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Abstract: In this article, we propose a Galerkin finite element method for numerically solving a type
of fractional hyperbolic integro-differential equation, which can be considered as the generalization
of the classical hyperbolic Volterra integro-differential equation. Along with Galerkin finite element
method in spatial direction, we apply a second order symmetric difference method in time. Next
we discuss the regularity analysis of the weak solution and convergence analysis of the semi-discrete
scheme. Then we further study the stability analysis and the error estimation of the fully discrete
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1. Introduction

The field of fractional calculus, which deals with mathematical analysis and physical applications
of derivatives and integrals of arbitrary order, has become a hot topic nowadays. Fractional derivatives
and integral can be considered as the generalization of integer order derivative. However, there are
quite different between the fractional derivative and the integer order derivative. One of the reasons is
that fractional operators, such as Riemann-Liouville derivative or Caputo derivative, has the nonlocal
characteristics and weakly singular properties. But just because of above characteristics, the fractional
calculus performs more perfectly than the classical calculus, especially in the field of anomalous
diffusion problems. Many published papers reveal that fractional models, such as the fractional
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differential equations and the fractional integro-differential equations show more realistic dynamic
behavior than the classical differential equations and the classical integro-differential ones.

Fractional integro-differential equations often describe the anomalous diffusion phenomena which
come from the dynamic behaviors of viscoelastic materials, heat conduction with memory, and so
on [1-4]. They can be divided into parabolic integro-differential equations and hyperbolic
integro-differential equations along the time axis. The fractional hyperbolic integro-differential
equations can be modelled by the generalized constitutive relations between stress o and strain € of
the linear viscoelasticity [5]. If the corresponding generalized constitutive relation satisfies

o(t) = Ege(t) — f a(t — s)e(s)ds, (1.1)
0

where a(?) is the stress relaxation modulus and Ej is the Young’s modulus. Then substituting (1.1) into
its motion equation pu,, = divo + f, we can obtain a type of generalized hyperbolic integro-differential
equations

!
Uy — @iy, = f K(t — $)ugds + f(x,1), (1.2)
0

where u is the displacement, p is the density, f is the external force. If the kernel K belongs to the
form of power law (e.g. the form vk where I is the Gamma function), (1.2) is retained to the
temporal fractional integro-differential equations, in which the power law widely exists in complex
systems [6]. Meanwhile, if the displacement u of continuous media satisfies the 2a (1/2 < @ < 1)
order Lévy stable distribution in spatial direction, by applying the power law approximation form
of its Fourier transform and inverse Fourier transform, Eq (1.2) turns to be the following fractional
hyperbolic integro-differential equation

0*u 1 ! 0*u
Uy — a28|x|2“ =T+ B fo (t— sy axlmds + f(x, 1), (1.3)

where % is the 2« order Riesz fractional derivative, often describes the 2a order Lévy flights [7]. The
existence and uniqueness of the analytic solution of the above fractional hyperbolic integro-differential
equation can be proved by using the Fourier transform and the Laplace transform. It is omitted here,
because the proof is very similar to the corresponding parabolic problem. One can refer to [8,9].
There are several methods to study the fractional hyperbolic equations. Dassios and Font [10]
studied the analytical solution of the time-fractional hyperbolic heat equation, in which the fractional
derivatives contain three kinds of definitions. Kumar and Rai [11] presented a fractional hyperbolic
bioheat transfer model and used a hybrid numerical scheme based on fractional Legendre wavelet
method and finite difference scheme to study the numerical solution. Ashyralyev, Dal and Pinar [12]
studied an initial boundary value problem for the fractional hyperbolic equation by difference scheme
and discussed the stability details. Qiu et al. [13] constructed a formally second-order BDF finite
difference scheme for a integro-differential equations with the multi-term kernels. Qiu et al. [14]
presented a formally second-order backward differentiation formula for the Volterra integro-differential
equation with a weakly singular kernel. As we all known, finite element method, finite difference
method and spectral method are the classical numerical methods. They have been widely applied not
only in the classical hyperbolic equations, but also in the fractional parabolic differential equations,
e.g. [9,15-27]. However, for the fractional hyperbolic integro-differental equation, there are relatively
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few. Moreover, it is quite difficult to get the high accuracy and the high convergence order methods,
because the fractional integral and the fractional derivative are mixed into one term.

In this paper, we consider a Galerkin finite element method to solve the initial-boundary value
problem of the fractional hyperbolic integro-differential equation

(92014 g aZau
P "0 QlxPe

together with the homogeneous Dirichlet boundary conditions and the initial conditions

Mn_K

+ f(x,1), (1.4)

u(x,0) = up(x), u,(x,0) = u1(x), x in [a, b], (1.5)

where Jéf (0 < B < 1) represents the temporal Riemann-Liouville integral, « is assumed to be a
nonnegative constant, which represents the diffusion rate of particles. Here we use the time stepping
method based on the symmetric difference approach (U"~'/? + U"*/2)/2 to approximate u(t,) of the
Riesz derivative part in (1.4), and center difference approach (U""! — 2U" + U"*')/2 to approximate
u,(t,), combining with the high order quadrature schemes based on the product trapezoidal formula to
treat the Riemann-Liouville integral term. Meanwhile, we use the Galerkin finite element method with
r — 1 order piecewise polynomial as the shape function in space. The expected goal of our convergence
order is O(h” + k?). Theoretical analyses and numerical experiments of the designed algorithm will be
presented in the following paper.

We organize the following sections. In Section 2, we introduce the preliminary definitions and
properties of fractional integral and fractional derivatives. In Section 3 and Section 4, we construct
a Galerkin finite element scheme for the fractional hyperbolic integro-differential equation, and then
present the regularity analysis of the weak solution and convergence analysis of the semi-discrete
scheme separately. In Section 5, we derive the fully discrete scheme based on the symmetric difference
method in time direction. Then we further discuss the stability analysis and error estimate of the fully
discrete scheme. In Section 6, we present some numerical experiments to illustrate the efficiency of
the theoretical analyses.

2. Preliminaries

We first introduce some definitions and notations of fractional calculus [28,29], and some properties
of fractional derivative space as well.
Definition 2.1 The Riemann-Liouville integral of order « is defined as

1 !
0. () = @L (t — )" 'u(s)ds,

where a > 0.

Definition 2.2 The Riesz derivatives of order « is defined as

§|x|bfr = C (D2, + D, )u(x),
where the left and right Riemann-Liouville derivatives are defined as
DS u(x) = —— dn f x(x — )" u(r)dnr,
@t I'n—a)dx" J,
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(_l)n d"
I'(n — a) dx”

b
DS u(x) = (= x)"* u(r)dr,
x,b

where C, = —-l<a<n.

1
2 cos(ma/2)’ n

The fractional Sobolev space needs to be denoted. On the fractional Sobolev space H*(Q2), we
denote the semi-norm | - |, by

lulo = I(Dg u, DSyl
or
lule = 11Dg cu()ll,
and or

lulo. = 11DS pu()l-

One can prove that they are equivalent to each other [15,17,18,20,29]. Then we define the norm || - ||,
by

ledller = (Ul * + Jul2)'2.
Lemma 2.1. ( [29]) The Riemann-Liouville integral operator has the following properties

7 thJu(t) = J(I;;rqu(t),

d
—Jou () = J§ u),

where p,g > 0.
Lemma 2.2. ( [15]) There exist constants Cy,C,,C3;,C4 > 0 such that for any u € HS‘Y(Q), and
v € Hj(Q),

2 2
~(Du,u) = =D u, DY) > Cylull,
2 2
—(DSu, u) = =(Du, Dy u) > Collull,,

2
—(Dgiu, v) = =Dy, DY) < Gillully - [IVila,

2
_(Dx,[;)u’ V) = _(Dibu’ Dg,xv) < C4||u||a/ . ”V”a/-
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3. The weak formulation

According to the above Lemma 2.2, the original problem turns to be the following weak form

(e, v) = KCo[(D2 1, D v) + (D 1, D& )] = C,l(Jy;” DS u, D, v) A1)
+(Jo D% u, D2 V)] + (f,v) '

X,

with the homogeneous Dirichlet boundary conditions and the initial conditions
u(x,0) = ug, u,(x,0) = u;. (3.2)

Gronwall’s inequality is important to our regularity analysis and error estimate.

Lemma 3.1. (Gronwall’s inequality) ( [5]) Assume that the nonnegative function y(¢) satisfies the
integral inequality

W) < fo x()y(s)ds + f(1), (3.3)

where x(f) > 0 and f(¢) are absolutely integrable, then

(1) < F(O) + f x(7) f(r)eh X5 g, (3.4)
0

Now we consider the regularity of the weak solution. We always denote C as a generic positive
constant which may be changed at different situations from now.
Theorem 3.1 The weak solution u(x, ¢) in (3.1) satisfies the following energy estimate

1
llutell + Nuelle: < Cllua |l + luolle + f I lldr).
0

Proof. Setting v = u, in (3.1), it becomes

(s, u;) — kCo[(Dy s Dabut) + (Di’bu, DZ,xuz)]

a, X,

= Col(Jo P D2, D ) + (Jy 2D u, DS u)] + (f, u),

1.e.,
Dyllu|? = 2kCoD,(D% ., D 1) = 2C,[(Jy DS o, D u) + (Jy P D u, DS )] + 2(f, ).

a, x,b x,b x,b

By integration in ¢ and using Lemma 2.2, we get

Tyl
il + 2 < CAlrlP + luol2 + [ (J3#DE u, D )t

. © (3.5)
+ [y (D, DS )t + [ 1A - lugllde),
where the initial values uy and u; are defined in (1.5). Then integrating by parts obtains
f t
fo (JoP D2 u, DS yu)dt = (Jy P D2 u, DY yu) — fo (D% yu, Jy D2 )dt, (3.6)
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! !
fo (JoP D2 yu, D u)dt = (Jy D2 yu, DS 1) — fo (DS, J5 DY udt. (3.7)
For the first term of the right hand side of (3.6), we have
(Jo D2 u, D2 yu) < €l D2 ull> + C(e)J, P DEull) < ellull + Cle)J, P llull3- (3.8)

And for the second one, we get

D u, JG D wydr < 1D @l -1 "I D udi
= 1D, u@ - 1, D ul (3.9)
< ellull2 + Ce)J, Pllull?.

For the discussion of the right hand side of (3.7), we can prove it similar to (3.8) and (3.9), which is
omitted here. For the last term of the right hand side of (3.5), we get

fo A1l luellde < ellu, DI + C(fo Ifllde)*,

where
DL, u@)ll = sup [IDS u(s)|l, llu @]l = sup [l (I, (@)l = sup [sr(5)lle-

0<s<t 0<s<t 0<s<t
Hence, we obtain
1+ 1
lletel| + lleelle < C(lleer]l + lluolle + J()Jﬁ”u(t)”a + fo L flld?).

Then employing Gronwall’s inequality (Lemma 3.1) gets that

t
el + Nlulle < Clluarll + lluolle + f A lldr).
0

Thus we finish the proof of Theorem 3.1.

Remark 1. The existence and uniqueness of the weak solution for (3.1) can be derived from
Theorem 3.1. The higher order regularities of the weak solution can be guaranteed only by higher
differentiabilities of the data and compatibilities, which are omitted here.

4. Error estimation of the semi-discretization

In this section, we will give the error estimate for the following semi-discretization

(Unge, v) = KCo[(Dg un, DT, v) + (DY, Dy (v)]

= Col(Jo P D2 sy, D) + (Jo P D%, D2 V)] + (£, V)

4.1)

forv e Sf, and Sf ={v € Hj(Q) N C(Q), Y|, € P,_1(K)} is the finite element subspace, in which 7 is
the stepsize in space variable x, and P,_;(K) is the r — 1 degree polynomial space on the subinterval K
of Q.

In order to carry out the work of error estimation, we first define the projection P,u € S” satisfying

(Ppu—u,v) =0,¥v e S" 4.2)
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Obviously, we have that
1Ppt — ull < Cllull.

Then we define R,u as the Ritz projection of function u € Hg(Q) N H'(Q) satisfying
(Dg (Ryu — u), DY, v) + (DS (Ryu — u), Dy v) = 0,v € st (4.3)

The optimal error estimates about the P,u and Rj,u are very useful for our later discussion.
Lemma 4.1. ([19]) Assume u € H(€2) N H'(Q), then we have that

llu = Ppull + h®llu — Ppulle < CH'|lull;, (4.4)

llu = Ryull + hllu = Ryulle < ChT|lull,. (4.5)

Remark 2. The initial value ug, € S i’ is an approximation of uy, which can take P,u or R,uy, but here
it satisfies
lluon — uolle < CH™*|luoll,. (4.6)

Then we define the fractional Ritz-Volterra projection V,u € S" satisfying

—k[(Dg (Viu — u), D“bv) + (D“ (Vi — u), Dy )]

4.7
= (JyP D2 (Vyu — u), D, v) + (]”ﬁD"b(th u), D2 v),v € Sh. 7

Here we will use the fractional Ritz-Volterra projection V), and give some useful lemmas to study the
error estimate.
Lemma 4.2. ( [9]) Denote by p = V,u — u, then we have

loll + Allplly < CH (luoll, + I P11l ), (4.8)

t !
f(llpzll + hllodlo)ds < Ch (lluoll + f llullds). (4.9)
0 0

The following energy estimation of p,, is novel and crucial to our convergence analysis.

Lemma 4.3. For the operator p,;, we have

, ¢ s ,
h*llpulla)ds < CH r+ =————lull, rds).
fo (oull+ hllplla)ds < O (g slhll- + F—slall + fo el ds)

Proof. By using the convolution property of Riemann-Liouville integral, we can rewrite (4.7) as follows

—k[(Dg 0, D3 v) + (DY 0, Dy (V)]
= r(1+ﬁ)(fo sPDE p(t — s)ds, Dabv) + r(1+/3)(fo s’ D¢ p(t = s)ds, Dy v).

By differentiating with respect to ¢ of both sides of above equation, it becomes

—K[(D P D) + (D2, oy, DY V)]
= r(1+ﬁ) [(Dg .0(0), DY, v) + (D ,0(0), Dy )]

F(“ﬁ)(fo SBD“ it = 5)ds, DLyv) + r(1+ﬁ)(f0 SﬁDabpt(t = s8)ds, Dy v)
= mi[(D5,0(0), DY, v) + (D% ,p(0), D )] + (J " DS o1, DS,v)

+ (Jo DY 1, D2).
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Then by differentiating with respect to ¢ again,

—K[(Da P DS v) + (D3 o, DG (V)]
= £21(D2,p(0), D%,v) + (D% ,p(0), DS )] + 12 (DS, (0), D, v) (4.10)
+ (D% ,p,(0), D2 )] + (J“ﬂDa xp,,,D"bv) + (Jy, D2 o, DY ).

Taking v = V,u,, — Ryu,, and using the definition of Ritz projection (4.3) obtain that

Cl\Viuy — Rhutt”i
< _K[(Da (Vi — Ryuyy), Dib(thtt — Rypuy))
+ (DS, (Vyity — Ryttyy), Dy ((Vittyy — Rpty))]
= _K[(D P> x,b(vhutt Rhutt)) + (Dahptt’ Z,x(vhutt — Ryuy))]
= l“(ﬂ) [(Da xp(O) Dab(vhutt — Ryuy)) + (Dz’bp(()), Dz,x(vhult = Ryuy))]
1—(1+ﬁ) [(Da xpt(o) Dab(vhutt Ryuy)) + (Dabpz(o), D;’,X(thn — Rpuy))]
(JH'BDQXPn, xb(thzz Ryuy)) + (JHﬁDabpm Dy (Viuy — Ryuy)).

Hence, 1
- #
Vit = Rustulla < CCreslloOlle + o510l + I o).
Therefore
lowlle < ”thtt Ruuylla + IRy — yllo
< aw)np«))na w10 Ol + T Pllou(dlle) + R4t = il
< Ch(Eglluolly + gl + (I + C g P llou(®)la-

Then by using the Gronwall’s inequality, one has
-1

o #
lloulle < Ch (r(mlluollr ra +ﬁ)llu1||r + llugll;),

and finally

t _ +1 1
Iy lou()llads < Ch=(ztg luoll, + w5z llnrlly + [ lell,dls).

Consider now the L*>—estimate. According to the characteristics of Riesz derivatives, about the left
and right Riemann-Liouville derivatives, and also using Eq (4.10), we get that

O, y) = KC(I[(DQ Ps D bw) + (Dx pP1ts DZ,xw)]
= —KkCo[(D 11 D2 (@ = ) + (D oy, D (w0 = )]
= kCol (DG o, DY ) + (DS o, Dy V)]
= _KC [(Daxpm Dab(w -V)+ (Dlhptta Z,x(w - V))]
+ £ L(D2,p(0), DY) + (D2,p(0), D% )] + 7355 [(D% p,(0), DS,v)
+(D?,p,(0), D )] + (J”ﬁDf' P D) + (DR, DY )
= ~KCol(D; D (@ — v)) + (D you DL (@ ~ )l
+ £ (D2 p(0), D) +1<D“ O, Dy )] + W) (DS p:(0), DC V)
+(D%,i0), DS W] + (Jy P pu D) + (Jy P oy, D24),
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where w satisfies w =y in H{ (), and [lwllz, < C. Choosing v = R,w, it becomes

al |2ar

oIl < CH Upu®lla + o lou(®lla) + CH Eslitoll, + s linall) + Cy Pllou ol

in which [|R,w — wl|, < h?||w|»e 1s used. By using the Gronwall’s inequality again (Lemma 3.1), one
has

-1

#
lloa Il < Chlpu (D)l +Chr(1“_(,8)” uoll, + I+ ,8)” uill,).

After integration, we get

o llou(olids < Che f0’||p,,(s)||ads+Chr<r(;iﬁ)||uo||r gl

CH (s luoll, + ol + [ N (5)llds).

IAN A

Therefore,

, ¢ - f
h” ds < Ch' p r rds).
fo (loall + illoullds < O (el + 5l + fo il ds)

Thus the proof is completed.
Lemma 4.4. ( [5]) For each € there is a constant C. = C.(¢) such that

T
| f @) - I P fd < e f FAdt+ Cedy? f (oo
0

Theorem 4.1. Assume that the initial values ug, = Ryuy and ||uy, — uy]| < Ch'|luy|l,. Let u(r) €
H{ () N H'(Q) solve (3.1), and u,(1) € S" solve (4.1), then there exists a constant C satisfies

Z,B Z,B+l
lletn(2) — u(@)|| < Chr(mlluollr TG+ 2)”ul”r f etz (5)l,ds). (4.11)
Proof. By using V,u(f) € S as an intermediate function, the error can be defined as & = u;, — u =
(up — Vyu) + (Vu — u) = 0 + p. Therefore, the error equation can be rewritten as

(6, v) — kCo[(DS,0, D, v) + (D%, 0, DS )]
- C(y[(J1+ﬂDa 6, D¢ ,v) + (JI;ﬁD; 0, D% V)] = (o, v),v € S,

where 6(0) = 0, 6,(0) = (V,u),(0) — uyj.
Taking v = 6,, it becomes

(01, 0,) — kCo[(Dg 0, D ,6,) + (D3 ,0, Dy ,0,)]
= C,[(J,P D20, Dg’be,) + (JéjﬁDibé), DZ,XH,)] — (0, 6,),

i.e.
D,|I6|I* - «C. «Dy(D5 0, DY »0)
= C,Di[(J,*D2.0,D,0) + (J, D% 0, D2 0)] - Co[(J5 D26, D, 6)
(J{,’,Dzbe D201 - (0u, 6,),
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where Lemma 2.1 is used for the computation of the Riemann-Liouville integral. By integration in ¢
and using Lemma 4.4, we get

CAGONIP + 111l - Iy 16D + 16O - J6Dods + [ ol -161d)
(102 + 116,D1P) + C@OGOIP + (T, P10 + (fy llealids)],

611> + 116l

IAIA

where

! !
f loall - 16:l1ds < el DIF + C(e) f loalids)’,
0 0

R 6@l - 6 I6@lds < elo@I; + C@ [ Jg I6lods)’
elo@I2 + CeJ, P10,
6.1l = sup 18Il 1. D)llo = sup [18,(5)l-

0<s<t 0<s<t

IA

Hence, we obtain
1
161 + 1161l < CAGO + Iy 16Dl + [ loallds).

Then we get
t
16:1 + 116l < C(ll6, 0l +f lloulldr),
0

in which the Gronwall’s inequality is used. By using Lemma 4.3, we have

¢ P! ,
6:AI + 116l < Chr(l"(ﬁ n 1)Iluollr + mllulllr + fo et ()l -ds),
where »
16Ol = [[(Vau):(0) — uy + (uy — ugp)ll < CA'( ol + =———=<Iluill»)

re+1 re+2)
is used. This finishes the error estimates of 6. Then combining Lemma 4.1 for error estimates of p, the
proof of Theorem 4.1 is completed.

5. Fully discrete scheme based on a symmetric difference approximation

We now turn to discuss the fully discrete scheme based on a symmetric difference approximation.
Let f* = f(t,), t, = nk,n = 1,2,--- N, where k = T/N is the steplength in time variable ¢. Denote
by U" the approximation solution and by U" = (U"*' — U")/k,dU" = (U" — U"")/k the forward and
backward difference quotient of U" respectively, then

AOU™ = JU" — U Yk = (U™ = 2U" + U)K

is the center difference quotient of second order to approximate the second time derivative term u,,. We
also denote the average

U/ = (U3 + U782 = (U + 207 + U Y j4 att) = jk.

There are several ways to approximate the fractional integral. Here we select the product
trapezoidal technique to approximate the fractional integral Jéjf g(®),1 < n < N, under the condition
g(t) € C*([0, T]). The following is the truncate error estimation.
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Lemma 5.1. ( [30-32]) Suppose u(t) € C*([0, T]), then we have

Iy = Z big(tyj) + O(),

F(3 + ) &
where
by =1,
=+ PP =2+ (-, j=1,2,-- ,n—1,
b, =n""PQ2 +B—n)+ (n—1)>~,
The discrete Gronwall’s inequality is very important to our stability analysis and the convergence
analysis.

Lemma 5.2. (Discrete Gronwall’s inequality) ( [33-36]) Assume that w, > 0, f, > 0 and that for
n=0,1,---,y, > 0 satisfies

n—1
=0
then we have

N-1
< .
yv < exp( Z w;) Max f,.

i=n+1

Next we denote by I,u the piecewise polynomial interpolation operator of u in $" satisfying
Lyu(t,) = u(t,),n=0,1,--- ,N.
Lemma 5.3. ([19]) Assume u € H{(Q) N H"(2), then we have that
IRpu — Tyull + h*||Ryu — Tyulle < CH'|ull;-
Now we give the fully discrete scheme

83U",v) — KCQ[(D" U, D“bv) +(Dg, U, D§ )]

5.1
= 0"Col(D2, U, D},v) + (D2, U,D? v) +(f",v),veSh 1)

k1+ﬂ

with given initial values U° and U' € S”, and o"(g) = T

is equivalent to the following form

20 bn-jg&(t). In fact, the above scheme

Un+1 20"+ Unl Un+1/2 uUn- 1/2 Un+l/2 un- 1/2
(f v) = kCo[(D L2 D y) 4+ (D7, LU e )]

k1+ﬁ U/+1/2 yi-12 U}+1/2 yi-172
“l"(3+,8) Z/ 0 bn- J[(Da —+ DQ;,V) + (DQ + D” V)] + ("),

(5.2)

where U~'/? can be approximated by U° and U', and the second-order accuracy should be guaranteed.
Furthermore, we can move the terms U™*! in the right hand side of (5.2) to the left hand side for explicit
processing.

Then we discuss the stability analysis of the fully discrete scheme (5.1) in the following form.
Theorem 5.1. The solution of (5.1) satisfies the following stability conclusion

10U + 11U 2]l < CIOU°N + CIIU 2|, + CkZ I/, (5.3)

m=1
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forn>1,t,. <T. 3
Proof. Choosing v = QU™'/? in (5.1) to obtain

(00U",dU"™1) — kC,[(DE, U, D* ,dU™'1?) + (D U, DE,,U"*'/?)]
= C,0"[(D2, U, D ,0U™"2) + (D, U, D2, U™ ")) + (", U112 (5.4)
=10+ 1.

Note that |
BOU", oU™ %) = (9U" — U1, 0U" + dU" ") )2k = E5||<9U"||2,

(D, U, D*,0U™"?) + (D, U, DE,,0U"™'/?)

= 56[(DZ’XU11+1/2’ Dz,bUnH/z) + (DibUnH/Z, Dg’xUnH/Z)].
Multiplying both sides of (5.4) by k and summing from n = 1 to N obtain

IOUNIP + cllUN2|2 < loU°N* + CINUM2|2 + Ckl Sl (7 + ).
For the term k| ZnNzl I7], we have

K o Il o o
= C k| XV, o"[(Dg ,U", Dib(?U”“/z) +(DS,U", D U™ 2]
148 n— @ j j— a n n—
= 385 (| Zomt 22 bunj[(DG (UF12 + U712, Dy (U112 — U112))
+ (Dib(U}H/z + Uj—l/Z)’Dg’x(UnH/Z _ Un—l/2))]| + |ZnN:l[(DZ,x(Un+1/2 + Un—l/Z)’
Dib(UrHl/Z _ Un—1/2)) + (Dg’b(UnH/Z + Un—l/l)’Dg’x(UnH/Z _ Un—l/2))]|}
148 _ j j— o n n—
< g L0 b=y B jt (DG (U712 4 U7712), DY (U112 — U1 2)))
(D (UF12 4+ U2, D (U2 = U2+ N max ey 1072

< COMP 235 by N0 2Ly + K max c,en 1U™]]0) maxy guen U™,

(5.5

in which b,_; = (n— j+ 1)** = 2(n— j)** + (n— j— 1)** is monotonically increasing forn = 1,--- , N.
And for the term k| ZnNzl I7|, we have

N N
411 Cle ) Il ma 13U
After some adjustments and applying the discrete Gronwall’s inequality (Lemma 5.2) obtain

N
IOUN| + 1T 21, < CIOUCN + CINU 2l + CkZ 11l

n=1

Then we finish the proof of the theorem.
Next we discuss the error estimate of the fully discrete scheme. Denote by the error U" — u" =

o -vu) + (Vuu" —u") = 6" + p", we have
(806", v) - kCo (D207, D%, v) + (D* 0", D2 v)] = Coo" (D267, D%, v)

X

G 5.6
+(DS,0", D )] = (¢",v),Vv € ST, (5.6)
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where 8° = uy — U°,6' = u; — U', and

n 7 n n 7 n %) n
e'=el+ey+estey, e —82(9/0 ,
_ _ a Q -
e; - aaM(l‘n) - ul‘t(tn)’ egl - alx‘ZQ(thn - thn)’

n n 20 1 20
ey =0 (v — I v u).

0|2 0,t, dlx|?

To construct the discrete initial values U° and U, let u, = u,(0) = £(0) — %uo and define U' =

Vo + kVi + Vok?/2, where U° = Vo, V; = Puj,j = 0,1,2. According to Lemma 4.1, we get the
following conclusions
Vo = uoll + kl|Vi — uylle < CH™7, Vo]l < C,

IVy = wll + kl|V2 — up| < CH'™°.

Then for 8" = U" — V,u", there is
106°1l + 116"l < Cu)(R'™ + k). (5.7

In the following, we give the error estimation of the fully discrete scheme (5.1).
Theorem 5.2. The solution U of (5.1) and the solution u of (1.4) at #,,,,, satisfy the following
conclusion
IO = u(ty1 )l < Ca)(B™ + K. (5.8)

Proof. The proof is similar to Theorem 5.1. Taking v = d¢"*'/? in (5.6), we have

(896", 00™112) - kC, (D2, 0", D* ,30™72) + (D* 6", D2 96"+'/?)]

Kbl L _ 5.9
= C,0"[(D2, ", D%, 36" %) + (D° 0", DS, 86" 17)] — (¢, 86", 62

where |
(H00", 00" 11?) = (96" — 90", 00" + 89" ")/ 2k = E5||a¢9"||2,

(D30, D%, 00""2) + (D2 6", D2 .06™'?)
— %6[(Dg’x0n+l/2’Dz’b0n+l/2) + (Diben+l/2’Dg’x9n+l/2)]'

For the first term of the right sides of (5.9), which is similar to (5.5), we obtain

C.kl| ZnNzl O'; [ng’x’é\", Dz’h59n+l/2) + (DZh’én, Dg,x59"+1/2)]|
< (k" 3 by 16717, + K max cuey 167/21,) max; cen 167172,

Summing (5.9) from n = 1 to N obtains that

N-1 j
106" + clle¥ 21 < 1106°I7 + ClI' 21 + Ck™P X2y b 1167+l max <uen 16712l
+Ck 3L, lle/ll max <<y 106172,

Then applying Lemma 5.2, we get

N
106" + 16" 121l < CIlAE° || + ClI6" I + CkZ lle”]l. (5.10)

n=1
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By the Taylor expansion, we know that

Wt — " = u'(t,)k + ftt"” ' (s)(tyer — 8)ds
= Wtk + W (L2 + W (G 16 + 116 [ 4D (5)(te1 — )ds.

Therefore ) )
— n+l1 n+1
klle}ll = klldap"|| < f loullds < Ch' f letll, s,
th-1 In-1
_ In+1
et = Kldute,) = el < € [ (syds
-1
Kleall = kil (Vi = Vil < K [ | Vil s
< CR [ luglhads,
and
In 82(1/ 5 In
Kllejll < & f 5= Vittysllds < Ck f lttll2adls.
o Olx|* 0
Thus

N tn IN+1
2 4
k> Nl < i f gl ds + Ck f (@ + Nlitllze)ds.
n=1 0 0

Combined with (5.7) and (5.10), we finish the proof of Theorem 5.2
Remark 3. The above stability analysis and the convergence analysis of the fully discrete schemes can
be extended to high-dimensional cases without difficulty, which are omitted here.

6. Numerical experiments

In order to test the effectiveness of the designed numerical algorithm, we present the following
numerical experiments in this section.

In the Galerkin finite element approximation, we select the hat function as the shape function,
followed by the symmetric difference scheme and fractional trapezoidal formula for the time stepping.
Through the theoretical analysis of the previous sections, the expected goal of the convergence order
with L? norm should be O(k> + h?).

Example 6.1. In this example, we study the following fractional hyperbolic equation

~ aZau o 62014
a|x|2a 0, 8|x|2(1

Uy + f(x, 1), 6.1)
with homogeneous boundary conditions. And the corresponding parameters satisfy Q = [-1,1],T =
l,a=09,6=0.1.

Case 1. We choose the source term f = 2(1 — x)(1 + x) — (2 + %)%(1 — x)(1 + x), then the
exact solution is u(x, 1) = 1*(1 — x)(1 + x), which determines that the initial values uy = u; = 0.

Table 1 shows the numerical results and convergence rates of case I, which supports the predicted
rates of the convergence. Figure 1 shows the exact solution and the numerical solution of case I with

a=09p=01,h=1/64,k = 0.0lhatt = 0.5,x € [—1,1]. Figure 2 shows the error between the
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exact solution and the numerical solution of case I with @ = 09,8 = 0.1, h = 1/64,k = 0.01h, at
x = 0,7 € [0,1]. And Figure 3 shows the numerical solution of case I under the same conditions.

Table 1. Experimental error results of case I in Example 6.1.

h | u® —u) | cv.rate
: 1.4686 - 1072 -

5 3.4777-107 2.0783
i 8.1008 - 10~ 2.1020
= 1.8438 - 107 2.1354
& 4.8037 - 107 1.9405

Figure 1. The exact solution and the numerical solution of case I in Example 6.1 with
a=09,=0.1,h=1/64,t=0.5,x e [-1,1].

error

Figure 2. Error between the exact solution and the numerical solution of case I in
Example 6.1 witha =0.9,6=0.1,h=1/64 forx € [-1,1],¢ € [0, 1].

AIMS Mathematics
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504

Figure 3. The numerical solution of case I in Example 6.1 with @ = 09,8 =0.1, h = 1/64
forx e [-1,1],¢ € [0, 1].

Case II. We choose the exact solution u(x, ) = sin(zt)(1 — x)(1 + x). And the source term f is
obtained numerically by using the fractional trapezoidal formula. Then the initial values satisfy uy =
0,u; = (1l —x)(1 + x).

Table 2 shows the numerical results and convergence rates of case II, which support the predicted
rates of the convergence. Figure 4 shows the exact solution and the numerical solution of case II with
a=09,8=0.1,h=1/64,k =0.01h,att = 0.5,x € [-1, 1]. Figures 5 and 6 show the error between
the exact solution and the numerical solution, the numerical solution of case Il with @ = 0.9,8 = 0.1,
h=1/64,k =0.01hfor x € [-1,1],¢ € [0, 1] separately.

S 05

-1 -0.5 0 0.5 1
X

Figure 4. The exact solution and the numerical solution of case II in Example 6.1 with
a=09,=0.1,h=1/64,att=0.5,x € [-1,1].
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error

Figure 5. The error between the exact solution and the numerical solution of case II in
Example 6.1 witha =09, =0.1,h =1/64 forx € [-1,1],¢ € [0, 1].

sin(rt)(1-x%)

Figure 6. The numerical solution of case II in Example 6.1 witha = 0.9, =0.1, h = 1/64
forx € [-1,1],¢ € [0, 1].

AIMS Mathematics

Table 2. Experimental error results of case II in Example 6.1.

h I u® —u) | cv.rate
1 5.13728 - 102 i

% 1.3758 - 1072 1.9007
% 4.0785-1073 1.7542
% 1.3590 - 1073 1.5855
é 5.1245-107* 1.4071
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Example 6.2. In this example, we consider the following fractional hyperbolic equation
wy — D2 = Jy P D2 + f(x,1), (6.2)

with homogeneous Dirichlet boundary conditions in Q = [0,1],7 = 1.

We choose the source term f = 2(1 — x)x* — (* + rz(f:f;) )Dﬁfﬁc(l — x)x%, then the exact solution is

u(x, 1) = t*(1 — x)x%, which has a weak singularity at the boundary point x = 0if 0.5 < a < 1.

Table 3 shows the errors and convergence rates with parameters @ = 0.6,8 = 0.1, h = 1/64,k =
0.01A for x € [0,1],¢ € [0,1]. Figures 7 and 8 show the numerical solution and the absolute error
between the exact solution and the numerical solution of Example 6.2 witha@ = 0.9, =0.1, h = 1/64
for x € [0, 1],¢ € [0, 1] separately. And Figure 9 shows the numerical solution with different values of
a at time ¢ = 0.5. From Figures 8 and 9, we can see that the numerical solution is basically coincided
with the exact solution. Note that the selected exact solution has a weak singularity at the boundary
point x = 0, therefore the scheme does not work very well near zero.

Table 3. Experimental error results of Example 6.2 with @ = 0.6,5 = 0.1.

h I u® —u) | cv.rate
1 2.6034E — 002 i

% 1.7128 E — 002 0.6041
1_16 9.3203E — 003 0.8779
% 4.6566E — 003 1.0011
é 2.2366FE — 003 1.0580

Figure 7. The numerical solution of Example 6.2 with « = 0.9, = 0.1, h = 1/64 for
x €[0,1],t € [0,1].
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103

absolute error

N}

02
% 0 o t

Figure 8. The absolute error between the exact solution and the numerical solution of
Example 6.2 with @« = 0.9, =0.1, h = 1/64 for x € [0, 1],7 € [0, 1].

007

0.06

005

=004

003

002f

001 -

Figure 9. The numerical solution and the exact solution of Example 6.2 with @ =
0.6,0.7,0.8,0.9 separately and 8 = 0.1, h = 1/64, ¢t = 0.5, x € [0, 1].

7. Conclusions

In this paper, we use the Galerkin finite element method and the symmetric difference method to
solve the fractional hyperbolic integro-differential equation, where the space fractional derivative is
in Riesz sense and the integro-differential term is compounded of the Riesz space fractional derivative
and the Riemann-Liouville time fractional integral. We apply the fractional trapezoidal formula to treat
the fractional integral and employ enough points to ensure the convergence order. Numerical examples
are presented to test the effectiveness of the convergence analysis. From the numerical results, we can
see that the designed numerical algorithm performs well and the convergence orders conform to the
convergence analysis.

As is known to all, fractional calculus has weak singularity and nonlocality from its origin [37].
Not only the fractional differential equation, but also the fractional integro-differential equation, their
solutions both behave the weak singularities. In this paper, we design a solution with a weak singularity

AIMS Mathematics Volume 7, Issue 8, 15348-15369.
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at the boundary point x = 0, which is verified by numerical experiments. Meanwhile, because of its
nonlocality, although the above theoretical analyses can be extended to the high-dimensional cases
without difficulty, the capacities of computation and memory will become large. So how to reduce the
computationally expensive and the storage requirement comes into being the main problem. Maybe
the fast algorithm is a good choice. In future, we will continue to study these problems.
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