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Abstract: In this paper, we introduce a new family of algebras Hn, which are generated by three
generators x, y, z, with the following relations: (1) x2n = 1, y2 = xy + y, xy = yx; and (2) z2 = z, xz =

zx = z, zy = 2z. First, it shows that Hn is a positively based algebra. Then, all the indecomposable
modules ofHn are constructed. Additionally, it shows that the dimension of each indecomposableHn-
module is at most 2. Finally, all the left (right) cells and left (right) cell modules of Hn are described,
and the decompositions of the decomposable left cell modules are also obtained.
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1. Introduction

An algebra A is called a positively based algebra if it has a positive basis. By the latter, we mean that
a set of bases with all the structure constants with respect to this basis are non-negative real numbers.
The concept of a positive basis can be traced back to the work of Schur on the centralizer algebra
of a transitive permutation representation of a finite group in [16, 17]. Since then, variations of the
positively based algebras have been discovered in many different fields (see [1, 3, 15]). Examples of
positively based algebras include the group algebras, semigroup algebras, table algebras, and Hecke
algebras corresponding to Coxeter groups with respect to the Kazhdan-Lusztig basis. As an interesting
infinite dimensional example, Thurston proved that the Kauffman bracket skein algebra for a compact
oriented surface has a natural positive basis in [19], which generalized the positivity conjecture in
cluster algebra. In [14], Mazorchuk et al. defined the cell 2-representations of finitary 2-categories.
It turns out that the cell 2-representation is a based module over some finite-dimensional positively
based algebras on the level of the Grothendieck group. In addition, in the perspective of representation
theory, Green algebra of a bialgebra is a central instance of positively based algebras. For example,
Cao et al. [4] studied the cell modules of the Green algebra of the generalized Taft Hopf algebras, in
which the approach depends on the Green ring.
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In [10], Lin and Yang introduced a class of positively based algebras An,d over the subring K of the
complex field C; all indecomposable modules and cell modules of An,d are classified and constructed.
It is noted that An,d can be regarded as the Green algebra of weak Hopf algebras w1

n,d constructed from
the generalized Taft algebra (see [18]). In the present paper, we introduce the K-algebra Hn, which is
generated by x, y, z with the relations (1) and (2); since we can construct a set of positive bases ofHn,
we can conclude thatHn is a positively based algebra. The algebraHn can be viewed as the extension
of the Green ring of the weak Hopf algebra wH4n, which is constructed from neither the pointed nor
the semisimple Hopf algebra H4n (see [5]). Recall that An,d in [10, Definition 2.1] is generated by x, y, z
with the following relations:

(1′) xnd = 1, xy = yx;

(2′) (1 + xn − y)
[ d−1

2 ]∑
i=0

(−1)i

(
d − 1 − i

i

)
xniyd−1−2i = 0, for d ≥ 2;

(3′) z2 = z, xz = zx = z, yz = 2z.

We see that the generating relations of An,d and Hn are strongly different. For instance, the
representation type of An,d depends on d, and it is of finite representation type if d ≤ 4, of tame type if
d = 5, and of wild type if d ≥ 6. However, the algebra Hn is only of finite representation type. Up to
now, there is a limited number of works that classifies the representations of this family of positively
based algebras. This provides a good chance to understand the representation theory of Hn. In this
paper, as the analog of the method in [10], we first construct a set of positive basis ofHn and show that
Hn is a positively based algebra. Then, we make efforts to classify all the indecomposable modules of
Hn by utilizing the representation theory of a quiver. It is easily seen that the algebra Hn is of finite
representation type, and thus all the indecomposable modules of Hn are constructed. Finally, all the
left (right) cells and left cell (right) modules of Hn are constructed. Moreover, the decompositions of
the left cell modules are provided.

Let us describe the arrangement of this paper. In Section 2, we introduce the algebra Hn by
generators and generating relations, and show that Hn is a positively based algebra. In Section 3, we
focus on constructing all indecomposable modules ofHn and we see thatHn is of finite representation
type. In Section 4, we classify all the left (right) cells and left (right) cell modules ofHn.

2. Preliminaries

Throughout the paper and unless otherwise stated, C, R, Z and N, stand for the field of complex
numbers, the field of real numbers, the ring of integers, and the set of natural numbers, respectively.
Fixing an integer n ≥ 1, we always suppose that K is an unital subring of C containing the primitive
2n-th root of the unity:

η = cos
π

n
+ i sin

π

n
.

Let A be a K-algebra of finite free rank n with a basis B = {ai | 1 ≤ i ≤ n}. For any 1 ≤ i, j, k ≤ n, if

ai · a j =

n∑
k=1

γ(k)
i, j ak,
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where γ(k)
i, j ∈ R ≥ 0, then B is said to be a positive basis of A, and A is called a positively based algebra.

Now, we define the algebraHn and describe its basic properties.

Definition 2.1. The K-algebraHn is generated by x, y, z with the following relations:

(1) x2n = 1, y2 = xy + y, xy = yx;
(2) z2 = z, xz = zx = z, zy = 2z.

It is easy to see thatHn is noncommutative, and it is noted that when K = C, the algebraHn is just
the Green algebra of the weak Hopf algebra wH4n (see [5]).

In the following, we construct a set of positive bases of Hn to show that Hn is a positively based
algebra. For this purpose, we list one lemma as follows.

Lemma 2.2. (1) The K-spaceWi (0 ≤ i ≤ 2n − 1) with a basis {νi} is anHn-module with the action
ofHn :

x · νi = ηiνi, y · νi = (1 + ηi)νi, z · νi = 0.

(2) The K-spaceV1 with a basis {θ1, θ2} is anHn-module with the action ofHn :

x · θ1 = −θ1, y · θ1 = 0, z · θ1 = 0,
x · θ2 = −θ2, y · θ2 = θ1, z · θ2 = 0.

(3) The K-spaceV2 with a basis {ξ1, ξ2} is anHn-module with the action ofHn :

x · ξ1 = ξ1, y · ξ1 = ξ2, z · ξ1 = ξ1,

x · ξ2 = ξ2, y · ξ2 = 2ξ2, z · ξ2 = 2ξ1.
(2.1)

(4) The K-spaceV3 with a basis
{
µ j | 0 ≤ j ≤ 2n − 1

}
is anHn-module with the action ofHn :

x · µ j = µ j+1(mod2n), y · µ j = 0, z · µ j = 0.

Proof. In the following, we only prove the statement (3); the proofs of the other statements are similar.
First, it is easy to see that (

x ·
(
x · · ·

(
x︸        ︷︷        ︸

2n

·ξi
)
· · ·

))
= ξi. (i = 1, 2),

Then, the straightforward verification shows that

y · (y · ξ1) = 2ξ2 = x · (y · ξ1) + y · ξ1, y · (y · ξ2) = 4ξ2 = x · (y · ξ2) + y · ξ2,

and
y · (x · ξ1) = ξ2 = x · (y · ξ1), y · (x · ξ2) = 2ξ2 = x · (y · ξ2).

Moreover, it is obvious that

z · (z · ξ1) = ξ1 = z · ξ1, z · (z · ξ2) = 2ξ1 = z · ξ2,

and
x · (z · ξ1) = ξ1 = z · ξ1 = z · (x · ξ1),
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x · (z · ξ2) = 2ξ1 = z · ξ1 = z · (x · ξ1).

Finally, we see that

z · (y · ξ1) = 2ξ1 = 2z · ξ1, z · (y · ξ2) = 4ξ1 = 2z · ξ2.

It follows that the generators x, y and z acting onV2 keep the defining relations.
Hence, the actions of x, y and z onV2 define anHn-module. �

Proposition 2.3. The set
{
xiy j, ykz | 0 ≤ i ≤ 2n − 1, j, k = 0, 1

}
forms a basis ofHn.

Proof. By the defining relations ofHn, one can see thatHn are spanned by the following:{
xiy j, ykz | 0 ≤ i ≤ 2n − 1, j, k = 0, 1

}
.

Therefore, it is sufficient to prove that the set{
xiy j, ykz | 0 ≤ i ≤ 2n − 1, j, k = 0, 1

}
consists of linearly independent elements.

Now, we assume the following:

2n−1∑
i=0

aixi +

2n−1∑
j=0

b jx jy +

1∑
k=0

ckykz = 0. (I)

Acting on µ0 by the both sides of (I), we have
2n−1∑
i=0

aiµi = 0 and

ai = 0, 0 ≤ i ≤ 2n − 1.

It yields that
2n−1∑
j=0

b jx jy +

1∑
k=0

ckykz = 0. (II)

Acting on {ν0, · · · , νn−1, θ2, νn+1, · · · ν2n−1} by the both sides of (II), we have2n−1∑
j=0

b jx jy +

1∑
k=0

ckykz

 · θ2 =

2n−1∑
j=0

b jx j

 · θ1 =

2n−1∑
j=0

(−1) jb jθ1 = 0

and 2n−1∑
j=0

b jx jy +

1∑
k=0

ckykz

 · νi =

2n−1∑
j=0

b jx j

 · (1 + ηi
)
νi =

(
1 + ηi

) 2n−1∑
j=0

ηi jb jνi = 0.

Hence, obtain the following:

2n−1∑
j=0

(−1) jb j = 0 and
2n−1∑
j=0

ηi jb j = 0 (i , n),
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since 1 + ηi , 0.
Thus,

1 · · · 1 1 1 . . . 1
... · · ·

...
...

... · · ·
...

1 · · · (ηn−1)n−1 (ηn−1)n (ηn−1)n+1 . . . (η2n−1)i

1 · · · (−1)n−1 (−1)n (−1)n+1 . . . −1
1 · · · (ηn+1)n−1 (ηn+1)n (ηn+1)n+1 . . . (η2n−1)i

... · · ·
...

...
... · · ·

...

1 · · · (η2n−1)n−1 (η2n−1)n (η2n−1)n+1 . . . (η2n−1)2n−1





b0
...

bn−1

bn

bn+1
...

b2n−1


=



0
...

0
0
0
...

0


.

It is easy to see that the determinant of the coefficient matrix is nonzero; thus, we have the following:

b j = 0 for 0 ≤ j ≤ 2n − 1.

Moreover, it yields that
1∑

k=0

ckykz = 0. (III)

Acting on {ξ1} by the both sides of (III), we have

1∑
k=0

ckykz · ξ1 = c0ξ1 + c1ξ2 = 0,

and c0 = c1 = 0.
In summary, {

xiy j, ykz | 0 ≤ i ≤ 2n − 1, j, k = 0, 1
}

is a linearly independent set. Hence, it is a basis ofHn.
The proof is finished. �

Set Li = xi, Mi = xiy for 0 ≤ i ≤ 2n − 1, N0 = z and N1 = yz. Let

B = {Li,Mi,Nk | 0 ≤ i ≤ 2n − 1, k = 0, 1} .

Then, B is a basis ofHn.

Proposition 2.4. For 0 ≤ i, j ≤ 2n − 1, we have the following:

(1) Li · L j = L j · Li = Li+ j(mod2n);
(2) Li · M j = M j · Li = Mi+ j(mod2n);
(3) Mi · M j = M j · Mi = Mi+ j(mod2n) + Mi+ j+1(mod2n);
(4) N0 · N0 = N0 · Li = Li · N0 = N0;
(5) N0 · N1 = N0 · Mi = 2N0;
(6) N1 · N0 = Mi · N0 = N1 · Li = Li · N1 = N1;
(7) N1 · N1 = N1 · Mi = Mi · N1 = 2N1.

AIMS Mathematics Volume 9, Issue 2, 2602–2618.
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Proof. For 0 ≤ i, j ≤ 2n − 1, by a straightforward verification, we have

Li · L j = xix j = xi+ j(mod2n)

= Li+ j(mod2n) = L j · Li

and
Li · M j = xix jy = xi+ j(mod2n)y

= Mi+ j(mod2n) = M j · Li,

since x2n = 1, xy = yx.
Hence, (1) and (2) hold.
(3) By y2 = xy + y, we have the following:

Mi · M j = xiyx jy = xix jy2 = xix j(xy + y)
= xi+ j(mod2n)y + xi+ j+1(mod2n)y

= Mi+ j(mod2n) + Mi+ j+1(mod2n)

= M j · Mi.

(4) By z2 = z, we have
Li · N0 = N0 · Li = xiz = zxi = z = N0

and
N0 · N0 = z2 = z = N0.

(5) By zy = 2z, we have
N0 · N1 = zyz = 2z2 = 2z

= 2N0

and
N0 · Mi = zxiy = zy = 2z

= 2N0.

(6) First, we have
N1 · N0 = yzz = yz2 = yz = N1

and
N1 · Li = yzxi = yz = N1.

Moreover, we have
Mi · N0 = xiyz = yxiz = yz = N1

and
Li · N1 = xiyz = yxiz = yz = N1.

Therefore, N1 · N0 = Mi · N0 = N1 · Li = Li · N1 = N1.

(7) First, we have
N1 · N1 = yzyz = 2yz2 = 2yz = 2N1

and
N1 · Mi = yzxiy = yzy = 2yz = 2N1,
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2608

since zy = 2z.
Moreover, we have the following:

Mi · N1 = xiyyz = xi(xy + y)z
= xixyz + xiyz = xi+1yz + xiyz

= yxi+1z + yxiz = yz + yz

= 2N1.

Hence, N1 · N1 = N1 · Mi = Mi · N1 = 2N1. �

Theorem 2.5. The algebraHn is a positively based algebra.

Proof. By Proposition 2.4, one can easily check that

B = {Li,Mi,Nk | 0 ≤ i ≤ 2n − 1, k = 0, 1}

is a set of positive bases ofHn.
The theorem follows. �

3. The representations ofHn

From this section, we always assume that K is a subfield of C containing η.
The aim of section is to construct all indecomposable modules of Hn with the help of the

representation theory of a quiver. For this purpose, we first consider an algebra A over the field K,
which is generated by x, y with the following relations:

x2n = 1, y2 = xy + y, xy = yx.

By a straightforward calculation, we see that the following system of equations{
x2n = 1,
y2 − xy − y = 0,

has 4n − 1 distinct solutions given by the following:

Γ =
{
(ηi, 0) | 0 ≤ i ≤ 2n − 1

}
∪

{
(η j, 1 + η j) | 0 ≤ j ≤ 2n − 1, j , n

}
.

For each solution (x1, x2) ∈ Γ, we can define a simpleA-module by

x · v = x1v, y · v = x2v.

Hence, we have the following Lemma.

Lemma 3.1. (1) For 0 ≤ i ≤ 2n − 1, there are 2n non-isomorphic 1-dimensionalA-modules S i with
the basis {vi}. The action ofA is given by the following:

x · vi = ηivi, y · vi = 0.

AIMS Mathematics Volume 9, Issue 2, 2602–2618.
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(2) For 0 ≤ i ≤ 2n − 1 and i , n, there are 2n − 1 non-isomorphic 1-dimensionalA-modules Wi with
the basis {vi}. The action ofA is given by the following:

x · vi = ηivi, y · vi = (1 + ηi)vi.

Proof. It is obvious. �

In the following, we describe all indecomposable modules ofA.
Let D be a 2-dimensional vector space with the basis {v1, v2}. We define an action of A on D as

follows:
x · v1 = −v1, y · v1 = 0,
x · v2 = −v2, y · v2 = v1.

Then,D is an indecomposableA-module.

Proposition 3.2. Any d-dimensional, non-simple, indecomposableA-module V is isomorphic toD.

Proof. Assume that V is a d-dimensional, non-simple, indecomposable module with d ≥ 2. Then,
EndV is local and EndV/rad EndV � K. Accordingly, we can assume that the matrices of x and y
acting on some suitable basis of V are X = ηiEd and

Y =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
... · · ·

...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ


d×d

, λ ∈ K,

respectively, since x2n = 1 and xy = yx.
One can easily see that matrices X and Y satisfy the following:(

Y −
(
1 + ηi

)
Ed

)
Y = 0.

It follows that i = n, d = 2 and λ = 1 + ηi = 0. Thus, we have V � D. �

In the following, set

ei =
1

2n

2n−1∑
k=0

η−ikxk

for 0 ≤ i ≤ 2n − 1.
One can easily check that {e0, e1, ..., e2n−1} is a set of central idempotents ofHn, and

z(e0 − z) = (e0 − z)z = 0, zei = eiz = 0 for 1 ≤ i ≤ 2n − 1.

Therefore, we have the following:

Hn = Hnz ⊕Hn(e0 − z) ⊕Hne1 ⊕ · · · ⊕ Hne2n−1.

Now, we can deduce the simple modules and indecomposable modules of Hn by Lemma 3.1 and
Proposition 3.2:

AIMS Mathematics Volume 9, Issue 2, 2602–2618.
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(1) For 0 ≤ i ≤ 2n − 1, let S i be a 1-dimensional Hn-module with the basis {vi}; the action of Hn is
given by

x · vi = ηivi, y · vi = 0, z · vi = 0.

(2) For 0 ≤ i ≤ 2n− 1 and i , n, letWi be a 1-dimensionalHn-module with the basis {vi}; the action
ofHn is given by

x · vi = ηivi, y · vi = (1 + ηi)vi, z · vi = 0.

(3) The indecomposableHn-moduleV1 is produced by extendingD, which is given in Lemma 2.2.

Corollary 3.3. V1 � Hnen is the projective cover of S n.

Proof. First, by a straightforward calculation, we have

xien = (−1)ien, xiyen = (−1)iyen, zen = 0, yzen = 0.

It follows that {yen, en} is a basis ofHnen; the action ofHn is given by

x · yen = −yen, y · yen = 0, z · yen = 0,
x · en = −en, y · en = yen, z · en = 0.

Hence, it is easy to obtainV1 � Hnen and S n = topV1 by Lemma 2.2.
The proof is finished. �

Lemma 3.4. Hnz � V2 is a 2-dimensional indecomposable projectiveHn-module.

Proof. First, it is easy to haveHnz is projective, sinceHn = Hnz ⊕Hn(1 − z). Moreover, we have

xiz = z, xiyz = yxiz = yz, z2 = z, yzz = yz.

It follows that {z, yz} is a basis ofHnz; the action ofHn is given by

x · z = z, y · z = yz, z · z = z,
x · yz = yz, y · yz = 2yz, z · yz = 2z.

By Lemma 2.2, it is easy to obtain thatHnz � V2.
Suppose that V2 = A1 ⊕ A2, where A1 and A2 are nonzero. One has 0 , ϕ = k1z + k2yz ∈ A1 for

some k1 , 0 or k2 , 0. Then,

y · ϕ = (k1 + 2k2)yz ∈ A1, z · ϕ = (k1 + 2k2)z ∈ A1.

If k1 + 2k2 = 0, we get that ϕ = k2(2z − yz) ∈ A1 with k2 , 0 and 2z − yz ∈ A1. Accordingly, the
decomposition yz = (yz − 2z) + 2z implies that 2z ∈ A2 and y · z = yz ∈ A2. Hence, A2 = V2, which is
a contradiction. This implies that k1 + 2k2 , 0, yz ∈ A1 and z ∈ A1. Thus, we have A1 = V2, which is
also a contradiction.

Therefore,Hnz � V2 is an indecomposable projective module. �

AIMS Mathematics Volume 9, Issue 2, 2602–2618.
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Assume S = Kv is a 1-dimensionalHn-module defined by

x · v = v, y · v = 2v, z · v = v. (3.1)

Reviewing the action of Hn on V2, we let ξ′1 = 2ξ1 − ξ2, ξ′2 = ξ2; then the action of Hn can be
written as follows:

x · ξ′1 = ξ′1, y · ξ′1 = 0, z · ξ′1 = 0,
x · ξ′2 = ξ′2, y · ξ′2 = 2ξ′2, z · ξ′2 = ξ′1 + ξ′2.

(3.2)

We get that S = topV2 and the exact sequence

0→ S 0 →V2 → S → 0.

It concludes the following theorem.

Theorem 3.5. The following is a complete set of all simpleHn-modules up to isomorphism:

(1) One non-projective simple module S n with the projective coverV1;
(2) One non-projective simple module S with the projective coverV2;
(3) 4n − 2 projective simple modules S i andWi, where 0 ≤ i ≤ 2n − 1 and i , n.

We also need more preparations to list all the indecomposableHn-modules.

Lemma 3.6. Hn(e0 − z) = S 0 ⊕W0.

Proof. For 0 ≤ i ≤ 2n − 1, we have

xi(e0 − z) = xie0 − xiz = e0 − z,

xiy(e0 − z) = yxie0 − yxiz = ye0 − yz,

and
z(e0 − z) = ze0 − z2 = 0, yz(e0 − z) = yz − yz2 = 0.

Set v1 = 2e0 − 2z − ye0 + yz, v2 = ye0 − yz; then, {v1, v2} is a basis ofHn(e0 − z) and

x · v1 = v1, y · v1 = 0, z · v1 = 0,
x · v2 = v2, y · v2 = 2v2, z · v2 = 0.

By Lemma 2.2,Hn(e0 − z) = S 0 ⊕W0.
The result follows. �

Lemma 3.7. For 1 ≤ i ≤ 2n − 1, we have the following:

(1) HomHn(Hnei,Hne0) = 0;
(2) HomHn(Hne0,Hnei) = 0.

Proof. (1) By [2, Lemma 4.2], we have

HomHn(Hnei,Hne0) = eiHne0 = 0,

since eie0 = e0ei = 0, and xy = yx, xz = zx for 1 ≤ i ≤ 2n − 1.
The proof of (2) is similar to (1). �
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Lemma 3.8. (1) HomHn(V2,W0) = 0, HomHn(V2, S n) = 0;
(2) HomHn(S 0,V2) , 0, HomHn(W0,V2) = 0.

Proof. (1) By Lemmas 3.4 and 3.8, we have

HomHn(V2,W0) = HomHn(Hnz,W0) = zW0 = 0.

Similarly,
HomHn(V2, S 0) = S 0 = 0.

(2) By (3.2), S 0 is the socle ofV2. Thus,

HomHn(S 0,V2) , 0.

ForW0, the result is obvious. �

According to Lemmas 3.6–3.8, one can easily see that V2 ⊕ S 0 is a block of Hn. Meanwhile, the
indecomposable modules of other blocks are either 1-dimensional or 2-dimensional. Therefore, we
only need to consider the indecomposable modules of the block C = V2 ⊕ S 0.

Proposition 3.9. The quiver of the block C is as follows:

◦
0

◦
1

α1 // .

Proof. On the one hand,V2 is the projective cover of S , and S 0 is projective by Lemma 3.4. Therefore,

Ext1
Hn

(S 0, S ) = 0.

On the other hand, we have the following extension of S 0 by S :

0→ S 0 →V2 → S → 0.

Assume that
0→ S 0 → Q→ S → 0

is another extension of S 0 by S , where Q is indecomposable of the basis {v1, v2}; the action of Hn is
given by

x · v1 = v1, y · v1 = 0, z · v1 = 0,
x · v2 = v2, y · v2 = 2v2, z · v2 = kv1 + v2,

with k , 0.
Now, let h : V2 → Q, which is given by ξ′1 7→ kv1, ξ′2 7→ v2. Then, h is an isomorphism. It follows

that
dimExt1

Hn
(S , S 0) = 1.

The result follows. �

Theorem 3.10. The algebraHn has 4n + 2 pairwise, non-isomorphic, indecomposable modules:{
S i,W j, S | 0 ≤ i, j ≤ 2n − 1, j , n

}
∪ {V1,V2} .
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Proof. By Proposition 3.9, the quiver of block C is as follows:

◦
0

◦
1

α1 // .

It is easy to see that this block has non-isomorphic, indecomposable modules S 0, S and V2. By
Theorem 3.5, we get 4n + 2 pairwise, non-isomorphic, indecomposable modules of Hn as the
aforementioned list. �

4. The left cell modules ofHn

Let A be a positively based algebra with a fixed positive basis B = {ai | i ∈ I} with the identity a1

of A. For i, j ∈ I, set
i ? j =

{
k | γ(k)

i, j > 0
}
.

This defines an associative multi-valued operation on the set I and turns the latter set into a finite multi-
semigroup, see [9, Subsection 3.7]. If there is an s ∈ I such that j ∈ s? i, then we denoted it by i ≤L j.
For i, j ∈ I, if i ≤L j and j ≤L i, we denote it by i ∼L j, which is an equivalent relation. The associated
equivalence class is referred to as a left cell. Moreover, we write i <L j, provided that i ≤l j and i /L j.

Assume that L is a left cell in I, and let L be the union of all left cells L′ in I such that L′ ≥ L. Set
L = L\L. Let ML be the vector space spanned by a j, where j ∈ L, and NR be the vector space spanned
by a j with j ∈ L. According to [8, Proposition 1], ML and NL are submodules of AA and NL ⊂ ML. It
allows us to define the cell module CR = ML/NL. Especially, if L = ∅, denote it by NL = 0. For the
study of cells and cell modules, the readers can refer to [6–8, 11–13].

Now, we investigate the left (right) cells and left (right) cell modules ofHn. By Theorem 2.5,

B =
{
Li,M j,Nk | 0 ≤ i, j ≤ 2n − 1, k = 0, 1

}
is a positive basis ofHn.

Proposition 4.1. The algebraHn has three left cells L1, L2 and L3, as listed in the following;

(1) L1 = {i | i is the index of Li, i ∈ Z2n} ;
(2) L2 =

{
j | j is the index of M j, j ∈ Z2n

}
;

(3) L3 = {k | k is the index of Nk, k = 0, 1} .

Proof. (1) Set i, i′ ∈ Z2n and i < i′. We obtain Li′−i · Li = Li′ by Proposition 2.4. It follows that
i′ ∈ (i′ − i)? i, which implies that i ≤L i′. Similarly, we have L2n−i′+i · Li′ = Li; then, i ∈ (2n− i′ + i)? i′

and i′ ≤L i. The equivalent relation i ∼L i′ holds and L1 is a left cell.
(2) Set j, j′ ∈ Z2n and j < j′. We have j′ ∈ ( j′ − j) ? j and j ≤L j′, since M j′− j · M j = M j′ + M j′+1.

Similarly, we obtain that j ∈ (2n + j − j′) ? j′ and j′ ≤L j. Hence, L2 is a left cell.
(3) By Proposition 2.4, it is obvious that N0 · N1 = 2N0 and N1 · N0 = N1. Thus, we have 1 ≤L 0

and 0 ≤L 1. Therefore, L3 is a left cell.
The proof is completed. �

Corollary 4.2. For the left cells ofHn, we have L1 <L L2 <L L3.
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Proof. For i, j ∈ Z2n, we have M j · Li = Mi+ j(mod2n) by Proposition 2.4. It is clear that L1 <L L2.
Furthermore, by Proposition 2.4, it is easy to see that

N0 · M j = N0 + N0, N1 · M j = N1 + N1.

Thus, L2 <L L3 holds.
Consequently, we have L1 <L L2 <L L3. �

Proposition 4.3. For the left cells L1, L2 and L3, the corresponding left cell modules CL1 , CL2 and
CL3 are given as follows:

(1) CL1 = Span
{
Li | i ∈ Z2n

}
, where Li = Li +NL1 , NL1 = Span

{
M j,Nk | j ∈ Z2n, k = 0, 1

}
;

(2) CL2 = Span
{
M j | j ∈ Z2n

}
, where M j = M j +NL2 , and

NL2 = Span {Nk | k = 0, 1} ;

(3) CL3 = Span {Nk | k = 0, 1}, where NL3 = {0}.

Proof. (1) As is shown in Corollary 4.2, we have

L1 = L1 ∪ L2 ∪ L3, L1 = L2 ∪ L3.

By Proposition 4.1, it follows that

ML1 = Span
{
Li, M j, Nk | i, j ∈ Z2n, k = 0, 1

}
,

and
NL1 = Span

{
M j, Nk | j ∈ Z2n, k = 0, 1

}
.

Hence,
CL1 =ML1/NL1 = Span

{
S i | i ∈ Z2n

}
.

(2) By Corollary 4.2, we have

L2 = L2 ∪ L3, L2 = L3.

It follows that
ML2 = Span

{
M j, Nk | j ∈ Z2n, k = 0, 1

}
,

and
NL2 = Span {Nk | k = 0, 1} .

Therefore,
CL2 =ML2/NL2 = Span

{
M j | j ∈ Z2n

}
.

(3) By Proposition 4.1 and Corollary 4.2, we have

L3 = L3, and L3 = ∅.

It follows that
ML3 = Span {Nk | k = 0, 1} , and NL3 = {0}.

Hence,
CL3 =ML3/NL3 = Span {Nk | k = 0, 1} .

The proof is finished. �
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By Proposition 4.3, we see that CL1 = Span
{
Li | i ∈ Z2n

}
and write µi = Li with 0 ≤ i ≤ 2n − 1.

Then, the action ofHn on CL1 is defined by

x · µi = µi+1(mod2n), y · µi = 0, z · µi = 0.

Now, set

χi =
1
2n

(
µ0 + η−iµ1 + η−2iµ2 + · · · + η−(2n−1)iµ2n−1

)
,

where 0 ≤ i ≤ 2n − 1.
A straightforward calculation shows that

x · χi = ηiχi, y · χi = 0, z · χi = 0.

Theorem 4.4. CL1 is decomposable and

CL1 � S 0 ⊕ S 1 ⊕ · · · ⊕ S 2n−1.

Proof. By Lemma 2.2, the 1-dimensionalHn-module Kχi = S i. Hence, S i is a submodule of CL1 . We
easily see that

dimK (S 0 ⊕ S 1 ⊕ · · · ⊕ S 2n−1) = dimKCL1 ,

and conclude
CL1 � S 0 ⊕ S 1 ⊕ · · · ⊕ S 2n−1.

The proof is completed. �

For the left cell module CL2 , we have CL2 = Span
{
M j | j ∈ Z2n

}
and denote ν j = M j with 0 ≤

j ≤ 2n − 1. It is easy to see that

x · ν j = ν j+1(mod2n), y · ν j = ν j + ν j+1(mod2n), z · ν j = 0.

Set
ω j =

1
2n

(
ν0 + η− jν1 + η−2 jν2 + · · · + η−(2n−1) jν2n−1

)
for 0 ≤ j ≤ 2n − 1.

Then, a straightforward calculation shows that

x · ω j = η jω j, y · ω j = (1 + η j)ω j, z · ω j = 0.

Theorem 4.5. CL2 is decomposable and

CL2 �W0 ⊕ · · · ⊕Wn−1 ⊕ S n ⊕Wn+1 ⊕ · · · ⊕W2n−1.

Proof. On the one hand, by Lemma 2.2, we see that the Hn-module Kω j � W j when j , n, and
Kωn � S n. Hence,W j is a submodule of CL2 for 0 ≤ j ≤ 2n − 1 and j , n.

On the other hand, it is easy to see that

dimK (W0 ⊕ · · · ⊕Wn−1 ⊕ S n ⊕Wn+1 ⊕ · · · ⊕W2n−1) = dimKCL2 .

Hence,
CL2 �W0 ⊕ · · · ⊕Wn−1 ⊕ S n ⊕Wn+1 ⊕ · · · ⊕W2n−1.

The proof is finished. �
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Theorem 4.6. CL3 � V2 is indecomposable.

Proof. By Proposition 4.3, for the left cell module CL3 , we have CL3 = Span {Nk | k = 0, 1} , on which
the action ofHn is given by

x · N0 = N0, y · N0 = N1, z · N0 = N0,

x · N1 = N1, y · N1 = 2N1, z · N1 = 2N0.

Hence, CL3 � V2 by Lemma 3.4.
The result follows. �

Finally, we give some remarks for the right cell modules ofHn. For the positive basis B, if there is
an s ∈ I such that j ∈ i ? s, then one can denote it by i ≤R j. If i ≤R j and j ≤R i, then one can denote
it by i ∼R j, which is an equivalent relation. The equivalence class is called a right cell. The similar
statement to Proposition 4.1 shows thatHn has the following four right cells:

(1) R1 = {i | i is the index of S i, i ∈ Z2n} ;
(2) R2 =

{
j | j is the index of M j, j ∈ Z2n

}
;

(3) R3 = {0 | 0 is the index of N0} ;
(4) R4 = {1 | 1 is the index of N1} .

We see that R1 <R R2 <R R3 and R1 <R R2 <R R4. Consequently, we get the following:

(1) CR1 = Span {µi | i ∈ Z2n}, on which the action ofHn is given by

µi · x = µi+1(mod2n), µi · y = 0, µi · z = 0.

(2) CR2 = Span
{
ν j | j ∈ Z2n

}
, on which the action ofHn is given by

ν j · x = ν j+1(mod2n), ν j · y = ν j + ν j+1(mod2n), ν j · z = 0.

(3) CR3 = Span {ξ1}, on which the action ofHn is given by

ξ1 · x = ξ1, ξ1 · y = 2ξ1, ξ1 · z = ξ1.

(4) CR4 � CR3 .

5. Conclusions

In the paper, all indecomposable modules of Hn, a family of positively based algebras, are
constructed and classified. Also, their left cell modules are described. In our further study, we will
focus on the family of positive based algebras associated to the Green algebras of the dual of the
generalized Taft algebra. These results may help us to understand the general representation theory of
a positive based algebra.
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