Let $ A = kQ/I $ be a string algebra. We show that, if for any vertex $ v $ of its bound quiver $ (Q, I) $, there exists at most one arrow (resp. at most two arrows) ending with $ v $ and there exist at most two arrows (resp. at most one arrow) starting with $ v $, then the number of indecomposable modules over $ A $ is $ \dim_{k}A+\Sigma $, where $ \Sigma $ is induced by $ rad P(v) $ (resp. $ E(v)/\mathrm{soc} E(v) $) with decomposable socle (resp. top), where $ P(v) $ (resp. $ E(v) $) is the indecomposable projective (resp. injective) module corresponded by the vertex $ v $.
Citation: Haicun Wen, Mian-Tao Liu, Yu-Zhe Liu. The counting formula for indecomposable modules over string algebra[J]. AIMS Mathematics, 2024, 9(9): 24977-24988. doi: 10.3934/math.20241217
Let $ A = kQ/I $ be a string algebra. We show that, if for any vertex $ v $ of its bound quiver $ (Q, I) $, there exists at most one arrow (resp. at most two arrows) ending with $ v $ and there exist at most two arrows (resp. at most one arrow) starting with $ v $, then the number of indecomposable modules over $ A $ is $ \dim_{k}A+\Sigma $, where $ \Sigma $ is induced by $ rad P(v) $ (resp. $ E(v)/\mathrm{soc} E(v) $) with decomposable socle (resp. top), where $ P(v) $ (resp. $ E(v) $) is the indecomposable projective (resp. injective) module corresponded by the vertex $ v $.
[1] | C. Amiot, P. G. Plamondon, S. Schroll, A complete derived invariant for gentle algebras via winding numbers and Arf invariants. Sel. Math. New Ser., 29 (2023), 30. http://doi.org/10.1007/s00029-022-00822-x |
[2] | I. N. Bernstein, I. M. Gelfand, V. A. Ponomarev, Coxeter functors and gabriel's theorem, Russ. Math. Surv., 28 (1973), 17–32. https://doi.org/10.1070/RM1973v028n02ABEH001526 doi: 10.1070/RM1973v028n02ABEH001526 |
[3] | M. C. R. Butler, C. M. Ringel. Auslander-reiten sequences with few middle terms and applications to string algebras, Commun. Algebra, 15 (1987), 145–179. https://doi.org/10.1080/009278787088234166 doi: 10.1080/009278787088234166 |
[4] | X. H. Chen, M. Lu, Cohen-Macaulay Auslander algebras of skewed-gentle algebras, Commun. Algebra, 45 (2017), 849–865. https://doi.org/10.1080/00927872.2016.1175601 doi: 10.1080/00927872.2016.1175601 |
[5] | X. H. Chen, M. Lu, Cohen-Macaulay Auslander algebras of gentle algebras, Commun. Algebra, 47 (2019), 3597–3613. https://doi.org/10.1080/00927872.2019.1570225 doi: 10.1080/00927872.2019.1570225 |
[6] | C. J. Fu, S. F. Geng, P. Liu, Y. Zhou, On support $\tau$-tilting graphs of gentle algebras, J. Algebra, 628 (2023), 89–211. https://doi.org/10.1016/j.jalgebra.2023.03.013 doi: 10.1016/j.jalgebra.2023.03.013 |
[7] | P. Gabriel, Unzerlegbare Darstellungen I. Manuscripta Math., 6 (1972), 71–103. https://doi.org/10.1007/BF01298413 |
[8] | C. Geiß, I. Reiten, Gentle algebras are Gorenstein, In: Representations of algebras and related topics, Fields Institute Communications, 45 (2005), 129–133. http://doi.org/10.1090/fic/045 |
[9] | J. E. Humphreys, Introduction to lie algebras and representation theory, New York: Springerg, 1972. https://doi.org/10.1007/978-1-4612-6398-2 |
[10] | P. He, Y. Zhou, B. Zhu, A geometric model for the module category of a skew-gentle algebra, Math. Z., 304 (2023), 18. https://doi.org/10.1007/s00209-023-03275-w doi: 10.1007/s00209-023-03275-w |
[11] | M. Herschend, Solution to the Clebsch-Gordan problem for string algebras, J. Pure Appl. Algebra, 214 (2010), 1996–2008. https://doi.org/10.1016/j.jpaa.2010.02.003 doi: 10.1016/j.jpaa.2010.02.003 |
[12] | Y. Z. Liu, H. P. Gao, Z. Y. Huang, Homological dimensions of gentle algebras via geometric models, Sci. China Math., 67 (2024), 733–766, https://doi.org/10.1007/s11425-022-2120-8 doi: 10.1007/s11425-022-2120-8 |
[13] | Y. Z. Liu, C. Zhang, The Cohen-Macaulay Auslander algebras of string algebras, 2023, arXiv: 2303.06645. https://doi.org/10.48550/arXiv.2303.06645 |
[14] | Y. Z. Liu, Y. F. Zhang, M. T. Liu, The representation type of some tensor algebras, J. Algebra Appl., 2024. https://doi.org/10.1142/S0219498825503463 |
[15] | Y. Z. Liu, C. Zhang, H. J. Zhang, Constructing projective resolution and taking cohomology for gentle algebra in the geometric model, 2023, arXiv: 2308.07220, https://doi.org/10.48550/arXiv.2308.07220 |
[16] | D. Simson, A. Skowroński, Elements of the representation theory of associative algebras, UK: Cambridge: Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511619212 |
[17] | B. Wald, J. Waschbüsch, Tame biserial algebras, J. Algebra, 98 (1985), 480–500. https://doi.org/10.1016/0021-8693(85)90119-X |
[18] | C. Zhang, Indecomposables with smaller cohomological length in the derived category of gentle algebras, Sci. China Math., 62 (2019), 891–900. https://doi.org/10.1007/s11425-017-9270-x doi: 10.1007/s11425-017-9270-x |
[19] | C. Zhang, Y. Han, Brauer-Thrall type theorems for derived module categories, Algebr. Represent. Theor., 19 (2016), 1369–1386, https://doi.org/10.1007/s10468-016-9622-7 doi: 10.1007/s10468-016-9622-7 |
[20] | H. J. Zhang, Y. Z. Liu, There are no strictly shod algebras in hereditary gentle algebras, 2022, arXiv: 2212.09105. https://doi.org/10.48550/arXiv.2212.09105 |