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Abstract: Uchino initiated the investigation of twisted Rota-Baxter operators on associative algebras.
Relevant studies have been extensive in recent times. In this paper, we introduce the notion of a
twisted Rota-Baxter operator on a Hom-Lie algebra. By utilizing higher derived brackets, we establish
an explicit L∞-algebra whose Maurer-Cartan elements are precisely twisted Rota-Baxter operators on
Hom-Lie algebras. Additionally, we employ Getzler’s technique of twisting L∞-algebras to establish
the cohomology of twisted Rota-Baxter operators. We demonstrate that this cohomology can be
regarded as the Chevalley-Eilenberg cohomology of a specific Hom-Lie algebra with coefficients in
an appropriate representation. Finally, we study the linear and formal deformations of twisted Rota-
Baxter operators by using the cohomology defined above. We also show that the rigidity of a twisted
Rota-Baxter operator can be derived from Nijenhuis elements associated with a Hom-Lie algebra.
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1. Introduction

Rota-Baxter operators, which were initially introduced by Baxter in probability theory [1] and
were later developed by Rota and Cartier in combinatorics [2, 3]. The significance of Rota-Baxter
operators has been established in various research areas, such as Connes-Kreimer’s algebraic method
for renormalizing perturbative quantum field theory and dendriform algebras [4, 5]. Furthermore, the
study of inverse scattering theory, integrable systems and quantum groups reveals a close association
between Rota-Baxter operators on Lie algebras and the classical Yang-Baxter equation; see the book
by Guo for more details [6].

In order to gain a deeper understanding of the classical Yang-Baxter equation, Kupershmidt
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introduced a broader concept of an O-operator (also known as a relative Rota-Baxter operator) on a Lie
algebra [7]. Recently, there has been the establishment of cohomologies and deformations of relative
Rota-Baxter operators on different algebraic structures, including Lie algebras, Leibniz algebras, 3-Lie
algebras, n-Lie algebras, Lie conformal algebras and others [8–12].

In addition, the close relationship with other operators also reflects the importance of (relative)
Rota-Baxter operators. One of them is the Reynolds operator, known as a time-average operator
in fluid dynamics, which was initially presented by Reynolds in his renowned work on fluctuation
theory in 1895 [13], and subsequently named by Kampé de Fériet to provide a comprehensive analysis
of Reynolds operators in general [14]. Reynolds operators were also widely used in functional
analysis, invariant theory and have a close relation with algebra endomorphisms, derivations, rational
G-modules, geometry and operads [15–19].

Motivated by the twisted Poisson structures introduced and studied in [20, 21], Uchino introduced
a twisted version of Rota-Baxter operators on associative algebras, known as twisted Rota-Baxter
operators (or generalized Reynolds operators), and examined its correlation with NS-algebras [22].
Based on Uchino’s work, Das conducted an additional investigation into the cohomology and
deformations of twisted Rota-Baxter operators on associative algebras and Lie algebras [23, 24]. Note
that twisted Rota-Baxter operators can be seen as extensions of Reynolds operators [22, Example 3.5].
Hou and Sheng employed the terminology of a generalized Reynolds operator instead of a twisted
Rota-Baxter operator on 3-Lie algebras [25]. In [26], Gharbi et al. delved into the investigation of
generalized Reynolds operators on Lie triple systems, while also introducing NS-Lie triple systems as
the fundamental framework of generalized Reynolds operators.

In this paper, we consider twisted Rota-Baxter operators on Hom-Lie algebras. Hartwig et al.
were the first to introduce Hom-Lie algebras in 2006 for the purpose of studying the deformation of
the Witt and the Virasoro algebras [27], which can be traced back to q-deformations of algebras of
vector fields in the field of physics. Since then, other algebras of the Hom type (e.g., Hom-associative
algebras, Hom-Leibniz algebras), as well as their n-ary generalizations, have been widely studied both
in mathematics and mathematical physics [28–32]. Additionally, it is noteworthy noting that Wang
and his collaborators investigated twisted Rota-Baxter operators on 3-Hom-Lie algebras and Reynolds
operators on Hom-Leibniz algebras by using cohomology and deformation theory [33, 34].

This paper is organized as follows. Section 2 provides an overview of the concepts and properties
related to Hom-Lie algebras, including representation and cohomology. In Section 3, we delve
into the topic of twisted Rota-Baxter operators on Hom-Lie algebras, exploring their connection to
Reynolds operators and derivations. Furthermore, we present a novel approach to the construction of
twisted Rota-Baxter operators on Hom-Lie algebras by using R-admissible 1-cocycles. Moving on
to Section 4, we construct a new L∞-algebra, whose Maurer-Cartan elements correspond precisely to
twisted Rota-Baxter operators on Hom-Lie algebras. With this foundation, we define the cohomology
of twisted Rota-Baxter operators by using the technique of constructing twisting L∞-algebras pioneered
by Getzler. Additionally, we establish an intriguing relationship between the cohomology of a twisted
Rota-Baxter operator and the Chevalley-Eilenberg cohomology of a specific Hom-Lie algebra with
coefficients in an appropriate representation. Section 5 is devoted to the realm of linear and formal
deformations of twisted Rota-Baxter operators, demonstrating that the linear term in such deformations
of a twisted Rota-Baxter operator R manifests as a 1-cocycle in the cohomology of R. Finally, we
introduce Nijenhuis elements as a means of characterizing the rigidity of twisted Rota-Baxter operators.
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In this paper, all vector spaces, linear maps and tensor products are assumed to be over a field K of
characteristic 0.

2. Preliminaries

In this section, we recall several fundamental concepts, including the representation and
cohomology of Hom-Lie algebras. The material can be found in the literature [31, 35, 36].

Definition 2.1. A Hom algebra is a triple (g, [·, ·], α) consisting of a vector space g, a bilinear map
(bracket) [·, ·] : ∧2g → g and a linear map α : g → g such that α([x, y]) = [α(x), α(y)]. Moreover, if a
Hom algebra (g, [·, ·], α) also satisfies the following Hom-Jacobi identity:

[[x, y], α(z)] + [[y, z], α(x)] + +[[z, x], α(y)] = 0, ∀x, y, z ∈ g, (2.1)

then (g, [·, ·], α) will be called a Hom-Lie algebra.

Definition 2.2. A morphism of Hom-Lie algebras φ : (g1, [·, ·], α) → (g2, [[·, ·]], β) is a linear map
φ : g1 → g2 such that

φ([x, y]) = [[φ(x), φ(y)]], ∀x, y ∈ g1,

φ ◦ α = β ◦ φ.

In particular, if φ is invertible, we say that (g1, [·, ·], α) and (g2, [[·, ·]], β) are isomorphic.

Definition 2.3. A linear map D : g → g on a Hom-Lie algebra (g, [·, ·], α) is called an αk-derivation if
it satisfies that

D ◦ α = α ◦ D,

D([x, y]) = [D(x), αk(y)] + [αk(x),D(y)]

for all x, y ∈ g, where k is a nonnegative integer.

In the sequel, an α0-derivation on a Hom-Lie algebra will be called a derivation for simplicity.

Definition 2.4. A representation of a Hom-Lie algebra (g, [·, ·], α) on a vector space V with respect to
A ∈ gl(V) is a linear map ρ : g→ gl(V) such that, for any x, y ∈ g, it holds that

ρ(α(x)) ◦ A = A ◦ ρ(x), (2.2)
ρ([x, y]) ◦ A = ρ(α(x)) ◦ ρ(y) − ρ(α(y)) ◦ ρ(x). (2.3)

We denote a representation of a Hom-Lie algebra g with respect to A by (V, ρ, A).

Example 2.5. Let (g, [·, ·], α) be a Hom-Lie algebra. Define ad : g → gl(g) by ad(x)(y) = [x, y] for all
x, y ∈ g; sometimes, we may write ad(x) as adx. Then, (g, ad, α) is a representation of (g, [·, ·], α) with
respect to α, which is called the adjoint representation of (g, [·, ·], α).

AIMS Mathematics Volume 9, Issue 2, 2619–2640.



2622

Next, we recall the cohomology of Hom-Lie algebras. Let (V, ρ, A) be a representation of the Hom-
Lie algebra (g, [·, ·], α). Denote the space of p-cochains by

Cp
HLie(g,V) =

{v ∈ V | Av = v}, p = 0,
{ f ∈ Hom(∧pg,V) | A ◦ f = f ◦ α⊗

p
}, p ≥ 1,

(2.4)

where A ◦ f = f ◦ α⊗
p

means that

A( f (x1, · · · , xp)) = f (α(x1), · · · , α(xp)), ∀x1, · · · , xp ∈ g. (2.5)

For any x1, · · · , xp+1 ∈ g, define the coboundary operator dρ : Cp
HLie(g,V)→ Cp+1

HLie(g,V), p ≥ 1 by

(dρ f )(x1, · · · , xp+1) =

p+1∑
j=1

(−1) j+1ρ(αp−1(x j)) f (x1, · · · , x̂ j, · · · , xp+1)

+
∑
j<k

(−1) j+k f ([x j, xk], α(x1), · · · , α̂(x j), · · · , α̂(xk), · · · , α(xp+1)), (2.6)

and when p = 0, define dρ : C0
HLie(g,V)→ Hom(g,V) by

dρ(v)(x) = ρ(x)v, ∀ v ∈ C0
HLie(g,V), x ∈ g. (2.7)

Since
A ◦ (dρ(v)) = (dρ(v)) ◦ α,

we deduce that dρ is a map from C0
HLie(g,V) to C1

HLie(g,V), indeed. Thus, we have that dρ ◦ dρ = 0 and,
hence,

(
⊕+∞

p=0C
p
HLie(g,V), dρ

)
is a cochain complex. Denote the set of p-cocycles by Zp

HLie(g,V) and the
set of p-coboundaries by Bp

HLie(g,V). Then, the corresponding p-th cohomology group is

Hp
HLie(g,V) = Z p

HLie(g,V)/Bp
HLie(g,V).

In view of (2.6), a 1-cochain f ∈ C1
HLie(g,V) is a 1-cocycle on g with coefficients in (V, ρ, A) if f

satisfies

0 = (dρ f )(x, y) = ρ(x) f (y) − ρ(y) f (x) − f ([x, y]), ∀x, y ∈ g, (2.8)

and a 2-cochain Φ ∈ C2
HLie(g,V) is a 2-cocycle if Φ satisfies

0 = (dρΦ)(x, y, z) = ρ(α(x))Φ(y, z) − ρ(α(y))Φ(x, z) + ρ(α(z))Φ(x, y)
− Φ([y, z], α(x)) + Φ([x, z], α(y)) − Φ([x, y], α(z)), ∀x, y, z ∈ g. (2.9)

3. Twisted Rota-Baxter operators on Hom-Lie algebras

In this section, we introduce the notion of twisted Rota-Baxter operators on Hom-Lie algebras. We
establish the relation between Reynolds operators and derivations. We also show that a linear map
is a twisted Rota-Baxter operator if and only if its graph is a subalgebra of the Φ-twisted semi-direct
Hom-Lie algebra. Moreover, we provide a method for constructing twisted Rota-Baxter operators by
using R-admissible 1-cocycles.

First, by a direct check, we have the following result.
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Proposition 3.1. Let (g, [·, ·], α) be a Hom-Lie algebra and (V, ρ, A) a representation of g. Given a
2-cocycle Φ ∈ C2

HLie(g,V), there exists a Hom-Lie algebra structure on the direct sum g ⊕ V that is
defined by

[x1 + v1, x2 + v2]Φ = [x1, x2] + ρ(x1)v2 − ρ(x2)v1 + Φ(x1, x2), (3.1)
(α ⊕ A)(x1 + v1) = α(x1) + Av1, ∀x1, x2 ∈ g, v1, v2 ∈ V. (3.2)

This Hom-Lie algebra is called the Φ-twisted semi-direct Hom-Lie algebra and will be denoted by
(g nΦV, α ⊕ A).

A twisted Rota-Baxter operator on a Hom-Lie algebra is defined as follows, the weight of which is
a 2-cocycle instead of a scalar, as in the classical case.

Definition 3.2. Let (g, [·, ·], α) be a Hom-Lie algebra and (V, ρ, A) a representation of g. A linear map
R : V → g is called a twisted Rota-Baxter operator on g associated with a 2-cocycle Φ with respect
to (V, ρ, A) (of weight Φ) if

α ◦ R = R ◦ A, (3.3)
[Rv1,Rv2] = R(ρ(Rv1)v2 − ρ(Rv2)v1 + Φ(Rv1,Rv2)), ∀v1, v2 ∈ V. (3.4)

Remark 3.3. A twisted Rota-Baxter operator is also called a generalized Reynolds operator;
see [25, 26] for more details, where the authors considered it on Lie triple systems and 3-Lie algebras,
respectively. Furthermore, it was also named a relative cocycle weighted Reynolds operator by Guo
and Zhang in the setting of pre-Lie algebras [37].

Example 3.4. Any Rota-Baxter operator or relative Rota-Baxter operator of weight 0 is a twisted
Rota-Baxter operator with Φ = 0.

Example 3.5. Let (g, [·, ·], α) be a Hom-Lie algebra and (V, ρ, A) a representation of g. Assume that a
linear map f ∈ C1

HLie(g,V) is invertible. Set Φ = −dρ f and R = f −1. Then, Φ is a 2-cocycle. Since

Φ(Rv1,Rv2) = (−dρ f )(Rv1,Rv2) = −ρ(Rv1) f (Rv2) + ρ(Rv2) f (Rv1) + f [Rv1,Rv2],

we obtain that R is a twisted Rota-Baxter operator of weight Φ = −dρ f .

Example 3.6. Let (g, [·, ·], α) be a Hom-Lie algebra and (g, ad, α) the adjoint representation. Set Φ =

−[·, ·]; then, a linear transformation R : g→ g defined by (3.3) and (3.4) is called a Reynolds operator;
more specifically, R satisfies that

α ◦ R = R ◦ α, (3.5)
[Rx1,Rx2] = R([Rx1, x2] + [x1,Rx2] − [Rx1,Rx2]), ∀x1, x2 ∈ g. (3.6)

Note that the authors of [34] defined Reynolds operators on Hom-Leibniz algebras. Furthermore,
twisted Rota-Baxter operators on Hom-Lie algebras are extensions of both twisted Rota-Baxter
operators and 0-weighted Rota-Baxter operators on Lie algebras.

Next, we establish the connection between derivations and Reynolds operators on Hom-Lie
algebras. First, a derivation can induce a Reynolds operator on a Hom-Leibniz algebra [34].
Specifically, we have the following:
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Proposition 3.7. Assume that D : g→ g is a derivation on a Hom-Lie algebra (g, [·, ·], α). If (D + Id) :
g→ g has an inverse, then (D + Id)−1 is a Reynolds operator.

Conversely, a derivation on a Hom-Lie algebra can be derived from a Reynolds operator.

Proposition 3.8. Assume that R : g→ g is a Reynolds operator on the Hom-Lie algebra (g, [·, ·], α). If
R has an inverse, then (R−1 − Id) : g→ g is a derivation on (g, [·, ·], α).

Proof. Suppose that R : g → g is an invertible Reynolds operator. Then, α ◦ R = R ◦ α. Moreover,
thanks to (3.6), we obtain

R−1[x1, x2] = [x1,R−1x2] + [R−1x1, x2] − [x1, x2]

for any x1, x2 ∈ g, which is equivalent to

(R−1 − Id)[x1, x2] = [(R−1 − Id)x1, x2] + [x1, (R−1 − Id)x2].

This completes the proof. �

In the sequel, Φ denotes a 2-cocycle, and a twisted Rota-Baxter operator is always endowed with
the weight Φ unless otherwise specified elsewhere.

Let (g, [·, ·], α) be a Hom-Lie algebra and (V, ρ, A) a representation of g. Suppose that R : V → g is
a linear map which satisfies that α ◦ R = R ◦ A. Then, we call the set Gr(R) = {Rv + v|v ∈ V} the graph
of R.

Theorem 3.9. Let (g, [·, ·], α) be a Hom-Lie algebra and (V, ρ, A) a representation of g. A linear map
R : V → g is a twisted Rota-Baxter operator if and only if the graph Gr(R) = {Rv + v|v ∈ V} is a
subalgebra of the Φ-twisted semi-direct Hom-Lie algebra (g nΦV, α ⊕ A).

Proof. Set v1, v2 ∈ V . Then, we have

[Rv1 + v1,Rv2 + v2]Φ=[Rv1,Rv2] + ρ(Rv1)(v2) − ρ(Rv2)v1 + Φ(Rv1,Rv2).

Hence, the graph Gr(R) = {Rv + v|v ∈ V} is a subalgebra of g nΦV if and only if

[Rv1,Rv2] = R(ρ(Rv1)(v2) − ρ(Rv2)v1 + Φ(Rv1,Rv2)),

which is precisely (3.4). The proof is finished. �

The following corollary is straightforward given Gr(R) � V as vector spaces.

Corollary 3.10. Suppose that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). Then, (V, [·, ·]R, A) is a Hom-Lie algebra, called
the sub-adjacent Hom-Lie algebra of R, where the operation [·, ·]R is given by

[u, v]R = ρ(Ru)v − ρ(Rv)u + Φ(Ru,Rv). (3.7)

Moreover, R is a homomorphism of Hom-Lie algebras from (V, [·, ·]R, A) to (g, [·, ·], α).
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We will now present a method for constructing twisted Rota-Baxter operators on Hom-Lie algebras
by introducing the concept of an R-admissible 1-cocycle. Consider a Hom-Lie algebra (g, [·, ·], α),
a representation (V, ρ, A) of g and a linear map θ ∈ C1

HLie(g,V). Define Ωθ : g ⊕ V → g ⊕ V by

Ωθ =

(
Id 0
θ Id

)
. Then, Ωθ is invertible. Note that Φ − dρθ is a 2-cocycle.

Lemma 3.11. Consider the above notations. Then, Ωθ serves as an isomorphism between the Φ-twisted
semi-direct Hom-Lie algebra (g nΦ V, α ⊕ A) and the (Φ − dρθ)-twisted semi-direct Hom-Lie algebra
(g nΦ−dρθV, α ⊕ A).

Proof. Set x1, x2 ∈ g and v1, v2 ∈ V . Then,

[Ωθ(x1 + v1),Ωθ(x2 + v2)](Φ−dρθ) = [x1 + θ(x1) + v1, x2 + θ(x2) + v2](Φ−dρθ)

(3.1)
= [x1, x2] + ρ(x1)(θ(x2) + v2) − ρ(x2)(θ(x1) + v1) + (Φ − dρθ)(x1, x2)

(2.8)
= [x1, x2]+ρ(x1)(θ(x2)+v2)−ρ(x2)(θ(x1)+v1)+Φ(x1, x2)+θ([x1, x2])−ρ(x1)θ(x2)+ρ(x2)θ(x1)
= [x1, x2] + θ([x1, x2]) + ρ(x1)v2 − ρ(x2)v1 + Φ(x1, x2)
= Ωθ([x1 + v1, x2 + v2]Φ),

as required. �

Proposition 3.12. Let R : V → g be a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α)
with respect to a representation (V, ρ, A). Suppose that θ ∈ C1

HLie(g,V). If the linear map (IdV + θ ◦ R) :
V → V has an inverse, then the map R ◦ (IdV + θ ◦ R)−1 is a twisted Rota-Baxter operator of weight
(Φ − dρθ).

Proof. Thanks to Theorem 3.9, Gr(R) is a subalgebra of the Φ-twisted semi-direct Hom-Lie algebra
(gnΦV, α⊕A). In view of Lemma 3.11, Ωθ(Gr(R)) ⊆ (gnΦ−dρθV, α⊕A) is also a subalgebra. Given that
the linear map (IdV + θ ◦ R) : V → V has an inverse, by a direct check, we see that

α ◦
(
R ◦ (IdV + θ ◦ R)−1

)
=

(
R ◦ (IdV + θ ◦ R)−1

)
◦ A,

and, hence, Ωθ(Gr(R)) is the graph of R ◦ (IdV + θ ◦ R)−1 : V → g. Then, by Theorem 3.9, again, we
deduce that the map R ◦ (IdV + θ ◦ R)−1 is a twisted Rota-Baxter operator of weight (Φ − dρθ), we have
the conclusion. �

Definition 3.13. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). An R-admissible 1-cocycle is a 1-cocycle θ ∈
Z1

HLie(g,V) such that the map (IdV + θ ◦ R) : V → V is invertible.

The following corollary is straightforward due to Proposition 3.12 and Definition 3.13.

Corollary 3.14. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A), and let θ : g → V denote an R-admissible 1-
cocycle. The composition of the map R with the inverse of (IdV + θ ◦ R) forms a twisted Rota-Baxter
operator. Denote this twisted Rota-Baxter operator by Rθ.

With the help of Corollary 3.2, (V, [·, ·]R) and (V, [·, ·]Rθ) are Hom-Lie algebras. We conclude this
section by pointing out that (V, [·, ·]R) and (V, [·, ·]Rθ) are isomorphic as Hom-Lie algebras.
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Proposition 3.15. Let R : V → g be a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α)
with respect to the representation (V, ρ, A) and θ an R-admissible 1-cocycle. Then, (V, [·, ·]R) �
(V, [·, ·]Rθ) denotes Hom-Lie algebras.

Proof. It suffices to show that the invertible map (IdV + θ ◦R) is an isomorphism between (V, [·, ·]R) and
(V, [·, ·]Rθ). For any v1, v2 ∈ V , it holds that

[(Id + θ ◦ R)(v1), (Id + θ ◦ R)(v2)]Rθ

= ρ(Rv1)(v2 + θ(Rv2)) − ρ(Rv2)(v1 + θ(Rv1)) + Φ(Rv1,Rv2)
(3.7)
= [v1, v2]R + ρ(Rv1)(θ(Rv2)) − ρ(Rv2)(θ(Rv1))

(2.8)
= [v1, v2]R + θ([Rv1,Rv2])
= [v1, v2]R + θ(R([v1, v2]R))
= (Id + θ ◦ R)([v1, v2]R),

which finishes the proof. �

4. Cohomology of twisted Rota-Baxter operators on Hom-Lie algebras

In this section, we first recall the concept of an L∞-algebra and the Nijenhuis-Richardson bracket
for Hom-Lie algebras. Subsequently, we construct an L∞-algebra whose Maurer-Cartan elements
are given by twisted Rota-Baxter operators on Hom-Lie algebras. Following this, we delve into the
study of twisting theory for Hom-Lie algebras and establish the cohomology of twisted Rota-Baxter
operators. Furthermore, we demonstrate that this cohomology can be perceived as the Chevalley-
Eilenberg cohomology of a specific Hom-Lie algebra with coefficients in an appropriate representation.

4.1. Maurer-Cartan characterization and the controlling L∞-algebra of twisted Rota-Baxter
operators

In this subsection, we construct an explicit L∞-algebra whose Maurer-Cartan elements are twisted
Rota-Baxter operators on Hom-Lie algebras by using Voronov’s higher derived bracket [38]. Using
Getzler’s method in [39], we also establish a twisted L∞-algebra which governs the deformations of
twisted Rota-Baxter operators on Hom-Lie algebras.

An (i, n − i)-shuffle is a permutation σ ∈ Sn such that σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(n).
In the case in which i = 0 or i = n, we make the assumption that σ = Id. S(i,n−i) will represent the
collection of all (i, n − i)-shuffles.

Definition 4.1. ( [40]) A Z-graded vector space g = ⊕k∈Zg
k with a collection (k ≥ 1) of linear maps

lk : ⊗kg → g of degree 1 is called an L∞-algebra if, for all homogeneous elements x1, · · · , xn ∈ g, it
holds that

(i) (graded symmetry) for any σ ∈ Sn,

ln(xσ(1), · · · , xσ(n)) = ε(σ)ln(x1, · · · , xn),

(ii) (generalized Jacobi identity) for any n ≥ 1,
n∑

i=1

∑
σ∈S(i,n−i)

ε(σ)ln−i+1
(
li
(
xσ(1), · · · , xσ(i)

)
, xσ(i+1), · · · , xσ(n)

)
= 0,
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where ε(σ) := ε(σ; x1, · · · , xn) ∈ {−1, 1} is the Koszul sign.

Definition 4.2. A Maurer-Cartan element of an L∞-algebra (g = ⊕k∈Zg
k, {li}

+∞
i=1) is an element x ∈ g0

such that
∑+∞

n=1
1
n! ln(x, · · · , x) converges to 0, that is, x obeys the Maurer-Cartan equation

+∞∑
n=1

1
n!

ln(x, · · · , x) = 0. (4.1)

Before proceeding further, let us recall the higher derived brackets due to Voronov, which can be
utilized for the construction of explicit L∞-algebras.

Definition 4.3. ( [38]) A V-data consists of a quadruple (L, h,P,∆), where the following holds:

• (L, [·, ·]) is a graded Lie algebra.
• h is an abelian graded Lie subalgebra of (L, [·, ·]).
• P : L → L is a projection, i.e., P ◦ P = P, where h is the image and the kernel is a graded Lie

subalgebra of (L, [·, ·]).
• ∆ is an element of kerP with degree 1 satisfying that [∆,∆] = 0.

Theorem 4.4. ( [38]) Assume (L, h,P,∆) to be a V-data. Then, (h, {li}
+∞
i=1) forms an L∞-algebra, where

li (a1, · · · , ai) = P [· · · [[︸︷︷︸
i

∆, a1], a2], · · · , ai] for homogeneous a1, · · · , ai ∈ h. (4.2)

We call {li}
+∞
i=1 the higher derived brackets of the V-data (L, h,P,∆).

Let g be a vector space and α : g → g a linear map. Denote by V p
α (g) = Cp+1

α (g, g), p ≥ 0 the space
of all linear maps P : g⊗(p+1) → g satisfying that α ◦ P = P ◦ α⊗

p+1
, that is,

α(P(x1, · · · , xp+1)) = P(α(x1), · · · , α(xp+1)) for all xi ∈ g. (4.3)

Set C0
α(g, g) = g. Recall from [28, 30] that the graded space V∗α(g) = ⊕p≥−1C

p+1
α (g, g) carries a graded

Lie algebra structure [·, ·]α : V p
α (g) × Vq

α(g)→ V p+q
α (g) (called Nijenhuis-Richardson bracket), defined

by

[P,Q]α = (−1)pq{P,Q}α − {Q, P}α for all P ∈ V p
α (g),Q ∈ Vq

α(g), (4.4)

where {P,Q}α ∈ V p+q
α (g) is given by

{P,Q}α(x1, · · · , xp+q+1) =
∑

σ∈S(q+1,p)

(−1)|σ|P(Q(xσ(1), · · · , xσ(q+1)), αq(xσ(q+2)), · · · , αq(xσ(p+q+1))),

and the above notation |σ| denotes the signature of the permutation σ.
Now, let (g, [·, ·], α) be a Hom algebra. For simplicity, we shall use µ : ∧2g → g to denote the

bilinear bracket [·, ·], and a Hom algebra (g, [·, ·], α) can be rewritten as (g, µ, α). Note that µ ∈ V1
α(g).

Thus, a Hom algebra (g, µ, α) becomes a Hom-Lie algebra if and only if [µ, µ]α = 0, that is, µ is a
Maurer-Cartan element of the graded Lie algebra (V∗α(g), [·, ·]α).

Let g and V be vector spaces with linear maps α : g→ g and A : V → V . Suppose that µ : ∧2g→ g,
ρ : g→ End(V) and Φ : ∧2g→ V are linear maps. Define µ + ρ + Φ ∈ Hom(∧2(g ⊕ V), g ⊕ V) by

(µ + ρ + Φ)(x1 + v1, x2 + v2) = [x1, x2] + ρ(x1)v2 − ρ(x2)v1 + Φ(x1, x2), ∀x1, x2 ∈ g, v1, v2 ∈ V.
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Proposition 4.5. The map µ defines a Hom-Lie algebra structure on the pair (g, α), the map ρ defines
a representation of the Hom-Lie algebra (g, µ, α) on the pair (V, A) and the map Φ defines a 2-cocycle
with respect to the representation (V, ρ, A) if and only if µ + ρ + Φ is a Maurer-Cartan element of the
graded Lie algebra (V∗α⊕A(g ⊕ V), [·, ·]α⊕A).

Proof. Due to (4.3), µ + ρ + Φ ∈ V1
α⊕A(g ⊕ V) if and only if

(α ⊕ A)((µ + ρ + Φ)(x1 + v1, x2 + v2)) = (µ + ρ + Φ)((α ⊕ A)(x1 + v1), (α ⊕ A)(x2 + v2))

for all x1, x2 ∈ g and v1, v2 ∈ V , that is,

α(µ(x1, x2)) = µ(α(x1), α(x2)), ρ(α(x1))(Av2) = A(ρ(x1)v2), and A(Φ(x1, x2)) = Φ(α(x1), α(x2)).

In addition, the map µ + ρ + Φ is a Maurer-Cartan element if and only if

[µ+ρ+Φ, µ+ρ+Φ]α⊕A =−2{µ+ρ+Φ, µ+ρ+Φ}α⊕A(x1+v1, x2+v2, x3+v3)=0

for x1, x2, x3 ∈ g and v1, v2, v3 ∈ V . Equivalently,

µ(µ(x1, x2), α(x3)) + µ(µ(x2, x3), α(x1)) + µ(µ(x3, x1), α(x2)) = 0, ∀x1, x2, x3 ∈ g.

ρ(µ(x1, x2)(Av3) − ρ(α(x1))ρ(x2)v3 + ρ(α(x2))ρ(x1)v3 = 0, ∀x1, x2 ∈ g, v3 ∈ V.

Φ(µ(x1, x2), α(x3)) + Φ(µ(x2, x3), α(x1)) + Φ(µ(x3, x1), α(x2))
−ρ(α(x1))Φ(x2, x3) − ρ(α(x2))Φ(x3, x1) − ρ(α(x3))Φ(x1, x2) = 0, ∀x1, x2, x3 ∈ g.

Owing to Definition 2.1, Definition 2.4 and (2.9), the conclusion follows. �

Proposition 4.6. Let (V, ρ, A) be a representation of a Hom-Lie algebra (g, [·, ·], α) and Φ ∈ C2
HLie(g,V)

a 2-cocycle with respect to (V, ρ, A). Thus we have a V-data (L, h,P,∆), as follows:

• the graded Lie algebra (L, [·, ·]) is given by (V∗α⊕A(g ⊕ V), [·, ·]α⊕A);
• the abelian graded Lie subalgebra h is defined by

h = C∗HLie(V, g) = ⊕p≥1C
p
HLie(V, g), where Cp

HLie(V, g) = { f ∈ Hom(∧pV, g) |α ◦ f = f ◦ A⊗
p
};

• P : L→ L is the projection onto the space h;
• ∆ = µ + ρ + Φ.

Therefore, we get an L∞-algebra (C∗HLie(V, g), l2, l3), where

l2(P,Q) = P[[µ + ρ + Φ, P]α⊕A,Q]α⊕A,

l3(P,Q, S ) = P[[[µ + ρ + Φ, P]α⊕A,Q]α⊕A, S ]α⊕A

for P ∈ Cp
HLie(V, g), Q ∈ Cq

HLie(V, g) and S ∈ C s
HLie(V, g).

Proof. First note that ∆ = µ + ρ + Φ ∈ kerP with degree 1 and [∆,∆]α⊕A = 0 due to Proposition 4.5.
Thus, we have that (L, h,P,∆) is a V-data. Define the higher derived brackets {li}

+∞
i=1 as (4.2). Then, for

any P ∈ Cp
HLie(V, g), Q ∈ Cq

HLie(V, g) and S ∈ C s
HLie(V, g) we have

[µ + ρ + Φ, P]α⊕A ∈ kerP,

and, hence, l1 = 0. Similarly, we obtain that lk = 0 for k ≥ 4. Therefore, the graded vector space
C∗HLie(V, g) is an L∞-algebra with nontrivial l2, l3, and the other higher derived brackets are trivial. �
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With the aid of Proposition 4.6, we have the main theorem in this subsection.

Theorem 4.7. Let (V, ρ, A) be a representation of a Hom-Lie algebra (g, [·, ·], α) and Φ ∈ C2
HLie(g,V) a

2-cocycle with respect to (V, ρ, A). Then, a linear map R : V → g is a twisted Rota-Baxter operator if
and only if R is a Maurer-Cartan element of the L∞-algebra (C∗HLie(V, g), l2, l3).

Proof. Set v1, v2 ∈ V . By direct computation, we have

l2(R,R)(v1, v2) = P[[µ + ρ + Φ,R]α⊕A,R]α⊕A(v1, v2) = 2([Rv1,Rv2] − R(ρ(Rv1)v2) + R(ρ(Rv2)v1)),
l3(R,R,R)(v1, v2) = P[[[µ + ρ + Φ,R]α⊕A,R]α⊕A,R]α⊕A(v1, v2) = −6R(Φ(Rv1,Rv2)).

Therefore, according to Definition 4.2 and (4.3), R is a Maurer-Cartan element of (C∗HLie(V, g), l2, l3) if
and only if α ◦ R = R ◦ α and

+∞∑
n=1

1
n!

ln(R, · · · ,R)(u, v) =
1
2!

l2(R,R)(u, v) +
1
3!

l3(R,R,R)(u, v)

= [Ru,Rv] − R(ρ(Ru)v) + R(ρ(Rv)u) − R(Φ(Ru,Rv))
= 0,

which is equivalent to R : V → g being a twisted Rota-Baxter operator on the Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). This completes the proof. �

4.2. Cohomology of twisted Rota-Baxter operators

In this subsection, we establish the cohomology of twisted Rota-Baxter operators on Hom-Lie
algebras by utilizing twisted L∞-algebra structures from a given L∞-algebra and a Maurer-Cartan
element, as introduced by Getzler [39].

Let ω be a Maurer-Cartan element of an L∞-algebra (g = ⊕k∈Zg
k, {li}

+∞
i=1). Define a series of twisted

linear maps l ωk : ⊗kg→ g of degree 1, k ≥ 1 by

l ωk (x1, · · · , xk) =

+∞∑
n=0

1
n!

ln+k(ω, · · · , ω︸    ︷︷    ︸
n

, x1, · · · , xk), ∀x1, · · · , xk ∈ g.

Theorem 4.8. ( [39]) Keeping the notations as above, (g, {l ωk }
+∞
k=1) is an L∞-algebra, obtained from g

by twisting with the Maurer-Cartan element ω. Furthermore, ω + ω′ is a Maurer-Cartan element of
(g, {li}

+∞
i=1) if and only if ω′ is a Maurer-Cartan element of the twisted L∞-algebra (g, {l ωk }

+∞
k=1).

Applying Theorem 4.8 to the L∞-algebra (C∗HLie(V, g), l2, l3), we get the following proposition.

Proposition 4.9. Let R : V → g be a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α)
with respect to the representation (V, ρ, A). Then, C∗HLie(V, g) carries a twisted L∞-algebra structure, as
follows:

lR
1 (P) = l2(R, P) +

1
2

l3(R,R, P),

lR
2 (P,Q) = l2(P,Q) + l3(R, P,Q),
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lR
3 (P,Q, S ) = l3(P,Q, S ),

lR
k = 0

for all k ≥ 4, P ∈ Cp
HLie(V, g), Q ∈ Cq

HLie(V, g) and S ∈ C s
HLie(V, g).

Proof. In view of Theorem 4.7, R is a Maurer-Cartan element of the L∞-algebra (C∗HLie(V, g), l2, l3).
Then, the result follows due to Theorem 4.8. �

Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α)
with respect to the representation (V, ρ, A). Denote the twisted L∞-algebra in the above proposition
by (C∗HLie(V, g), l

R
1 , l

R
2 , l

R
3 ). Therefore, we obtain that the twisted Rota-Baxter operator R generates a

differential lR
1 : Cp

HLie(V, g)→ Cp+1
HLie(V, g), p ≥ 1. Define the set of p-cochains by

Cp
R(V, g) =

{x ∈ g | α(x) = x}, p = 0,
Cp

HLie(V, g), p ≥ 1.
(4.5)

Define dR = lR
1 for all p ≥ 1. Moreover, if p = 0, define dR : C0

R(V, g)→ C1
R(V, g) by

dR(x)(v) = [Rv, x] + Rρ(x)v − RΦ(Rv, x), ∀x ∈ C0
R(V, g), v ∈ V, (4.6)

which is well defined since α(x) = x. Thus, we have that dR ◦ dR = 0; hence,
(
⊕+∞

p=0C
p
R(V, g), dR

)
is a

cochain complex. Then, the corresponding cohomology groups are

Hp
R(V, g) =

Zn
R(V, g)

Bp
R(V, g)

=

{
f ∈ Cp

R(V, g) | dR f = 0
}{

dRg | g ∈ Cp−1
R (V, g)

} for all p ≥ 0,

which represents the cohomology of the twisted Rota-Baxter operator R.
For the last part of this subsection, we give a description showing that the above twisted L∞-algebra

governs the deformations of twisted Rota-Baxter operators on Hom-Lie algebras.

Theorem 4.10. Let R : V → g be a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α)
with respect to the representation (V, ρ, A). Then, for a linear map R′ : V → g, R + R′ becomes a
twisted Rota-Baxter operator if and only if R′ is a Maurer-Cartan element of the twisted L∞-algebra
(C∗HLie(V, g), l

R
1 , l

R
2 , l

R
3 ).

Proof. According to Definition 4.2, R′ is a Maurer-Cartan element of (C∗HLie(V, g), l
R
1 , l

R
2 , l

R
3 ) if and only

if
lR
1 (R′) +

1
2!

lR
2 (R′,R′) +

1
3!

lR
3 (R′,R′,R′) = 0.

By Proposition 4.9, the above formula is equivalent to

l2(R,R′) +
1
2

l2(R′,R′) +
1
2

l3(R,R,R′) +
1
2

l3(R,R′,R′) +
1
6

l3(R′,R′,R′) = 0. (4.7)

Since R is a twisted Rota-Baxter operator, by Theorem 4.7, we have

1
2!

l2(R,R) +
1
3!

l3(R,R,R) = 0. (4.8)
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Collecting the two equalities (4.7) and (4.8) gives that (4.7) is equivalent to

1
2!

l2(R + R′,R + R′) +
1
3!

l3(R + R′,R + R′,R + R′) = 0,

that is, R + R′ is a Maurer-Cartan element of (C∗HLie(V, g), l2, l3). By Theorem 4.7, again, it is equivalent
to R + R′ being a twisted Rota-Baxter operator; thus, we have the conclusion. �

4.3. Cohomology of twisted Rota-Baxter operators as Chevalley-Eilenberg cohomology

In this subsection, we offer an alternative understanding of the cohomology of twisted Rota-Baxter
operators. It turns out that this cohomology can be perceived as the Chevalley-Eilenberg cohomology
of a specific Hom-Lie algebra with coefficients in an appropriate representation.

Recall that (V, [·, ·]R) is the sub-adjacent Hom-Lie algebra of R (see Corollary 3.10). First, we
construct the representation of (V, [·, ·]R) as follows.

Lemma 4.11. Let R : V → g be a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α) with
respect to the representation (V, ρ, A). Define ρR : V → gl(g) by

ρR(v)(x) = [Rv, x] + Rρ(x)v − RΦ(Rv, x), ∀x ∈ g, v ∈ V. (4.9)

Then, (g, ρR, α) is a representation of the Hom-Lie algebra (V, [·, ·]R, A).

Proof. Set v1, v2 ∈ V and x ∈ g. By a direct check, we get that ρR(Av1) ◦ α = α ◦ ρR(v1). Moreover,
since Φ is a 2-cocycle, by (2.2) and (2.3), (3.3) and (3.4), as well as (2.9), we have

ρR([v1, v2]R)α(x) − ρR(Av1)ρR(v2)(x) + ρR(Av2)ρR(v1)(x)

= ρR

(
ρ(Rv1)v2 − ρ(Rv2)v1 + Φ(Rv1,Rv2)

)
α(x) − ρR(Av1)([Rv2, x] + Rρ(x)v2 − RΦ(Rv2, x))

+ ρR(Av2)([Rv1, x] + Rρ(x)v1 − RΦ(Rv1, x))
= [Rρ(Rv1)v2, α(x)] + Rρα(x)ρ(Rv1)v2 − RΦ(Rρ(Rv1)v2, α(x)) − [Rρ(Rv2)v1, α(x)]
− Rρ(α(x)ρ(Rv2)v1 + RΦ(Rρ(Rv2)v1, α(x)) + [RΦ(Rv1,Rv2), α(x)] + Rρα(x)Φ(Rv1,Rv2)
− RΦ(R(Φ(Rv1,Rv2)), α(x)) − [R(Av1), [Rv2, x]] − Rρ([Rv2, x])Av1 + RΦ(R(Av1), [Rv2, x])
− [R(Av1),Rρ(x)v2] − Rρ(Rρ(x)v2)Av1 + RΦ(R(Av1),Rρ(x)v2) + [R(Av1),RΦ(Rv2, x)]
+ Rρ(RΦ(Rv2, x))Av1 − RΦ(R(Av1),RΦ(Rv2, x)) + [R(Av2), [Rv1, x]] + Rρ([Rv1, x])Av2

− RΦ(R(Av2), [Rv1, x]) + [R(Av2),Rρ(x)v1] + Rρ(Rρ(x)v1)Av2 − RΦ(R(Av2),Rρ(x)v1)
− [R(Av2),RΦ(Rv1, x)] − Rρ(RΦ(Rv1, x))Av2 + RΦ(R(Av2),RΦ(Rv1, x))

= −([α(Rv1), [Rv2, x]] + [α(Rv2), [x,Rv1]] + [α(x), [Rv1,Rv2]])

+ R
(
ρ([Rv1, x])Av2 − ρα(Rv1)ρ(x)v2 + ρα(x)ρ(Rv1)v2

)
− R

(
ρ([Rv2, x])Av1 − ρα(Rv2)ρ(x)v1 + ρα(x)ρ(Rv2)v1

)
+ (dρΦ)(x,Rv1,Rv2)

= 0.

Therefore, (g, ρR, α) is a representation of the Hom-Lie algebra (V, [·, ·]R, A). �
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The above lemma allows us to consider the Chevalley-Eilenberg cohomology of the Hom-Lie
algebra (V, [·, ·]R, A) with coefficients in the representation (g, ρR, α). Let δCE : Cp

HLie(V, g) →
Cp+1

HLie(V, g), (p ≥ 1) be the corresponding coboundary operator of the Hom-Lie algebra (V, [·, ·]R, A)
with coefficients in the representation (g, ρR, α), where Cp

HLie(V, g) is given in Proposition 4.6. More
precisely, δCE : Cp

HLie(V, g)→ Cp+1
HLie(V, g) is given by

(δCE f )(v1, · · ·, vp+1)=

p+1∑
i=1

(−1)i+1[R(Ap−1vi), f (v1, · · · , v̂i, · · · , vp+1)]

+

p+1∑
i=1

(−1)i+1Rρ( f (v1, · · · , v̂i, · · · , vp+1))(Ap−1vi)

−

p+1∑
i=1

(−1)i+1R(Φ(R(Ap−1vi), f (v1, · · · , v̂i, · · · , vp+1)))

+
∑
i< j

(−1)i+ j f (ρ(Rvi)v j− ρ(Rv j)vi+Φ(Rvi,Rv j), Av1, · · ·, v̂i, · · ·, v̂ j, · · ·, Avp+1)

for any f ∈ Cp
HLie(V, g) and v1, · · · , vp+1 ∈ V . If p = 0, according to (2.7), the coboundary map

δCE : C0
HLie(V, g)→ C1

HLie(V, g) is given by

δCE(x)(v) = ρR(v)(x) = [Rv, x] + Rρ(x)v − RΦ(Rv, x), ∀x ∈ g, v ∈ V; (4.10)

in view of (4.6), we obtain that

δCE(x) = dR(x), ∀x ∈ g. (4.11)

Denote the Chevalley-Eilenberg cohomology group correspondng to the cochain complex(
⊕+∞

p=0C
p
HLie(V, g), δCE

)
by H∗CE(V, g).

Furthermore, comparing the coboundary operator δCE given above with the twisted linear map lR
1

introduced in Proposition 4.9, we obtain the following result.

Theorem 4.12. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). Then, we have

δCE f = lR
1 f , ∀ f ∈ Cp

HLie(V, g), p ≥ 1.

Proof. Set µ + ρ + Φ = ∆. For any f ∈ Cp
HLie(V, g) and v1, · · · , vp+1 ∈ V , by (4.4), we have

l2(R, f )(v1, · · · , vp+1) = P[[∆,R]α⊕A, f ]α⊕A(v1, · · · , vp+1)

= P
(
(−1)p−1{[∆,R]α⊕A, f }α⊕A(v1, · · · , vp+1) − { f , [∆,R]α⊕A}α⊕A(v1, · · · , vp+1)

)
= (−1)p−1P{{∆,R}α⊕A, f }α⊕A(v1, · · · , vp+1) − (−1)p−1{{R,∆}α⊕A, f }α⊕A(v1, · · · , vp+1)
− { f , {∆,R}α⊕A}α⊕A(v1, · · · , vp+1) + { f , {R,∆}α⊕A}α⊕A(v1, · · · , vp+1)

=

p+1∑
i=1

(−1)i+1[R(Ap−1vi), f (v1, · · · , v̂i, · · · , vp+1)]
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+

p+1∑
i=1

(−1)i+1Rρ( f (v1, · · · , v̂i, · · · , vp+1))(Ap−1vi)

+
∑
i< j

(−1)i+ j f (ρ(Rvi)v j − ρ(Rv j)vi, Av1, · · · , v̂i, · · · , v̂ j, · · · , Avp+1).

Similarly, by direct computation, we obtain

1
2

l3(R,R, f )(v1, · · · , vp+1) = −

p+1∑
i=1

(−1)i+1R(Φ(R(Ap−1vi), f (v1, · · · , v̂i, · · · , vp+1))).

Therefore, we deduce that

δCE f = l2(R, f ) +
1
2

l3(R,R, f ) = lR
1 f .

This completes the proof. �

Combining the above theorem and (4.11), we arrive at the subsequent corollary.

Corollary 4.13. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). Then,

Hp
R(V, g) = Hp

CE(V, g), ∀p ≥ 0.

5. Deformations of twisted Rota-Baxter operators on Hom-Lie algebras

In this section, we employ the established cohomology to investigate the linear and formal
deformations of twisted Rota-Baxter operators on Hom-Lie algebras. We establish that equivalent
linear deformations define the same cohomology class, as well as formal deformations. Furthermore,
we characterize the rigidity of formal deformations based on Nijenhuis elements.

5.1. Linear deformations of twisted Rota-Baxter operators

Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α) with
respect to the representation (V, ρ, A). Recall from (4.5) that C0

R(V, g) = {x ∈ g | α(x) = x} and
C1

R(V, g) = C1
HLie(V, g) = { f ∈ Hom(V, g) | α ◦ f = f ◦ A}.

Definition 5.1. A linear deformation of a twisted Rota-Baxter operator R consists of Rt = R + tR1

with R0 = R such that, for all t ∈ K, Rt is still a twisted Rota-Baxter operator.

Suppose that Rt = R + tR1 is a linear deformation of R. Thus, we have that α ◦ Rt = Rt ◦ A and

[Rtv1,Rtv2] = Rt(ρ(Rtv1)v2 − ρ(Rtv2)v1 + Φ(Rtv1,Rtv2)), ∀v1, v2 ∈ V.

By direct computation, we have that α ◦ R1 = R1 ◦ A and

[Rv1,R1v2] + [R1v1,Rv2] = R(ρ(R1v1)v2 − ρ(R1v2)v1 + Φ(Rv1,R1v2) + Φ(R1v1,Rv2))
+ R1(ρ(Rv1)v2 − ρ(Rv2)v1 + Φ(Rv1,Rv2)).

Equivalently, R1 ∈ C1
R(V, g) and dRR1 = 0. Then, we get that R1 is a 1-cocycle within the cohomology

of R.
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Definition 5.2. Assume that R and R′ are two twisted Rota-Baxter operators on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). A morphism of twisted Rota-Baxter operators
from R to R′ consists of a pair (φ, ψ) of the Hom-Lie algebra morphism φ : g → g and a linear map
ψ : V → V such that, for any x ∈ g, it holds that

ψ ◦ ρ(x) = ρ(φ(x)) ◦ ψ, ψ ◦ Φ = Φ ◦ (φ ⊗K φ), ψ ◦ A = A ◦ ψ, φ ◦ R = R′ ◦ ψ.

Furthermore, (φ, ψ) will be called an isomorphism from R to R′ if φ and ψ are invertible.

Definition 5.3. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). Two linear deformations, Rt = R + tR1 and
R
′

t = R + tR
′

1, are said to be equivalent if there exists x ∈ g such that α(x) = x and

(φt = Idg + tadx, ψt = IdV + tρ(x) + tΦ(x,R−))

is a morphism from Rt to R
′

t .

Suppose that (φt = Idg + tadx, ψt = IdV + tρ(x) + tΦ(x,R−)) is a morphism from Rt to R
′

t . Then, φt

being a Hom-Lie algebra morphism means that

[[x, y], [x, z]] = 0, ∀y, z ∈ g. (5.1)

The condition ψt ◦ ρ(x) = ρ(φt(x)) ◦ ψt is equivalent toΦ(x,Rρ(y)v) = ρ(y)Φ(x,Rv),
ρ([x, y])(ρ(x)v + Φ(x,Rv)) = 0,∀y ∈ g, v ∈ V.

(5.2)

The condition ψt ◦ Φt = Φ ◦ (φt ⊗K φt) means thatρ(x)Φ(y, z) + Φ(x,RΦ(y, z)) = Φ([x, y], z) + Φ(y, [x, z]),
Φ([x, y], [x, z]) = 0, ∀y, z ∈ g.

(5.3)

Moreover, the formula ψt ◦ A = A ◦ ψt is established automatically because α(x) = x. Finally, the
condition φ ◦ R = R′ ◦ ψ is equivalent toR1v + [x,Rv] = Rρ(x)v + RΦ(x,Rv) + R

′

1v,

[x,R1v] = R
′

1(ρ(x)v + Φ(x,Rv)), ∀v ∈ V.
(5.4)

Note that the first condition of (5.4) implies that R1 − R
′

1 = dR(x). Consequently, we have the
following result.

Theorem 5.4. Let Rt = R + tR1 and R
′

t = R + tR
′

1 be two equivalent linear deformations of a twisted
Rota-Baxter operator R. Then, R1 and R

′

1 are in the same cohomology class in H1
R(V, g).

Remark 5.5. A linear deformation Rt = R + tR1 of a twisted Rota-Baxter operator R is called trivial
if Rt is equivalent to the unaltered deformation R

′

t = R.
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5.2. Formal deformations of twisted Rota-Baxter operators

In this subsection, we investigate formal deformations of twisted Rota-Baxter operators on Hom-Lie
algebras.

Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α) with
respect to the representation (V, ρ, A). Denote by V[[t]] the formal power series in t with coefficients in
V . There exists a Hom-Lie algebra structure over the ring K[[t]] on g[[t]] that is given by

[
+∞∑
i=0

xiti,

+∞∑
j=0

y jt j] =

+∞∑
s=0

+∞∑
i+ j=s

[xi, y j]ts, ∀xi, y j ∈ g. (5.5)

Moreover, there is a representation (denoted also by ρ) of the Hom-Lie algebra g[[t]] that is given by

ρ(
+∞∑
i=0

xiti)(
+∞∑
j=0

v jt j) =

+∞∑
s=0

+∞∑
i+ j=s

ρ(xi)v jts, ∀xi ∈ g, v j ∈ V. (5.6)

The 2-cocycle Φ can be extended to a 2-cocycle on the Hom-Lie algebra g[[t]] with coefficients in
V[[t]]; denote it by using the same notation Φ.

Consider the following formal power series:

Rt =

+∞∑
i=0

Riti, ∀Ri ∈ C1
R(V, g). (5.7)

Since Rt ∈ Hom(V, g)[[t]] = Hom(V, g[[t]]), we may extend it to a K[[t]]-module map from V[[t]] to
g[[t]], and we still denote it by Rt.

Definition 5.6. A formal deformation of a twisted Rota-Baxter operator R consists of a formal power
series Rt =

∑+∞
i=0 Riti, with R0 = R such that, for all t ∈ K, Rt remains as a twisted Rota-Baxter operator.

Lemma 5.7. Rt =
+∞∑
i=0

Riti is a formal deformation of R if and only if

+∞∑
i+ j=n

[Riv1,R jv2] =

+∞∑
i+ j=n

Ri(ρ(R jv1)v2 − ρ(R jv2)v1) +

+∞∑
i+ j+k=n

RiΦ(R jv1,Rkv2)ti+ j+k, ∀v1, v2 ∈ V, n ≥ 0.

(5.8)

Proof. Straightforward. �

For n = 0, (5.8) gives that R = R0 is a twisted Rota-Baxter operator. For s = 1, it follows that

[Rv1,R1v2] + [R1v1,Rv2] =

R(ρ(R1v1)v2−ρ(R1v2)v1)+R1(ρ(Rv1)v2−ρ(Rv2)v1)+RΦ(Rv1,R1v2)+RΦ(R1v1,Rv2)+R1Φ(Rv1,Rv2),

which implies that dRR1 = 0; hence, R1 is exactly a 1-cocycle of the cohomology of the twisted Rota-
Baxter operator R. Moreover, by direct computation, we have the following.

Proposition 5.8. Let Rt =
+∞∑
i=0

Riti be a formal deformation of a twisted Rota-Baxter operator R. If

Ri = 0, 1 ≤ i < n, then Rn is a 1-cocycle with respect to the cohomology of R, that is, Rn ∈ Z1
R(V, g).
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A 1-cochain Rn is called the n-infinitesimal of Rt if Ri = 0 for all 1 ≤ i < n. In particular,
the 1-cocycle R1 is called the infinitesimal (or 1-infinitesimal) of Rt. Due to Proposition 5.8, the
n-infinitesimal Rn is a 1-cocycle.

Definition 5.9. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra

(g, [·, ·], α) with respect to the representation (V, ρ, A). Two formal deformations Rt = R +
+∞∑
i≥r

Riti and

R
′

t = R +
+∞∑
i≥r

R
′

i ti (r ≥ 1) are called equivalent if there exist x ∈ g, φi ∈ gl(g) and ψi ∈ gl(V), i ≥ r + 1

such that

(φt = Idg + tradx +

+∞∑
i=r+1

φiti, ψt = IdV + trρ(x) + trΦ(x,R−) +

+∞∑
i=r+1

ψiti)

is a morphism from Rt to R
′

t .

Particularly, if r = 1, owing to Definition 5.9, two formal deformations Rt =
+∞∑
i=0

Riti and R
′

t =
+∞∑
i=0

R
′

i ti

are equivalent if there exist x ∈ g, φi ∈ gl(g) and ψi ∈ gl(V), i ≥ 2 such that

(φt = Idg + tadx +

+∞∑
i=2

φiti, ψt = IdV + tρ(x) + tΦ(x,R−) +

+∞∑
i=2

ψiti)

is a morphism from Rt to R
′

t . Then, by extracting the coefficients of t from both sides of φt ◦Rt = R
′

t ◦ψt,
we get

R1v − R
′

1v = [Rv, x] + Rρ(x)v + RΦ(x,Rv) = dR(x)(v), ∀ v ∈ V;

thus, we have the following result:

Proposition 5.10. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra

(g, [·, ·], α) with respect to the representation (V, ρ, A). If two formal deformations Rt =
+∞∑
i=0

Riti and

R
′

t =
+∞∑
i=0

R
′

i ti of R are equivalent, then their infinitesimals R1 and R
′

1 are in the same cohomology class.

At the end of this subsection, we investigate the rigidity of a twisted Rota-Baxter operator based on
Nijenhuis elements.

Definition 5.11. A twisted Rota-Baxter operator R is called rigid if any formal deformation of R is
equivalent to the unaltered deformation R

′

t = R.

Definition 5.12. Assume that R : V → g is a twisted Rota-Baxter operator on a Hom-Lie algebra
(g, [·, ·], α) with respect to the representation (V, ρ, A). An element x ∈ g with α(x) = x is said to be a
Nijenhuis element if x satisfies that

[x, [Rv, x] + Rρ(x)v + RΦ(x,Rv)] = 0, ∀v ∈ V

and (5.1)–(5.3) hold. Denote the set of Nijenhuis elements associated with R by Ni j(R).

By the above definition and Remark 5.5, any trivial linear deformation induces a Nijenhuis element.
Moreover, we give a sufficient condition to characterize the rigidity of a twisted Rota-Baxter operator,
as follows.
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Theorem 5.13. Let R : V → g be a twisted Rota-Baxter operator on a Hom-Lie algebra (g, [·, ·], α)
with respect to the representation (V, ρ, A). If Z1

R(V, g) = dR(Ni j(R)), then R is rigid.

Proof. Suppose that Rt =
+∞∑
i=0

Riti is a formal deformation of R. Thanks to Proposition 5.8, R1 is a

1-cocycle of R. Hence, there exists a Nijenhuis element x ∈ g such that R1 = dR(x). Set

φt = Idg + tadx, ψt = IdV + tρ(x) + tΦ(x,R−).

Define R
′

t = φt ◦ Rt ◦ ψ
−1
t . Since x is a Nijenhuis element, we deduce that (φt, ψt) is a morphism from

Rt to R
′

t ; hence, R
′

t is a formal deformation of R, which is equivalent to Rt. Furthermore, for v ∈ V , by
direct computation, we obtain

R
′

t v = (Idg + tadx) ◦ Rt ◦ (IdV − tρ(x) − tΦ(x,R−) + power of t≥2)
= (Idg + tadx)(Rv − t(Rρ(x)v + RΦ(x,Rv) + R1v) + power of t≥2)
= Rv + t(R1v − dR(x)v) + power of t≥2

= Rv + power of t≥2,

which implies that the coefficient of t in the expression of R
′

t is trivial. Continuing by induction, we
finally have that Rt is equivalent to R. This completes the proof. �

6. Conclusions

In this article, we introduced the concept of a twisted Rota-Baxter operator on a Hom-Lie algebra
and defined its cohomology by constructing a twisting L∞-algebra associated with the twisted Rota-
Baxter operator. We constructed a Chevalley-Eilenberg cohomology for a certain Hom-Lie algebra
with coefficients in an appropriate representation. Surprisingly, this Chevalley-Eilenberg cohomology
coincides with the cohomology of twisted Rota-Baxter operators. We also showed that the linear
component in a linear or formal deformation of a twisted Rota-Baxter operator R is a 1-cocycle in
the cohomology of R. At the end, we gave a sufficient condition to characterize the rigidity of formal
deformations based on Nijenhuis elements.
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16. J. B. Miller, Möbius transforms of Reynolds operators, J. Reine Angew. Math., 218 (1965), 6–16.
https://doi.org/10.1515/crll.1965.218.6

17. A. Neeb, Positive Reynolds operators and generating derivations, Math. Nachr., 203 (1999), 131–
146. https://doi.org/10.1002/mana.1999.3212030109

18. G. C. Rota, Reynolds operators, In: Proceedings of Symposia in Applied Mathematics, vol. XVI,
Amer. Math. Soc., Providence, R.I., 1964, 70–83.

19. T. Zhang, X. Gao, L. Guo, Reynolds algebras and their free objects from
bracketed words and rooted trees, J. Pure Appl. Algebra, 225 (2021), 106766.
https://doi.org/10.1016/j.jpaa.2021.106766

20. C. Klimeik, T. Strobl, WZW-Poisson manifolds, J. Geom. Phys., 43 (2002), 341–344.
https://doi.org/10.1016/S0393-0440(02)00027-X

21. P. S̆evera, A. Weinstein, Poisson geometry with a 3-form background, Progr. Theoret. Phys. Suppl.,
144 (2001), 145–154. https://doi.org/10.1143/PTPS.144.145

22. K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras and Rota-Baxter
operators, Lett. Math. Phys., 85 (2008), 91–109. https://doi.org/10.1007/s11005-008-0259-2

23. A. Das, Twisted Rota-Baxter operators, Reynolds operators on Lie algebras and NS-Lie algebras,
J. Math. Phys., 62 (2021), 091701. https://doi.org/10.1063/5.0051142

24. A. Das, Cohomology and deformations of twisted Rota-Baxter operators and NS-algebras, J.
Homotopy Relat. Struct., 17 (2022), 233–262. https://doi.org/10.1007/s40062-022-00305-y

25. S. Hou, Y. Sheng, Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras, Int. J.
Geom. Method. Mod. Phys., 18 (2021), 2150223. https://doi.org/10.1142/S0219887821502236

26. R. Gharbi, S. Mabrouk, A. Makhlouf, Maurer-Cartan type cohomology on generalized
Reynolds operators and NS-structures on Lie triple systems, arXiv:2309.01385v1, 2023.
https://doi.org/10.48550/arXiv.2309.01385

27. J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J.
Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036

28. F. Ammar, A. Ejbehi, A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory,
21 (2011), 813–836.

29. E. A. Fernndez-Culma, N. Rojas, On the classification of 3-dimensional complex hom-Lie
algebras, J. Pure Appl. Algebra, 227 (2023), 107272. https://doi.org/10.1016/j.jpaa.2022.107272

30. A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64.

31. Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Th., 15 (2012), 1081–1098.
https://doi.org/10.1007/s10468-011-9280-8

32. D. Yau, The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J.
Phys. A, 42 (2009), 165202. https://doi.org/10.1088/1751-8113/42/16/165202

33. Y. Li, D. Wang, Twisted Rota-Baxter operators on 3-Hom-Lie algebras, Comm. Algebra, 51 (2023),
4662–4675. https://doi.org/10.1080/00927872.2023.2215321

AIMS Mathematics Volume 9, Issue 2, 2619–2640.

http://dx.doi.org/https://doi.org/10.1090/S0002-9939-05-07845-7
http://dx.doi.org/https://doi.org/10.1515/crll.1965.218.6
http://dx.doi.org/https://doi.org/10.1002/mana.1999.3212030109
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.jpaa.2021.106766
http://dx.doi.org/https://doi.org/10.1016/S0393-0440(02)00027-X
http://dx.doi.org/https://doi.org/10.1143/PTPS.144.145
http://dx.doi.org/https://doi.org/10.1007/s11005-008-0259-2
http://dx.doi.org/https://doi.org/10.1063/5.0051142
http://dx.doi.org/https://doi.org/10.1007/s40062-022-00305-y
http://dx.doi.org/https://doi.org/10.1142/S0219887821502236
http://dx.doi.org/https://doi.org/10.48550/arXiv.2309.01385
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2005.07.036
http://dx.doi.org/https://doi.org/10.1016/j.jpaa.2022.107272
http://dx.doi.org/https://doi.org/10.1007/s10468-011-9280-8
http://dx.doi.org/https://doi.org/10.1088/1751-8113/42/16/165202
http://dx.doi.org/https://doi.org/10.1080/00927872.2023.2215321


2640

34. D. Wang, Y. Ke, Reynolds operators on Hom-Leibniz algebras, Filomat, 37 (2023), 2117–2130.
https://doi.org/10.2298/FIL2307117W

35. A. Das, S. Sen, Nijenhuis operators on Hom-Lie algebras, Comm. Algebra, 50 (2022), 1038–1054.
https://doi.org/10.1080/00927872.2021.1977942

36. S. K. Mishra, A. Naolekar, O-operators on hom-Lie algebras, J. Math. Phys., 61 (2020), 121701.
https://doi.org/10.1063/5.0026719

37. S. Guo, Y. Zhang, The cohomology of relative cocycle weighted Reynolds
operators and NS-pre-Lie algebras, Comm. Algebra, 51 (2023), 5313–5331.
https://dx.doi.org/10.1080/00927872.2023.2232853

38. T. Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra, 202 (2005),
133–153. https://doi.org/10.1016/j.jpaa.2005.01.010

39. E. Getzler, Lie theory for nilpotent L∞-algebras, Ann. Math., 170 (2009), 271–301.
https://doi.org/10.4007/annals.2009.170.271

40. J. Stasheff, Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras,
In: Quantum groups (Leningrad, 1990), 120–137, Lecture Notes in Math., 1510, Springer, Berlin,
1992. https://doi.org/10.1007/BFb0101184

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 2, 2619–2640.

http://dx.doi.org/https://doi.org/10.2298/FIL2307117W
http://dx.doi.org/https://doi.org/10.1080/00927872.2021.1977942
http://dx.doi.org/https://doi.org/10.1063/5.0026719
http://dx.doi.org/https://dx.doi.org/10.1080/00927872.2023.2232853
http://dx.doi.org/https://doi.org/10.1016/j.jpaa.2005.01.010
http://dx.doi.org/https://doi.org/10.4007/annals.2009.170.271
http://dx.doi.org/https://doi.org/10.1007/BFb0101184
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Twisted Rota-Baxter operators on Hom-Lie algebras
	Cohomology of twisted Rota-Baxter operators on Hom-Lie algebras
	Maurer-Cartan characterization and the controlling L-algebra of twisted Rota-Baxter operators
	Cohomology of twisted Rota-Baxter operators
	Cohomology of twisted Rota-Baxter operators as Chevalley-Eilenberg cohomology 

	Deformations of twisted Rota-Baxter operators on Hom-Lie algebras
	Linear deformations of twisted Rota-Baxter operators
	Formal deformations of twisted Rota-Baxter operators

	Conclusions

