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1. Introduction

It is well known that there exist instantaneous perturbations and abrupt changes at certain times in
different areas of the real world, such as mechanics, electronics, telecommunications, finance markets
and so on. We usually call the changes impulsive effects, which are described by impulsive differential
equations. In the last decades, the study of corresponding impulsive differential equations has been very
extensive. However, noise or stochastic perturbation is unavoidable in the real world, and stochastic
differential equations are viewed as powerful tools for describing these stochastic perturbations. Based
on the above fact, impulsive stochastic differential equations naturally come into our view, and the
topic of impulsive stochastic differential equations has aroused great interest for researchers. Many
meaningful results about impulsive stochastic differential equations have been reported (see [1–7]).
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Also, stability analysis has always been an important problem in the field of impulsive stochastic
systems and has been widely studied by numerous works. Meanwhile, the concept of exponential
stability plays a crucial role in dynamic systems and its convergence rate is faster than the asymptotic
stability. Therefore, the existence and stability of the solutions for stochastic systems have been studied
widely, and some interesting results have been presented to us: for instance, Luo [8], Chen [9],
Li and Fan [10], Li et al. [11], Guo et al. [12], Li et al. [13], Benhadri et al. [14], Cao and
Zhu [15], Shu et al. [16,17], Huang and Li [18], Parvizi et al. [19–21], among others. On the other
hand, stochastic differential equations driven by Poisson random measures arise in many different
fields. For example, they have been used to develop models for the neuronal activity that for synaptic
impulses occur randomly, both in time and at different locations of a spatially extended neuron. Other
applications arise in chemical reaction-diffusion systems and stochastic turbulence models. To the best
of our knowledge, the existing papers on stability analysis of the mild solutions for stochastic partial
differential equations driven by Poisson jump are relatively few. For example, Anguraj et al. [22],
Hou et al. [23], Chen et al. [24], Ravikumar et al. [25], Chadha and Bora [26] all investigated the
exponential stability results of mild solutions for impulsive stochastic equations driven by Poisson
jumps under some suitable conditions.

However, it should be further emphasized that the existence and exponential stability of solutions for
impulsive stochastic systems with Poisson jumps need further study. To the best of authors’ knowledge,
some authors have established the impulsive-integral inequality to investigate the exponential stability
of corresponding impulsive stochastic systems in the above-mentioned [3,9,16,24,26], and it should
be pointed out that the restrictive conditions of the impulsive-integral inequality in [3,9,16,24,26]
are too strict, which shows that the impulsive-integral inequality has room for improvement. The
main contributions of this paper are that the criteria of existence and uniqueness of mild solutions
for the considered impulsive stochastic differential equations are discussed by using the successive
approximation method, and an improved impulsive-integral inequality is given in later Lemma 4.1 and
Lemma 4.2, which are used to obtain the exponential stability in the pth moment of mild solutions for
impulsive stochastic differential equations.

The remainder of this article is divided into five parts. In Section 2, some preliminaries and results
which are applied in this paper are presented. Section 3 is devoted to studying the existence and
uniqueness of the mild solution of the system (2.1). The criteria of exponential stability in the pth
moment of mild solution for impulsive stochastic differential equations are given in Section 4. Finally,
an example and numerical simulation are established to illustrate the theoretical results in Section 5.

2. Preliminaries

Let X and Y be two real, separable Hilbert spaces and L(Y, X) be the space of a bounded linear
operator from Y to X. For the sake of convenience, we shall use the same notation ‖ · ‖ to denote
the norms in X, Y and L(Y, X) when no confusion possibly arises. Let (Ω,F, {Ft}t≥0, P) be a complete
filtered probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. right continuous
and F0 containing all P0-null sets). Suppose {p(t), t ≥ 0} is a σ-finite stationary Ft-adapted Poisson
point process taking values in measurable space (U,B(U)). The random measure Np defined by
Np((0, t] × Λ) :=

∑
s∈(0,t] 1Λ(p(s)) for Λ ∈ B(U) is called the Poisson random measure induced by p(·),

and then, we can define the measure Ñ by Ñ(dx, dy) = Np(dt, dy)−v(dy)dt,where v is the characteristic
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measure of Np, which is called the compensated Poisson random measure.
For Borel set z ∈ B(U − {0}), we consider an impulsive stochastic differential equation with Poisson

jumps and varying-time delays as follows:
dx(t) = [Ax(t) + f1(t, x(t − δ1(t)))]dt + f2(t, x(t − δ2(t)))dω(t)

+
∫

Z
f3(t, x(t − δ3(t)), y)Ñ(dt, dy), t ∈ [0,T ], t , tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, ...,
x0(θ) = ϕ ∈ PC, θ ∈ [−τ, 0], a.s.,

(2.1)

where ϕ is F0-measure. Let PC ≡ PC([−τ, 0]; X) be the space of all almost surely bounded, F0-
measure and continuous functions everywhere except for an infinite number of point s at which ξ(s)
and left limit ξ(s) exists and ξ(s+) = ξ(s) from [−τ, 0] into X and equipped with the supremum norm
‖ϕ‖0 = supθ∈[−τ,0] ‖ϕ(θ)‖. A is the infinitesimal generator of an analytic semigroup (S (t))t≥0 of bounded
linear operators in X, and for more details about semigroup theory we refer to [27]. The functions
δ1(t), δ2(t), δ3(t) : [0,T ] → [0, τ](i = 1, 2, 3) are continuous. f1, f2 : [0,T ] × X → X and f3 : [0,T ] ×
X × U → X are all suitable Borel measurable functions, where L0

2(Y, X) is defined in a later part.
Ik(·) : X → X are continuous functions, and the fixed times tk satisfy 0 = t0 < t1 < · · · < tk < ... <

T,∆x(tk) = x(t+
k ) − x(t−k ) and x(t−k ) = x(tk), where x(t+

k ) and x(t−k ) represent the right and left limits of
x(t) at tk, respectively.

Let βn(t)(n = 1, 2, ...) be a sequence of real-valued one-dimensional standard Brownian motions
mutually independent over (Ω,F, P). Let ω(t) =

∑+∞
n=1
√
λnβn(t)en(t ≥ 0), where λn ≥ 0(n = 1, 2, ...) are

nonnegative real numbers, and {en}(n = 1, 2, ...) is a complete orthonormal basis in Y . Let Q ∈ L(Y, X)
be an operator defined by Qen = λnen with a finite trace trQ =

∑+∞
n=1 λn < +∞. Then, the above Y-valued

stochastic process ω(t) is called a Q-Wiener process.

Definition 2.1. Let φ ∈ L(Y, X) and define

‖φ‖2L0
2

:= tr(φQφ∗) =
{ +∞∑

n=1

‖
√
λnφen‖

}
.

If ‖φ‖2
L0

2
< +∞, then φ is called a Q-Hilbert-Schmidt operator, and define L0

2(Y, X), the space of all
Q-Hilbert-Schmidt operators φ : Y → X.

For more details about the X-valued stochastic integral of an L0
2(Y, X)-valued, Ft-adapted predictable

process h(t) with respect to the Q-Wiener process ω(t), we can see [27].

Lemma 2.1. ([27]) For any p ≥ 2 and an arbitrary L0
2(Y, X)-valued predictable process ψ(s),

sup
s∈[0,t]

E
∥∥∥∥ ∫ s

0
ψ(u)dω(u)

∥∥∥∥p
≤ cp

( ∫ t

0
(E‖ψ(s)‖p

L0
2
)

2
p ds

) p
2
, (2.2)

where cp = ( p(p−1)
2 )

p
2 and t ∈ [0,+∞).

Definition 2.2. ([24]) An X-valued stochastic process {x(t), t ∈ [−τ,T ]} is called a mild solution
of (2.1) if

(1) x(t) is an Ft(t ≥ 0) adapted process;
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(2) x(t) ∈ X has a càdlàg path on t ∈ [0,T ] almost surely;
(3) for each t ∈ [0,T ], we have

x(t) = S (t)ϕ(0) +

∫ t

0
S (t − s) f1(s, x(s − δ1(s)))ds

+

∫ t

0
S (t − s) f2(s, x(s − δ2(s)))dω(s) +

∑
tk<t

S (t − tk)Ik(x(tk))

+

∫ t

0

∫
Z

S (t − s) f3(s, x(s − δ3(s)), y)Ñ(ds, dy),

where x0(·) = ϕ ∈ PC, a.s.

Definition 2.3. The mild solution of the system (2.1) is said to be exponentially stable in pth moment
if there exist two positive constants λ > 0 and M0 > 0, for any initial value ϕ ∈ PC, a.s., such that

E‖x(t)‖p ≤ M0‖ϕ‖
p
0e−λt, t ∈ [0,T ], p ≥ 2. (2.3)

Moreover, to obtain our main results, we give the following assumptions:
(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear operators (S (t))t≥0

in X and satisfies that there exist two positive constants M > 0 and γ > 0 such that ‖S (t)‖ ≤ Me−γt,∀t ∈
[0,T ].

(H2) There exist three positive constants C1,C2 and C3 > 0 such that

‖ f1(t, x) − f1(t, y)‖ ≤ C1‖x − y‖, f1(t, 0) = 0, (2.4)

‖ f2(t, x) − f2(t, y)‖L0
2
≤ C2‖x − y‖, f2(t, 0) = 0, (2.5)

and ∫
Z
‖ f3(t, x, z) − f3(t, y, z)‖2v(dz) ≤ C2

3‖x − y‖2, f3(t, 0, z) = 0, (2.6)

where x, y ∈ X, z ∈ Z, t ∈ [0,T ].
(H3) There exist positive constants dk, k = 1, 2, ..., such that

‖Ik(x) − Ik(y)‖ ≤ dk‖x − y‖, ‖Ik(0)‖ = 0, (2.7)

where x, y ∈ X and
∑+∞

k=1 dk < +∞.

3. Existence and uniqueness

In this part, we discuss the existence and uniqueness of the mild solution for the considered
system (2.1) via the successive approximation method.

Theorem 3.1. Assume that conditions (H1)–(H3) hold, and then the system (2.1) has a unique mild
solution on [−r,T ], 0 < T < ∞ provided that

4p−1Mp
((∑

tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+ Cp
1γ
−p + cpγ

−1Cp
2

(2γ(p − 1)
p − 2

)1− p
2
)
< 1. (3.1)
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Proof. To get the existence of the mild solution of the system (2.1), we first need to introduce the
sequence of successive approximations to the system (2.1) as follows:

Let x0(t) = S (t)ϕ(0), t ∈ [0,T ] and xn
0(t) = ϕ(t), t ∈ [−τ, 0], n = 0, 1, 2, · · · . Then, we define the

following iterative scheme:

xn(t) = S (t)ϕ(0) +

∫ t

0
S (t − s) f1(s, xn−1(s − δ1(s)))ds +

∫ t

0
S (t − s) f2(s, xn−1(s − δ2(s)))dω(s)

+
∑
tk<t

S (t − tk)Ik(xn−1(tk)) +

∫ t

0

∫
Z

S (t − s) f3(s, xn−1(s − δ3(s)), y)Ñ(ds, dy). (3.2)

Next, we prove the criterion of existence and uniqueness of mild solutions for the system (2.1), and the
proof is split into the following three steps.

Step 1. The sequence {xn(t), n ≥ 0} is bounded.
In fact, by using (3.2) and Lemma 2.1 for 0 ≤ t ≤ T , we obtain

E‖xn(t)‖p = E
∥∥∥∥S (t)ϕ(0) +

∫ t

0
S (t − s) f1(s, xn−1(s − δ1(s)))ds

+

∫ t

0
S (t − s) f2(s, xn−1(s − δ2(s)))dω(s) +

∑
tk<t

S (t − tk)Ik(xn−1(tk))

+

∫ t

0

∫
Z

S (t − s) f3(s, xn−1(s − δ3(s)), y)Ñ(ds, dy)
∥∥∥∥p

≤ 8p−1E‖S (t)ϕ(0)‖p + 8p−1E
∥∥∥∥∑

tk<t

S (t − tk)Ik(xn−1(tk))
∥∥∥∥p

+ 4p−1E
∥∥∥∥ ∫ t

0

∫
Z

S (t − s) f3(s, xn−1(s − δ3(s)), y)Ñ(ds, dy)
∥∥∥∥p

+ 4p−1E
∥∥∥∥ ∫ t

0
S (t − s) f1(s, xn−1(s − δ1(s)))ds

∥∥∥∥p

+ 4p−1E
∥∥∥∥ ∫ t

0
S (t − s) f2(s, xn−1(s − δ2(s)))dω(s)

∥∥∥∥p
.

Then, we will estimate the right-hand side of the above inequality. From (H1), we have

E‖S (t)ϕ(0)‖p ≤ Mpe−γptE‖ϕ(0)‖p.

Also, from (H1), (H3) and the Hölder inequality, we have

E
∥∥∥∥∑

tk<t

S (t − tk)Ik(xn−1(tk))
∥∥∥∥p
≤ Mp

(∑
tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk)E‖xn−1(tk)‖p.

Similarly, by (H1), (H2), the Hölder inequality and Lemma 2.1, we have
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E
∥∥∥∥ ∫ t

0

∫
Z

S (t − s) f3(s, xn−1(s − δ3(s)), y)Ñ(ds, dy)
∥∥∥∥p

≤ cpE
( ∫ t

0

∫
Z

∥∥∥∥S (t − s) f3(s, xn−1(s − δ3(s)), z)
∥∥∥∥2

dsv(dz)
) p

2

≤ cpMpE
( ∫ t

0

∫
Z

e−2γ(t−s)‖ f3(s, xn−1(s − δ3(s)), z)‖2dsv(dz)
) p

2

≤ cpMpE
( ∫ t

0
e−2γ(t−s)

∫
Z
‖ f3(s, xn−1(s − δ3(s)), z)‖2v(dz)ds

) p
2

≤ cpMpCp
3

( ∫ t

0
e−

2(p−1)
p γ(t−s)e−

2
pγ(t−s)E‖xn−1(s − δ3(s))‖2ds

) p
2

≤ cpMpCp
3

( ∫ t

0
e−

2(p−1)
p ·

p
p−2γ(t−s)ds

) p−2
2

∫ t

0
e−γ(t−s)E‖xn−1(s − δ3(s))‖pds

≤ cpMpCp
3

( p − 2
2(p − 1)γ

) p−2
2

∫ t

0
e−γ(t−s)E‖xn−1(s − δ3(s))‖pds,

E
∥∥∥∥ ∫ t

0
S (t − s) f1(s, xn−1(s − δ1(s)))ds

∥∥∥∥p

≤ E
( ∫ t

0
‖S (t − s)‖‖ f1(s, xn−1(s − δ1(s)))‖ds

)p

≤ MpE
( ∫ t

0
e−[ γ(p−1)

p ](t−s)e−( γp )(t−s)
‖ f1(s, xn−1(s − δ1(s)))‖ds

)p

≤ MpCp
1

( ∫ t

0
e−γ(t−s)ds

)p−1
∫ t

0
e−γ(t−s)E‖xn−1(s − δ1(s))‖pds

≤ MpCp
1γ

1−p
∫ t

0
e−γ(t−s)E‖xn−1(s − δ1(s))‖pds,

and

E
∥∥∥∥ ∫ t

0
S (t − s) f2(s, x(s − δ2(s)))dω(s)

∥∥∥∥p

≤ cpMp
( ∫ t

0
[e−γp(t−s)E‖ f2(s, x(s − δ2(s)))ds‖p

L0
2
]

2
p ds

) p
2

≤ cpMpCp
2

( ∫ t

0
[e−γ(p−1)(t−s)e−γ(t−s)E‖x(s − δ2(s))‖p]

2
p ds

) p
2

≤ cpMpCp
2

( ∫ t

0
e−[ 2(p−1)

p−2 ]γ(t−s)ds
)p−1

∫ t

0
e−γ(t−s)E‖x(s − δ2(s))‖pds

≤ cpMpCp
2

(2γ(p − 1)
p − 2

)1− p
2

∫ t

0
e−γ(t−s)E‖x(s − δ2(s))‖pds.

Therefore,
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sup
s∈[0,t]

E‖xn(s)‖p

≤ 8p−1Mpe−γpt sup
s∈[−τ,0]

E‖ϕ(s)‖p

+8p−1Mp
(∑

tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk) sup
s∈[−τ,t]

E‖xn−1(s)‖p

+4p−1cpγ
−1MpCp

3

( p − 2
2(p − 1)γ

) p−2
2 sup

s∈[−τ,t]
E‖xn−1(s)‖p

+4p−1MpCp
1γ
−p sup

s∈[−τ,t]
E‖xn−1(s)‖p

+4p−1cpγ
−1MpCp

2

(2γ(p − 1)
p − 2

)1− p
2 sup

s∈[−τ,t]
E‖xn−1(s)‖p.

Since sups∈[−τ,t] E‖xn(s)‖p ≤ sups∈[−τ,0] E‖xn(s)‖p + sups∈[0,t] E‖xn(s)‖p, the above inequality implies that

sup
s∈[0,t]

E‖xn(s)‖p

≤ 8p−1Mpe−γpt sup
s∈[−τ,0]

E‖ϕ(s)‖p

+8p−1Mp
(∑

tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk)
[

sup
s∈[−τ,0]

E‖ϕ(s)‖p + sup
s∈[0,t]

E‖xn−1(s)‖p
]

+4p−1cpγ
−1MpCp

3

( p − 2
2(p − 1)γ

) p−2
2
[

sup
s∈[−τ,0]

E‖ϕ(s)‖p + sup
s∈[0,t]

E‖xn−1(s)‖p
]

+4p−1MpCp
1γ
−p

[
sup

s∈[−τ,0]
E‖ϕ(s)‖p + sup

s∈[0,t]
E‖xn−1(s)‖p

]
+4p−1cpγ

−1MpCp
2

(2γ(p − 1)
p − 2

)1− p
2
[

sup
s∈[−τ,0]

E‖ϕ(s)‖p + sup
s∈[0,t]

E‖xn−1(s)‖p
]

= 4p−1Mp
[
2p−1e−γpt + 2p−1

(∑
tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk) + Cp
1γ
−p

+cpγ
−1Cp

3

( p − 2
2(p − 1)γ

) p−2
2

+ cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
]

sup
s∈[−τ,0]

E‖ϕ(s)‖p

+4p−1Mp
[
2p−1

(∑
tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk) + Cp
1γ
−p

+cpγ
−1Cp

3

( p − 2
2(p − 1)γ

) p−2
2

+ cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
]

sup
s∈[0,t]

E‖xn−1(s)‖p
]
.

Then, by applying the mathematical induction and known result E‖ϕ‖p < ∞, we obtain that the
sequence {xn(t)} is bounded.

Step 2. The sequence {xn(t), n ≥ 0} is a Cauchy sequence.
A similar estimation to Step 1 and (3.2) for t ∈ [0,T ] yields
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sup
s∈[0,t]

E‖xn+1(s) − xn(s)‖p

≤ 4p−1Mp
(∑

tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk) sup
s∈[−τ,t]

E‖xn(s) − xn−1(s)‖p

+4p−1cpγ
−1MpCp

3

( p − 2
2(p − 1)γ

) p−2
2 sup

s∈[−τ,t]
E‖xn(s) − xn−1(s)‖p

+4p−1MpCp
1γ
−p sup

s∈[−τ,t]
E‖xn(s) − xn−1(s)‖p

+4p−1cpγ
−1MpCp

2

(2γ(p − 1)
p − 2

)1− p
2 sup

s∈[−τ,t]
E‖xn(s) − xn−1(s)‖p.

Namely,

sup
s∈[0,t]

E‖xn+1(s) − xn(s)‖p

≤ 4p−1Mp
((∑

tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+Cp
1γ
−p + cpγ

−1Cp
2

(2γ(p − 1)
p − 2

)1− p
2
)

sup
s∈[0,t]

E‖xn(s) − xn−1(s)‖p

≤
[
4p−1Mp

((∑
tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+ Cp
1γ
−p

+cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
)]n

sup
s∈[0,t]

E‖x1(s) − x0(s)‖p.

Note that sups∈[0,t] E‖x0(s)‖p = sups∈[0,t] E‖x0(s)‖p ≤ MpE‖ϕ(0)‖p, and from (3.2), we have

sup
s∈[0,t]

E‖x1(s) − x0(s)‖p

≤
[
4p−1Mp

((∑
tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+ Cp
1γ
−p

+cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
)]

sup
s∈[0,t]

E‖x0(s)‖p

≤
[
4p−1Mp

((∑
tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+ Cp
1γ
−p

+cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
)]

MpE‖ϕ(0)‖p.

Therefore,

AIMS Mathematics Volume 8, Issue 7, 15269–15284.



15277

sup
s∈[0,t]

E‖xn+1(s) − xn(s)‖p

≤ 4p−1Mp
((∑

tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+Cp
1γ
−p + cpγ

−1Cp
2

(2γ(p − 1)
p − 2

)1− p
2
)

sup
s∈[0,t]

E‖xn(s) − xn−1(s)‖p

≤
[
4p−1Mp

((∑
tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+ Cp
1γ
−p

+cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
)]n+1

MpE‖ϕ(0)‖p,

which implies that for any m > n ≥ 1, together with (3.1), we obtain

sup
s∈[0,t]

E‖xm(s) − xn(s)‖p ≤

+∞∑
n

sup
s∈[0,t]

E‖xn+1(s) − xn(s)‖p

≤

+∞∑
n

[
4p−1Mp

((∑
tk<t

dk

)p
+ cpγ

−1Cp
3

( p − 2
2(p − 1)γ

) p−2
2

+ Cp
1γ
−p

+cpγ
−1Cp

2

(2γ(p − 1)
p − 2

)1− p
2
)]n+1

MpE‖ϕ(0)‖p

−→ 0, as n→ ∞,

which implies that the sequence {xn(t), n ≥ 0} is a Cauchy sequence.
Step 3. Existence and uniqueness of the mild solution for the system (2.1).
Through the above analysis and combining with the Borel-Cantelli lemma, we know that xn(t) →

x(t) holds uniformly for 0 ≤ t ≤ T as n→ ∞. Then, taking limits on both sides of (3.2), we obtain that
x(t) is a solution of the system (2.1). The uniqueness of the mild solution for the system (2.1) is proved
by using a similar estimation as step 2. �

4. Exponential stability in the pth moment

In order to obtain the exponential stability in the pth moment of mild solution for the system (2.1),
we will first establish an improved impulsive-integral inequality as follows.

Lemma 4.1. Consider a constant γ > 0, positive constants: ξ, ξ∗, ξk(k = 1, 2, ...) and a function
y : [−τ,T ]→ [0,+∞). If the inequality

y(t) ≤
{
ξe−γpt + ξ∗

∫ t

0
e−γ(t−s) supθ∈[−τ,0] y(s + θ)ds +

∑
tk<t ξke−γp(t−tk)y(t−k ), t ∈ [0,T ],

ξe−γpt, t ∈ [−τ, 0],

holds, then we have y(t) ≤ ξe−λt(t ≥ −τ), where λ is a positive constant defined by λ = pγ − ζ − ξ, and
ξ satisfies

∏
0<tk<t λk < eξt , ξ < γ − ζ , λk = max{1 + ξk, 1}.
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Proof. In view of the definition of λ, it is obvious to see y(t) ≤ ξe−λt for t ∈ [−τ, 0]. Next, multiplying
eγpt on both sides of the first inequality of Lemma 4.1 for any t ∈ [0,T ], we obtain

y(t)eγpt ≤ ξ + ξ∗
∫ t

0
eγpte−γ(t−s) sup

θ∈[−τ,0]
y(s + θ)ds +

∑
tk<t

ξkeγptky(t−k )

= ξ + ξ∗
∫ t

0
eγpte−γ(t−s)eγp(s+θ)e−γp(s+θ) sup

θ∈[−τ,0]
y(s + θ)ds +

∑
tk<t

ξkeγptky(t−k ).

Let x(t) = y(t)eγpt, and the above inequality is transformed as

x(t) ≤ ξ + ξ∗
∫ t

0
eγpte−γ(t−s)e−γp(s+θ) sup

θ∈[−τ,0]
x(s + θ)ds +

∑
tk<t

ξkx(t−k )

≤ ξ + ξ∗
∫ t

0
eγp[t−(s+θ)] sup

θ∈[−τ,0]
x(s + θ)ds +

∑
tk<t

ξkx(t−k ).

Since 0 ≤ s ≤ t,−τ ≤ θ ≤ 0, which implies that t − (s + θ) ∈ [0, t + τ]. Therefore,

x(t) ≤ ξ + ξ∗eγp(τ+T )
∫ t

0
sup

θ∈[−τ,0]
x(s + θ)ds +

∑
tk<t

ξkx(tk).

Let ζ = ξ∗eγp(τ+T ) and

η(t) = ξ + ζ

∫ t

0
sup

θ∈[−τ,0]
x(s + θ)ds +

∑
tk<t

ξkx(tk). (4.1)

Then, we have
η
′

(t) = ζ sup
θ∈[−τ,0]

x(t + θ) ≤ ζ sup
θ∈[−τ,0]

η(t + θ), t , tk, (4.2)

and
η(t+

k ) ≤ λkη(tk), t = tk, (4.3)

where λk = max{1 + ξk, 1}.
Consider the following equation:

η
′

(t) = ζ sup
θ∈[−τ,0]

η(t + θ). (4.4)

It is easily shown that the solution of (4.4) is η(t) = ‖η0‖eζt. From the comparison principle, we obtain

x(t) ≤ η(t) = ‖η0‖eζt, t ∈ [−τ, t1] (4.5)

and
η(t+

k ) ≤ ‖η0‖λ1eζt1 . (4.6)

In view of (4.5) and (4.6), we have

η(t) ≤ ‖ηt1‖e
ζ(t−t1) ≤ ‖η0‖λ1eζt, t ∈ (t1, t2]. (4.7)
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Combining with mathematical induction, we have

η(t) ≤ ‖η0‖
∏
tk<t

λkeζt, t ∈ (tk, tk+1]. (4.8)

Thus,
y(t) ≤ ‖η0‖

∏
tk<t

ξke−(pγ−ζ)t = ξ
∏
tk<t

λke−(pγ−ζ)t = ξe−µt, (4.9)

where λ = pγ − ζ − ξ, ξ satisfies
∏

tk<t λk < eξt, and ξ < pγ − ζ. The proof is completed. �

Remark 4.1. It is obviously shown that the value range of ξk in our results is wider than that in [24],
which is required to satisfy ζ

γ
+

∑+∞
k=1 ξk < 1. If ξk ≥ 1, the corresponding lemma in [24] will be invalid.

But in our result, ξk can be greater than or equal to 1. When p = 1, some known results [3,9] can also
be broadened.

Lemma 4.2. Consider γ1, γ2 > 0, positive constants: ξ, ω, ξ∗, ω∗, ξk, ωk(k = 1, 2, ...) and a function
y : [−τ,T ]→ [0,+∞). If the inequality

y(t) ≤


ξe−γ1 pt + ωe−γ2 pt + ξ∗

∫ t

0
e−γ1(t−s) supθ∈[−τ,0] y(s + θ)ds

+ω∗
∫ t

0
e−γ2(t−s) supθ∈[−τ,0] y(s + θ)ds +

∑
tk<t ξke−γ1 p(t−tk)y(t−k )

+
∑

tk<t ωke−γ2 p(t−tk)y(t−k ), t ∈ [0,T ],
ξe−γ1 pt + ωe−γ2 pt, t ∈ [−τ, 0],

holds, then we have y(t) ≤ (ξ + ω)e−λt(t ≥ −τ), where λ is a positive constant defined by λ =

p max{γ1, γ2} − ζ − ξ, and ξ satisfies
∏

0<tk<t λk < eξt and ξ < p max{γ1, γ2} − ζ, ζ = ξ∗eγ1 p(τ+T ) +

ω∗eγ2 p(τ+T ), λk = max{1 + ξk + ωk, 1}.

Proof. The proof is similar to Lemma 4.1, and we omit it here. �

Remark 4.2. When p = 1, it is also easy to see that the ξk and ωk are more simple in our results than
in [26], which is required to satisfy ξ∗eγ1 p(τ+T )

γ1
+ ω∗eγ2 p(τ+T )

γ2
+

∑+∞
k=1 ξk +

∑+∞
k=1 ωk < 1. If ξk ≥ 1 or ωk ≥ 1,

the corresponding lemma in [26] will not hold, too. But in our result, ξk or ωk can be greater than or
equal to 1.

Theorem 4.1. Assume that conditions (H1)–(H3) hold, and then the mild solution of the system (2.1)
is exponentially stable in the pth moment.

Proof. Similar to the estimation of Step 1 in Section 3, that is, from conditions (H1)–(H3) and the
Hölder inequality, we have

E‖x(t)‖p

≤ 4p−1E
∥∥∥∥S (t)ϕ(0) +

∑
tk<t

S (t − tk)Ik(x(tk))
∥∥∥∥p

+4p−1E
∥∥∥∥ ∫ t

0
S (t − s) f1(s, x(s − δ1(s)))ds

∥∥∥∥p

+4p−1E
∥∥∥∥ ∫ t

0
S (t − s) f2(s, x(s − δ2(s)))dω(s)

∥∥∥∥p
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+4p−1E
∥∥∥∥ ∫ t

0

∫
Z

S (t − s) f3(s, x(s − δ3(s)), y)Ñ(ds, dy)
∥∥∥∥p

≤ 8p−1E‖S (t)ϕ(0)‖p + 8p−1E
∥∥∥∥∑

tk<t

S (t − tk)Ik(x(tk))
∥∥∥∥p

+4p−1E
∥∥∥∥ ∫ t

0

∫
Z

S (t − s) f3(s, x(s − δ3(s)), y)Ñ(ds, dy)
∥∥∥∥p

+4p−1E
∥∥∥∥ ∫ t

0
S (t − s) f1(s, x(s − δ1(s)))ds

∥∥∥∥p

+4p−1E
∥∥∥∥ ∫ t

0
S (t − s) f2(s, x(s − δ2(s)))dω(s)

∥∥∥∥p

≤ 8p−1MpE‖ϕ(0)‖pe−γpt

+8p−1Mp
(∑

tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk)E‖x(tk)‖p

+4p−1cpMpCp
3

( p − 2
2(p − 1)γ

) p−2
2

∫ t

0
e−γ(t−s)E‖x(s − δ3(s))‖pds

+4p−1MpCp
1γ

1−p
∫ t

0
e−γ(t−s)E‖x(s − δ1(s))‖pds

+4p−1cpMpCp
2

(2γ(p − 1)
p − 2

)1− p
2

∫ t

0
e−γ(t−s)E‖x(s − δ2(s))‖pds

≤ 8p−1MpE‖ϕ(0)‖pe−γpt

+8p−1Mp
(∑

tk<t

dk

)p−1 ∑
tk<t

dke−γp(t−tk)E‖x(tk)‖p

+4p−1Mp
[
Cp

1γ
1−p + cpC

p
2

(2γ(p − 1)
p − 2

)1− p
2

+cpC
p
3

( p − 2
2(p − 1)γ

) p−2
2
] ∫ t

0
e−γ(t−s) sup

θ∈[−τ,0]
E‖x(s + θ)‖pds.

On the other hand, it is clearly shown that for t ∈ [−τ, 0], we have

E‖x(t)‖p ≤ M∗E‖ϕ‖p
0e−λt,

where M∗ = max
{
8p−1Mp, 1

}
. Owing to Lemma 4.1 for all t ≥ −τ, we have

E‖x(t)‖p ≤ M∗E‖ϕ(0)‖pe−λt,

where λ = pγ − ζ − λ, ζ = 4p−1Mp
[
Cp

1γ
1−p + cpC

p
2

(
2γ(p−1)

p−2

)1− p
2

+ cpC
p
3

(
p−2

2(p−1)γ

) p−2
2
]
, λ satisfies

∏
tk<t ξk <

eλt, ξk = 1 + 8p−1Mp
(∑

tk<t dk

)p−1(∑
tk<t dk

)
and λ < pγ − ζ. Hence, we prove that the mild solution of

the system (2.1) is exponentially stable in the pth moment.
Note that if function f3 ≡ 0, the system (2.1) is changed as

dx(t) = [Ax(t) + f1(t, x(t − δ1(t)))]dt + f2(t, x(t − δ2(t)))dω(t), t ∈ [0,T ], t , tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, 2, ...,
x0(θ) = ϕ ∈ PC, θ ∈ [−τ, 0], a.s..

(4.10)
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Hence, we have the following corollary:

Corollary 4.1. Assume that conditions (H1)–(H3) hold, and then the mild solution of the system (4.10)
is exponentially stable in the pth moment.

Proof. Similar to the proof of Theorem 4.1, we also obtain E‖x(t)‖p ≤ M∗E‖ϕ(0)‖pe−λt for all t ≥ −τ,

where λ = pγ − ζ − λ, ζ = 4p−1Mp
[
Cp

1γ
1−p + cpC

p
2

(
2γ(p−1)

p−2

)1− p
2
]
, λ satisfies

∏
tk<t ξk < eλt, ξk = 1 +

8p−1Mp
(∑

tk<t dk

)p−1(∑
tk<t dk

)
and λ < pγ − ζ. Namely, the mild solution of the system (4.10) is

exponentially stable in the pth moment. �

Remark 4.3. It is clearly shown that some known results can be broadened by the above Corollary 4.1.
In detail, when p = 2, Theorem 4.1 in [16] is the special case of Corollary 4.1. Comparing Theorem 3.2
in [16] with Corollary 4.1, we find the value range of ξk in our results is more general.

5. An example

In this part, we support our main obtained results by establishing an effective example as follows.

Example 5.1. Consider the following system:

du(t, x) = [ ∂2

∂x2 u(t, x) + C1 sin u( t
4 , x)]dt + C2 cos u( t

3 , x))dω(t)
+

∫
Z

C3y sin u( t
2 , x)Ñ(dt, dy), t ∈ [0, 1], t , tk, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],
∆u(tk, x) = dku(tk, x)), t = tk, k = 1, 2, ...,m,
u(t, x) = ϕ(t, x), t ∈ [−τ, 0], x ∈ [0, π].

(5.1)

ω(t) is a standard cylindrical Wiener process in X, A : D(A) ⊂ X → X, which is defined by Ay = y
′′

with the domain D(A) = {y ∈ X, y, y′ are absolutely continuous y′′ ∈ X, y(0) = y(π) = 0} and

Ay =

∞∑
n=1

n2(y, yn)yn, y ∈ D(A),

where yn(x) =

√
2
π

sin(nx), n ∈ N is the orthonormal set of eigenvectors of A, A is the infinitesimal

generator of an analytic semigroup (S (t))t≥0 in X, and ‖S (t)‖ ≤ e−π
2t.

It is easily shown that (5.1) can be transformed in the form of (2.1), where f1 = C1 sin x, f2 =

C2 cos x, f3 = C3y sin x. The delay functions are δ1(t) = t
4 , δ2(t) = t

4 , δ3(t) = t
2 . The impulsive functions

are Ik(x) = dkx, k ∈ N. Thus, it is easy to verify the conditions (H1)–(H3) of Theorem 3.1 all hold, and
the existence and uniqueness of the mild solution of (5.1) are obtained by Theorem 3.1.

Next, we prove the mild solution of (5.1) is exponentially stable in the 4th moment (p = 4). In fact,

we know M = 1, γ = π2. Let C1 = π
3
2

2 ,C2 = C3 =
√

π
6 , dk = 1

k2 , tk = k, k ∈ Z+, and by simple calculation,

we have ζ = 4p−1Mp
[
Cp

1γ
1−p + cpC

p
2

(
2γ(p−1)

p−2

)1− p
2
+ cpC

p
3

(
p−2

2(p−1)γ

) p−2
2
]
≈ 9.33, ξ1 = 3, ξ2 ≈ 16.42. Then we

choose λ = 6, so λ = pγ−ζ−λ = 4π2−9.33−6 > 0. On the other hand, the conditions of Theorem 4.1
also hold, that is, the mild solution of the system (5.1) is exponentially stable in the 4th moment.
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Finally, we give the following numerical simulations for the above impulsive stochastic system with
Poisson jumps (see Figures 1 and 2).
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Figure 1. The state trajectories of
system (5.1) with u(0, x(0)) = 3.5.
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Figure 2. The impulse sequence of
system (5.1).

6. Conclusions

In this research article, we consider the existence, uniqueness and exponential stability of mild
solution for a class of impulsive stochastic differential equations driven by Poisson jumps and time-
varying delays. Utilizing the successive approximation method, we obtain the criteria of existence
and uniqueness of mild solution for the considered impulsive stochastic differential equations. Then,
the exponential stability in the pth moment of mild solution is also devised for considered equations
by establishing an improved impulsive-integral inequality, which improves some known existing ones.
In future work, we are intended to study the existence and exponential stability of mild solutions for
impulsive neutral stochastic differential equations.
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