊥ = C(V)(y).

Proof. It follows from Theorem 3.2, and definitions of prime bottom element and integral quantale. �

Corollary 3.3. Every local T1 L-valued closure space is local T0 but converse is not true, in general.

Example 3.1. Let Y = {a, b, c} and P(Y) = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},Y}. Consider a quantale
L = (([0, 1],≤), ., 1), where [0, 1] is a real unit interval with ≤ as partial order, “.” the product i.e., the
quantale operation and 1 is an identity element. Let C : P(Y) −→ LY be a map defined by ∀y ∈ Y,
and ∀ φ , U ⊂ Y. C(U)(y) = 1 if y ∈ U and C({b})(c) = C({a, b})(c) = C({c})(b) = C({a, c})(b) = 1

2 ,
C({b})(a) = C({c})(a) = C({b, c})(a) = 0. Clearly, (Y,C) be an L-valued closure space. Note that, it is
T0 at a but not T1 at a.

4. Notion of closedness and D-connectedness in L-valued closure spaces

Definition 4.1. Let Y∞ = Y × Y× . . . be the cartesian product of countable copies of Y.

(1) A mapping A∞p : ∨∞p Y → Y∞ is said to be infinite principle p-axis mapping satisfying A∞p (yi) =

(p, p, ..., p, y, p,. . .), where y is at the i-th place [7].
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(2) A mapping ∇∞p : ∨∞p Y → Y is called the infinite fold mapping at p satisfying ∇∞p (yi) = y for all
i ∈ I [7].

The unique map arising from the multiple pushout of p : 1 → Y is A∞p for which A∞p (i j) =

(p, p, ..., p, id, p, ...) : Y → Y∞, where the identity map, id, is in the j-th place [14].

Definition 4.2. Let F : C −→ Set be a topological functor, Y ∈ Ob(C) with F (Y) = X and p ∈ X,

(i) {p} is closed iff the initial lift of the F -source {A∞p : ∨∞p X → X∞ and ∇∞p : ∨∞p X → UD(X)} is
discrete, where D is the discrete functor [7].

(ii) Y is D-connected if and only if any morphism from Y to any discrete object is constant [15, 34].

Theorem 4.1. Let (Y,C) be an L-valued closure space, {p} is closed iff for all y ∈ Y with y , p, there
exist U ⊆ Y with y ∈ U, p < U and V ⊆ Y with p ∈ V , y < V such that ⊥ =

∧
{C(U)(p),C(V)(y), λ},

where λ is the identity element.

Proof. Let (Y,C) be an L-valued closure space and p ∈ Y with {p} is closed, for all y ∈ Y with y , p.
Suppose B ⊆ ∨∞p Y and w = (y, p, p, ..., p, ...) ∈ ∨∞p Y with w < B. Note that

(Cdis∇
∞
p B)(∇∞p w) = (Cdis∇

∞
p B)(y) = λ,

since y ∈ ∇∞p B,

C(pro j1A∞p B)(pro j1A∞p w) =C(pro j1A∞p B)(y) = C(V)(y),

C(pro j2A∞p B)(pro j2A∞p w) =C(pro j2A∞p B)(p) = C(U)(p)

and for k ≥ 3,

C(pro jkA∞p B)(pro jkA∞p w) =C(pro jkA∞p B)(p) = C(U)(p).

λ ≤ C(pro jkA∞p B)(pro jkA∞p w) =C(pro jkA∞p B)(p),

as p ∈ pro jkA∞p B. Since w = (y, p, p, ..., p, ...) < B and {p} is closed. By Lemma 2.1 for all k ∈ I,

(CB)(w) =
∧
{Cdis(∇∞p B)(∇∞p w),C(pro jkA∞p B)(pro jkA∞p w)},

⊥ =
∧
{λ,C(U)(p),C(V)(y)}.

Conversely, let C be an initial structure on wedge ∨∞p Y induced by A∞p : ∨∞p Y −→ (Y∞,C∗) and ∇∞p :
∨∞p Y −→ (Y,Cdis), where C∗ is a product L- closure structure induced by pro jk : Y∞ −→ Y , ∀k ∈ I
projection map and Cdis is the discrete L-closure structure.

Suppose, w ∈ ∨∞p Y and B ⊆ ∨∞p Y . We have the following cases.
Case I: If ∇∞p w = p ∈ ∇∞p B for some p ∈ Y , w = (p, p, p, ...) ∈ ∨∞p Y . It follows that, (CB)(w) = λ.
Case II: If ∇∞p w = p < ∇∞p B, then Cdis(∇∞p B)(∇∞p w) = ⊥ and consequently, (CB)(w) = ⊥.
Case III: Suppose ∇∞p w = y for some y ∈ Y and it follows that w = yi for all i ∈ I.

(i) If w = yi ∈ B, then ∇∞p w ∈ ∇∞p B and pro jiA
∞
p w ∈ pro jiA

∞
p B, it follows that (CB)(w) = λ.

(ii) If w = yi < B, then ∇∞p w < ∇∞p B and consequently, Cdis(∇∞p B)(∇∞p w) = ⊥ and (CB)(w) = ⊥.
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(iii) Suppose w = yi < B but y j ∈ B with i , j. For i , k , j, by Lemma 2.2.

Cdis(∇∞p B)(∇∞p w) = Cdis(∇∞p B)(y) = λ,

since y ∈ ∇∞p B.

C(pro jiA
∞
p B)(pro jiA

∞
p w) =C(pro jiA

∞
p B)(y) = C(V)(y),

C(pro j jA
∞
p B)(pro j jA

∞
p w) =C(pro j jA

∞
p B)(p) = C(U)(p),

and for k ≥ 3,
C(pro jkA∞p B)(pro jkA∞p w) = C(pro jkA∞p B)(p).

Since p ∈ pro jkA∞p B and by Lemma 2.1, then we get

λ ≤ C(pro jkA∞p B)(p).

It follows from Lemma 2.1 and for k ∈ I,

(CB)(w) =
∧
{Cdis(∇∞p B)(∇∞p w),C(pro jkA∞p B)(pro jkA∞p w)},

=
∧
{λ,C(V)(y),C(U)(p)}.

By our assumption ⊥ =
∧
{λ,C(U)(p),C(V)(y)} and consequently, (CB)(w) = ⊥. Similarly if

w = y j < B but yi ∈ B with i , j. For i , k , j, it follows that

(CB)(w) = ⊥.

Then for all w ∈ ∨∞p Y and all non-empty subset B of ∨∞p Y , we have

(CB)(w) =

λ, w ∈ B,

⊥, w < B.

by Lemma 2.2, C is the discrete L-closure structure and by Definition 4.2, {p} is closed. �

Corollary 4.1. Let (Y,C) be an L-valued closure space, then following are equivalent.

(i) (Y,C) is T0 at p.
(ii) {p} is closed.

Proof. It follows from Theorems 3.1 and 4.1. �

Theorem 4.2. Let (Y,C) be an L-valued closure space, Y is D-connected iff for any non-empty proper
subset U of Y, C({y})(x) >⊥ or C({x})(y) >⊥ for some y ∈ U and x ∈ Uc.
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Proof. Suppose (Y,C) is D-connected and there exists a proper subset U of Y , with C({x})(y)(y) =

⊥ = C({y})(x) for all y ∈ U and x ∈ Uc. Suppose (X,Cdis) is a discrete L-valued closure space with
cardinality greater than 1. Define f : (Y,C)→ (X, Cdis) by for all y ∈ Y ,

f (y) =

{
w, y ∈ U,
t, y < Uc.

Case I: If x, y ∈ U, then

⊥ = C({x})(y)
≤ Cdis( f {x})( f (y))
= Cdis({w})(w)
= λ

and it follows that

⊥ = C({y})(x) ≤ Cdis( f {y})( f (x)) = Cdis({w})(w) = λ.

where λ is an identity element. Similarly if x, y ∈ Uc,

⊥ = C({x})(y) ≤ Cdis( f {x})( f (y)) = Cdis({t})(t) = λ

and

⊥ = C({y})(x) ≤ Cdis( f {y})( f (x)) = Cdis({t})(t) = λ,

this implies f is continuous but not constant.
Case II: If y ∈ U and x ∈ Uc, then

C({x})(y) = ⊥ = Cdis( f {x})( f (y))

and

C({y})(x) = ⊥ = Cdis( f {y})( f (x))

This implies f is continuous but not constant, a contradiction.
Conversely, suppose the condition holds. Let (X,Cdis) be an L-valued closure space and

f : (Y,C) −→ (X,Cdis) be a continuous map.
Case I: If Card X = 1, then f is constant.
Case II: Suppose if Card X >1 and f is not constant then, there exist t,w ∈ Y with t , w such that
f (w) , f (t) and let U = f −1({ f (w)}). Note that U is a proper subset of Y , with w ∈ U and t < U. By
our assumption, ∃ y ∈ U and x ∈ Uc such that C({x})(y) >⊥ or C({y})(x) >⊥. By Lemma 2.2(i),

Cdis( f ({y}))( f (x)) =⊥= Cdis( f ({x}))( f (y)),

which implies that f is not a continuous map, a contradiction. Hence f must be constant. By
Definition 4.2, (Y,C) is D-connected. �
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5. Local Pre-Hausdorff and local Hausdorff L-valued closure spaces

Definition 5.1. Let F : C → Set be a topological functor and Y ∈ Ob j(C), F (Y) = X ∈ Obj (Set) and
p ∈ X.

(1) Y is local Pre-Hausdorff iff initial lift of F -source {Ap : X ∨p X → X2 and S p : X ∨p X → X2}

coincide [6].
(2) Y is called local Hausdorff iff Y is local Pre-T2 and local T0 [6].

Theorem 5.1. Let (Y,C) be an L-valued closure space and p ∈ Y, where L is an integral quantale.
(Y,C) is Local Pre-Hausdorff iff for all y ∈ Y with y , p, there exists U ⊆ Y with y ∈ U, p < U, and
there exists V ⊆ Y with p ∈ V and y < V such that

∧
{C(V)(y),C(U)(p)} = C(V)(y) = C(U)(p).

Proof. Suppose (Y,C) is local Pre-Hausdorff and let pro ji : Y2 → Y; i = 1, 2 be the projection map for
all y ∈ Y with y , p. Assume that w = y1 ∈ Y ∨p Y, {y2} ⊆ B ⊆ Y ∨p Y such that

C(pro j1ApB)(pro j1Ap(w)) = C(pro j1ApB)(y) = C(V)(y)

and

C(pro j2ApB)(pro j2Ap(w)) = C(pro j2ApB)(p) = C(U)(p).

Where U = pro j2ApB and V = pro j1ApB with y < V and p ∈ U since Y is local Pre-Hausdorff. By
Lemma 2.1, it follows that∧

{C(pro jiApB)(pro jiAp(w)); i = 1, 2} =
∧
{C(V)(p),C(U)(y)}.

Similarly,

C(pro j1S pB)(pro j1S p(w)) = C(pro j1S pB)(y) = C(V)(y)

and

C(pro j2S pB)(pro j2S p(w)) = C(pro j2S pB)(y) = C(U)(y) = >.

Since y ∈ (pro j2S pB) and y < (pro j1S pB), and L is an integral quantale. By Lemma 2.1, it follows
that ∧

{C(pro jiS pB)(pro jiS p(w)); i = 1, 2}

=
∧
{C(U)(y) = >,C(V)(y)} = C(V)(y).

and consequently, we get ∧
{C(U)(p),C(V)(y)} = C(V)(y).

Similarly, for all y ∈ Y with y , p , Let w = y2 ∈ Y ∨p Y and {y1} ⊆ B ⊆ Y ∨p Y such that,

C(pro j1ApB)(pro j1Ap(w)) = C(pro j1ApB)(p) = C(U)(p),
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and

C(pro j2ApB)(pro j2Ap(w)) = C(pro j2ApB)(y) = C(V)(y),

where V = (pro j2ApB) and U = (pro j1ApB) with y ∈ U, y < V and p ∈ V , p < U. By Lemma 2.1, it
follows that ∧

{C(pro jiApB)(pro jiAp(w)); i = 1, 2} =
∧
{C(U)(p),C(V)(y)}.

Similarly,

C(pro j1S pB)(pro j1S p(w)) = C(pro j1S pB)(y) = C(U)(p)

and

C(pro j2S pB)(pro j2S p(w)) = C(pro j2S pB)(y) = C(V)(y) = λ = >.

Since y ∈ (pro j2S pB) = V and y < (pro j1S pB) = U. By Lemma 2.1, we get∧
{C(pro jiS pB)(pro jiS p(w)); i = 1, 2}

=
∧
{C(U)(p),C(V)(y) = >} = C(U)(p)

and consequently, we get ∧
{C(U)(p),C(V)(y)} = C(U)(p).

Conversely, let CAP and CS P be initial L-valued closure structures on Y ∨p Y induced by the
projection map Ap : Y ∨p Y −→ (Y2,C2) and S p : Y ∨p Y −→ (Y2,C2) respectively, where C2 is the
product quantale valued closure structure on Y2 induced by the projection map pro ji : Y2 −→ Y for
i = 1, 2. We need to show that ∀ w ∈ Y ∨p Y and all non empty subset B of Y ∨p Y .

CAP(B)(w) = CS P(B)(w)

Case I: If w ∈ B, then CAP(B)(w) = CS P(B)(w) = λ = >.
Case II: Suppose w < B and they both are in same component of Y ∨p Y . It follows that w = yi and {zi}

⊆ B for i = 1, 2. If i = 1, we have

C(pro j1ApB)(pro j1Ap(w)) = C(pro j1ApB)(y)

and

C(pro j2ApB)(pro j2Ap(w)) = C(pro j2ApB)(p) = >.

Since p ∈ pro j2ApB. Similarly,

C(pro j1S pB)(pro j1S p(w)) = C(pro j1S pB)(y)
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and

C(pro j2S pB)(pro j2S p(w)) = C(pro j2S pB)(y).

Note that

CAP(B)(w) =
∧
{C(pro jiApB)(pro jiAp(w); i = 1, 2},

CAP(B)(w) =
∧
{C(pro j1ApB)(y),>}

and

CS P(B)(w) =
∧
{C(pro jiS pB)(pro jiS p(w); i = 1, 2}

= C(pro j1S pB)(y).

By our assumption w and B are in same component of the wedge and by Definition 3.2, it follows that

CAP(B)(w) = CS P(B)(w).

Similarly, for i = 2, we have CAP(B)(w) = CS P(B)(w).
Case III: Suppose w < B and they both are in different component of wedge. We have following
subcases.

(i) If w = y1 and {y2} ⊆ B ⊆ Y ∨p Y . By Lemma 2.1,

CAP(B)(w) =
∧
{C(pro jiApB)(pro jiAp(w); i = 1, 2}

=
∧
{C(V)(y),C(U)(p)},

where pro j1ApB = pro j1S pB = V and pro j2ApB = U and

CS P(B)(w) =
∧
{C(pro jiS pB)(pro jiS p(w); i = 1, 2}

=
∧
{>,C(pro j1S pB)(y)} = C(pro j1S pB)(y),

where pro j1ApB = pro j1S pB = V since y < V

CS P(B)(w) = C(V)(y).

By the assumption, we get

CS P(B)(w) = CAP(B)(w).

(ii) If w = y2 and {y1} ⊆ B ⊆ Y ∨p Y , by Lemma 2.1, we have

CAP(B)(w) =
∧
{C(pro jiApB)(pro jiAp(w); i = 1, 2}

=
∧
{C(V)(y),C(U)(p)},

where pro j1ApB = pro j1S pB = U and pro j2ApB = V and

CS P(B)(w) =
∧
{C(pro jiS pB)(pro jiS p(w); i = 1, 2}

=
∧
{>,C(pro j1S pB)(y)} = C(pro j1S pB)(y),

where pro j1ApB = pro j1S pB = V since y < V ,
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CS P(B)(w) = C(U)(y).

By the assumption, we have

CAP(B)(w) = CS P(B)(w).

Therefore, for all ∅ , B ⊂ Y ∨p Y and ∀ w ∈ Y ∨p Y ,

CAP(B)(w) = CS P(B)(w).

Hence by Definition 5.1, (Y,C) is local Pre-Hausdorff.

�

Theorem 5.2. Let (Y,C) be an L-valued closure space, where L is an integral quantale and Y has a
prime bottom element and p ∈ Y. (Y,C) is local Hausdorff iff (Y,C) is a discrete L-closure structure at
p, i.e.,

C(U)(p) =

{
⊥, p < U,
>, p ∈ U.

Proof. Combine Theorem 5.1 and Definition 5.1. �

Theorem 5.3. Let (Y,C) be an L-valued closure space and p ∈ Y. Then the followings are equivalent.

(i) (Y,C) is local T1, i.e., T1 at p.
(ii) (Y,C) is local Hausdorff, i.e., Hausdorff at p.

(iii) (Y,C) is a discrete L-closure structure at p.

Proof. It follows from Theorems 3.2 and 5.2. �

Theorem 5.4. Let (Y,C) be an L-valued closure space, where L is an integral quantale and Y has a
prime bottom element and p ∈ Y. (Y,C) is Hausdorff iff (Y,C) is Hausdorff at p, for all p ∈ Y.

Proof. It follows from Theorem 5.2 and Theorem 4.4 of [37]. �

Corollary 5.1. (1) Every L-valued closure space (Y,C) (except indiscrete L-valued closure
structure) is D-connected.

(2) Every Hausdorff L-valued closure space is D-connected but converse is not true in general.

Example 5.1. Let Y = {l,m, n}, a quantale L = ([0, 1],≤,×, 1) where [0, 1] is an integral quantale
with ≤ as partial ordered, × as quantale operator and “1” is an identity element. Consider a map
C : P(Y) −→ LY = ([0, 1],≤,×, 1)Y defined by: for all y ∈ Y and ∀ ∅ , V ⊆ Y,C(V)(y) = 1 if y
∈ V and C({l,m})(n) = C({m})(n) = C({m})(m) = C({l, n})(m) = 1

5 and C({m})(l) = C({n})(l) =

C({m, n})(l) = 0. It is obvious that (Y,C) is an L-valued closure space. Note that (Y,C) is D-connected
but not Hausdorff.

AIMS Mathematics Volume 7, Issue 5, 9261–9277.
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6. Conclusions

First of all, we characterized local T0 and local T1 L-valued closure spaces, and showed that every
local T1 L-valued closure space is local T0 but converse is not true in general and we provided a
counter example. After that, we characterized closedness of a point and D-connectedness in L-valued
closure space, and show that a point p is closed iff (Y,C) is T0 at p. Finally, we characterized local
Pre-Hausdorff and Hausdorff objects in L-Cls and showed that (Y,C) is local T1 iff (Y,C) is local
Hausdorff, and showed that every Hausdorff L-valued closure space is D-connected but converse is
not true in general and provided a counter example.
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